Kosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos
|
|
- Juuso Kyllönen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kosmologian yleiskatsaus Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos 1
2 Päämääriä Kosmologia tutkii maailmankaikkeutta kokonaisuutena. Kehitys, ainesisältö, rakenteet, laajeneminen. Maailmankaikkeuden sisältämät kappaleet kiinnostavat vain sen kautta, mitä ne kertovat kokonaisuudesta. 2
3 Keinoja Yleinen suhteellisuusteoria kertoo, miten aikaavaruus käyttäytyy, kun siinä on tietynlaista ainetta. Kosmologiassa tarvitaan myös aineen käyttäytymistä kuvaavia teorioita: hiukkasfysiikkaa, ydinfysiikkaa, atomifysiikkaa, statistista fysiikkaa,... Läheinen suhde hiukkasfysiikkaan ja tähtitieteeseen. 3
4 Murrosikä Kosmologiassa on viimeisen 20 vuoden aikana tapahtunut suurin murros sitten 1920-luvun. Edistys on tullut havainnoista. Havaintojen määrä ja tarkkuus on kasvanut siinä määrin, että puhutaan täsmäkosmologiasta. 4
5 Isotropia: COBE
6 Isotropia: WMAP
7 Isotropia: Planck
8 Suuren mittakaavan rakenne arxiv:astro-ph/ , Nature 440:
9 Homogeenisuus Scaled N R D2 R Comoving radius R Mpc Comoving radius R Mpc 9
10 Euclid ESA päätti Euclid-satelliitin toteuttamisesta kesäkuussa Laukaistaan Kartoittaa 40% taivaasta. Fysiikan laitos mukana. 10
11 11
12 12
13 Tyypin Ia supernovat 13
14 Tyypin Ia supernovat 14
15 Kosmologian aikakaudet Ikä Lämpötila Tapahtuma 14 Gyr 3 K tänään 8 Gyr 5 K laajeneminen kiihtyy 40 Myr 200 K ensimmäiset rakenteet yr 3000 K valo ja aine eroavat 3-30 min 10 9 K Big Bang Nucleosynthesis 10-5 s K QCD-faasitransitio (?) s K sähköheikko faasitransitio (?) s K baryogeneesi? s K inflaatio? s K kvanttigravitaatio? 15
16 Friedmann(-Lemaître)- Robertson-Walker-malli Havaittu tilastollinen homogeenisuus is isotrooppisuus (H&I) motivoi eksaktia H&I mallia. FRW-mallissa avaruus on H&I: kaikki paikat ja suunnat ovat samanlaisia. Homogeenisuus ja isotrooppisuus ovat riippumattomia ominaisuuksia. Mallissa on kaksi osaa: aika-avaruus ja ainesisältö. 16
17 FRW-metriikka Yleisin mahdollinen eksaktisti homogeeninen ja isotrooppinen metriikka: ds 2 =!dt 2 + a(t) 2 " $ K 1+ # 4 r2 2 % (dx2 + dy 2 + dz 2 ) ' & " =!dt 2 + a(t) 2 dr 2 1! Kr + % $ 2 r2 (d! 2 + sin 2!d" 2 )' # & skaalatekijä avaruuden kaarevuus 17
18 Sivuhuomio: luonnolliset yksiköt On kätevää käyttää yksiköitä, joissa valonnopeus c=1 ja redusoitu Planckin vakio ħ=1. SI-yksiköissä c= m/s, eli luonnollisissa yksiköissä s = m. Vastaavasti ħ= Js, eli s -1 = J. [aika]=[pituus]=[energia] -1 =[massa] -1 18
19 Kaarevuuden kaksi puolta Aika-avaruus on FRW-metriikassa kaartunut kahdella eri tavalla: 1) Avaruuden kaarevuus ( sisäinen kaarevuus ), jota kuvaa vakio K. 2) Avaruuden laajeneminen ( ulkoinen kaarevuus ), jota kuvaa funktio a(t). 19
20 Avaruuden kaarevuus Siivun t=t 0 =vakio (eli avaruuden) metriikka: ds 2 = a(t 0 ) 2! # K 1+ " 4 r2 2 $ (dx2 + dy 2 + dz 2 ) & % Kolme vaihtoehtoa: 1) K=0: euklidinen avaruus (ääretön): tasainen eli laakea 2) K>0: kolmiulotteinen pallopinta (äärellinen): suljettu 3) K<0: kolmiulotteinen hyperbolinen pinta (ääretön): avoin 20
21 Avaruuden kaarevuus K>0: kolmiulotteinen pallopinta K=0: kolmiulotteinen euklidinen avaruus K<0: kolmiulotteinen hyperboloidi ds 2 =!dt 2 + a(t)2 K [d! 2 + " $ # $ % $ sin 2! K! 2 sinh 2! & $ '(d" 2 + sin 2 "d# 2 )] $ ( $ 21
22 Kaksiulotteinen analogia 22
23 Maailmankaikkeus laajenee Rajoitutaan tapaukseen K=0. ds 2 =!dt 2 + a(t) 2 (dx 2 + dy 2 + dz 2 ) =!dt 2 + a(t) 2 ( dr 2 + r 2 d" 2 ) Etäisyys pinnalla t=vakio: L=a(t)Δx. Etäisyys kasvaa ajan myötä. Näennäinen etääntymisnopeus on!l =!a!x = Ha!x = HL Tässä on määritelty Hubblen parametri Hubblen parametrin tämänhetkinen arvo on H =!a / a H 0! 70 km s " Mpc 23
24 Gravitaation sitomat rakenteet eivät laajene Aurinkokunta, galaksit, galaksiryhmät eivät laajene galaksit sidottu gravitaatiolla galaksiryhmiin galaksiryhmien välinen tila laajenee 24
25 Punasiirtymä Hiukkasten liikemäärä hiipuu laajenemisen myötä: p!1/ a Fotoneilla on vain liike-energiaa: E = p = 2! " = f 2! Fotonien taajuus pienenee ja aallonpituus venyy:!!1/ E!1/ f! a Määritellään punasiirtymä: z!! hav "! läh! läh #1+ z $1/ a Spektriviivoista voidaan päätellä λ läh. Punasiirtymä on käytännöllinen kosmisen ajan mittari. 25
26 Valon avulla mitattu etäisyys Valitaan x-akseli valon liikkeen suuntaiseksi. ds 2 =!dt 2! a(t) 2 (dx 2 + dy 2 + dz 2 ) =!dt 2! a(t) 2 dx 2 = 0 ds 2 = 0! dx = dt a(t)! "x = # dx = x x 1 t dt #! d = a"x = a(t) a(t) t 1 t # t 1 dt a(t) Jos avaruus laajenee, valon ajassa t kulkema matka on pidempi kuin t. 26
27 Dynamiikka Skaalatekijä a(t) määräytyy liikeyhtälöistä, jotka yhdistävät aika-avaruuden ja aineen ominaisuudet. Yleisen suhteellisuusteorian liikeyhtälö on Einsteinin yhtälö (kymmenen osittaisdifferentiaaliyhtälön ryhmä). FRW-mallin tapauksessa yhtälö palautuu Friedmannin yhtälöiksi. 27
28 Friedmannin yhtälöt FRW-metriikka + Einsteinin yhtälö Friedmannin yhtälöt Friedmannin yhtälö 3! a 2 a 2 = 8!G N!! 3 K a 2 3!! a a =!4!G N (! + 3p)!! + 3! a a! + p ( ) = 0 energiatiheys ρ ja paine p Uutta verrattuna Newtonin teoriaan: 1) massatiheys energiatiheys 2) myös paine toimii gravitaation lähteenä 28
29 Friedmannin yhtälöt 3! a 2 a 2 = 8!G N!! 3 K a 2 3!! a a =!4!G N (! + 3p) Kolme vapausastetta: a(t), ρ(t), p(t). Kaksi yhtälöä. Tarvitaan tilanyhtälö, joka liittää p:n ja ρ:n toisiinsa. (Eli kertoo, millaista aine on.) 29
30 Ratkaisuja 3! a 2 a 2 = 8!G N"! 3 K a 2 3!! a a =!4!G N (" + 3p)!" + 3! a a " + p ( ) = 0 p = w! Otetaan tilanyhtälöksi, missä w = vakio > -1 ja laitetaan K=0. Kolmannesta yhtälöstä saadaan 1 d!! dt =!3(1+ w)!a a "! # a!3(1+w) 30
31 Alkuräjähdys 3! a 2 a 2 = 8!G N"! a "3(1+w) 1 2 # a (1+3w) da!±dt 3(1+w) # a!(t " t 0 ) = t 2 2 3(1+w) p = w! Valitaan positiivinen merkki: avaruus laajenee Skaalatekijä menee nollaan äärellisen ajan päässä menneisyydessä, ja tiheys divergoi: alkuräjähdys (big bang)! Kysymys Mitä oli ennen alkuräjähdystä? ei tarkoita mitään. (Vrt. Mitä on pohjoisnavasta pohjoiseen?, Mitä on sisään pallon keskipisteestä? ) 31
32 Realistisia ratkaisuja 3! a 2 a 2 = 8!G N"! a "3(1+w) a! t 2 3(1+w), w " p /! Pöly (massiiviset hiukkaset, galaksit): p = 0!! " a #3, a " t Säteily (massattomat tai ultrarelativistiset hiukkaset): Kosmologinen vakio (tai tyhjön energia) 2 3 p = 1 3!!! " a#4, a " t p =!! "! = vakio, a # e Ht
33 Kohti alkua a! t 2 3(1+w) Etäisyydet skaalautuvat tekijällä a: L=a(t)Δx. Lähestyttäessä alkua kaikki pisteet lähestyvät toisiaan, ja avaruuden tilavuus pienenee. Hetkellä t=0 avaruuden tilavuus on määrittelemätön (nolla kertaa ääretön) tapauksissa K=0 ja K<0, ja nolla tapauksessa K>0. Yleinen suhteellisuusteoria ei päde hyvin varhaisina hetkinä, ei tiedetä, mitä silloin on tapahtunut. 33
34 Valon kulkema etäisyys a! t 2 3(1+w) Varhaisina hetkinä maailmankaikkeuden osat olivat lähempänä toisiaan mitä tulee etäisyyksiin avaruudessa. Mutta ne olivat vähemmän yhteydessä toisiinsa, koska valo ei ollut vielä ehtinyt matkata pitkälle. Valon ajasta t 1 aikaan t kulkema etäisyys on t dt d = a(t)! = a(t) t w 1+ 3w (t " t 1) 34
35 Horisontti Kun t 1 = 0, saadaan matka, joka valo on korkeintaan ehtinyt kulkea maailmankaikkeuden alusta aikaan t. Tätä etäisyyttä d H kutsutaan horisontiksi. Sitä kauemmas ei voi nähdä. d H = 3+ 3w 1+ 3w t =! 3t " # 2t pöly (w=0) säteily (w=1/3) Näkyvän maailmankaikkeuden koko riippuu laajenemishistoriasta. Maailmankaikkeuden ikä on 14 miljardia vuotta näkyvän maailmankaikkeuden koko on 14 miljardia valovuotta 35
36 Vaniljamalli 3! a 2 a 2 = 8!G N (" pöly + " säteily + " tyhjö ) = 8!G N (" säteily,0 a!4 + " pöly,0 a!3 + " tyhjö,0 ) Kosmologian yksinkertaisin toimiva malli sisältää säteilyä (fotoneja ja neutriinoja), ainetta (neutriinoja, atomiytimiä, elektroneja ja pimeää ainetta) sekä tyhjön energiaa. Siinä avaruus on tasainen (K=0). Ensin maailmankaikkeutta dominoi säteily, sitten aine ja lopulta tyhjö. Havaintojen mukaan aineesta nykyään noin 10-4 on säteilyä, 30% epärelativistista materiaa ja 70% tyhjön energiaa. 36
37 Pimeä aine Aineen osuus energiatiheydestä on noin 30%: 4% tavallista ainetta, loput pimeää ainetta. Pimeä aine on ainetta, joka ei vuorovaikuta (voimakkaasti) valon kanssa, eli se on näkymätöntä. Sitä ei myöskään voi koskettaa. Pimeä aine on havaittu vain sen gravitaation kautta. Luultavasti kyseessä on toistaiseksi tuntematon hiukkanen, jolla ei ole sähkövarausta. 37
38 Pimeä energia 3!!a a =!4!G N (! + 3p) Energiatiheydestä 70% on pimeää energiaa, eli ainetta, joka saa aikaan kiihtyvän laajenemisen, eli sen paine on negatiivinen. Pimeä energia on havaittu vain kiihtyvän laajenemisen kautta. Toisin kuin pimeä aine, se ei klimppiydy merkittävästi, jos ollenkaan. Vaniljamallissa on pimeän energian yksinkertaisin vaihtoehto, tyhjön energia, jolle p =!! dark energy [...] is an enigma, perhaps the greatest in physics today!! + 3!a ( a! + p ) = 0 38
39 Fysiikan Nobel-palkinto 2011 maailmankaikkeuden kiihtyvän laajenemisen löytämisestä kaukaisten supernovien havaintojen kautta Saul Perlmutter Brian P. Schmidt Adam G. Riess 39
Kosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä.
Kosmologia Kosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä. Kosmologia tutkii maailmankaikkeutta kokonaisuutena. (Vrt. astrofysiikka,
Kosmologia. Kosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä.
Kosmologia Kosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä. Kosmologia tutkii maailmankaikkeutta kokonaisuutena. (Vrt. astrofysiikka,
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)
Pimeä energia. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla
Pimeä energia Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla 27.5.2015 Friedmann- Robertson- Walker - malli homogeeninen ja isotrooppinen approksimaa>o maailmankaikkeudelle Havaintoihin sopii
Fysiikkaa runoilijoille Osa 6: kosmologia
Fysiikkaa runoilijoille Osa 6: kosmologia Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Kaikkeuden tutkimista Kosmologia tutkii maailmankaikkeutta
Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö
Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin
Suhteellisuusteorian perusteet, harjoitus 6
Suhteellisuusteorian perusteet, harjoitus 6 May 5, 7 Tehtävä a) Valo kulkee nollageodeettia pitkin eli valolle pätee ds. Lisäksi oletetaan valon kulkevan radiaalisesti, jolloin dω. Näin ollen, kun K, saadaan
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden
Moderni fysiikka kevät 2011
Moderni fysiikka kevät 2011 Luennot maanantaisin ja tiistaisin 12-14, D101 Syksy Räsänen: C326 Laskuharjoitukset (25% arvosanasta) Timo Rüppell ja Olli Taanila (A323) Neljä ryhmää: 14-16 & 16-18 (E205),
Kosmologia. Kosmologia tutkii maailmankaikkeutta kokonaisuutena:
Kosmologia Kosmologia tutkii maailmankaikkeutta kokonaisuutena: -laajeneminen -ainesisältö -alkuhetket -kohtalo Kosmologia käsittelee avaruuden aikakehitystä: yleisen suhteellisuusteorian sovellus suurimpaan
Pimeän energian metsästys satelliittihavainnoin
Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14
Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
Vuorovaikutuksien mittamallit
Vuorovaikutuksien mittamallit Hiukkasten vuorovaikutuksien teoreettinen mallintaminen perustuu ns. mittakenttäteorioihin. Kenttä viittaa siihen, että hiukkanen kuvataan paikasta ja ajasta riippuvalla funktiolla
Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9
: Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9 Horisonttiongelma Valtteri Lindholm Helsingin Yliopisto Teoreettisen fysiikan syventävien opintojen seminaari Valtteri Lindholm
PARADIGMOJEN VERTAILUPERUSTEET. Avril Styrman Luonnonfilosofian seura
PARADIGMOJEN VERTAILUPERUSTEET Avril Styrman Luonnonfilosofian seura 17.2.2015 KokonaisHede Koostuu paradigmoista Tieteen edistystä voidaan siten tarkastella prosessina missä paradigmat kehinyvät ja vaihtuvat
Maailmankaikkeuden kriittinen tiheys
Maailmankaikkeuden kriittinen tiheys Tarkastellaan maailmankaikkeuden pientä pallomaista laajenevaa osaa, joka sisältää laajenemisliikkeessä olevia galakseja. Olkoon pallon säde R, massa M ja maailmankaikkeuden
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
Teoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
Euclid. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla
Euclid Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla 27.5.2015 Mikä aiheu.aa kiihtyvän laajenemisen Kaksi vaihtoehtoa Pimeä energia (dark energy) Painovoima käyaäytyy eri lailla hyvin suurilla
KVANTTIKOSMOLOGIAA VIRKAANASTUJAISESITELMÄ, PROFESSORI KIMMO KAINULAINEN. Arvoisa Dekaani, hyvä yleisö,
VIRKAANASTUJAISESITELMÄ, 12.12.2012 PROFESSORI KIMMO KAINULAINEN KVANTTIKOSMOLOGIAA Arvoisa Dekaani, hyvä yleisö, Kosmologia on tiede joka tutkii maailmankaikkeutta kokonaisuutena ja sen kehityshistoriaa.
Suhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
Kosmos = maailmankaikkeus
Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita
MAAILMANKAIKKEUDEN SYNTY
MAAILMANKAIKKEUDEN SYNTY Maailmankaikkeuden synty selitetään nykyään ns. alkuräjähdysteorian ( Big Bang ) avulla. Alkuräjähdysteorian mukaan maailmankaikkeus syntyi tyhjästä tai lähes tyhjästä äärettömän
Lyhyt katsaus gravitaatioaaltoihin
: Lyhyt katsaus gravitaatioaaltoihin Valtteri Lindholm Helsingin Yliopisto Teoreettisen fysiikan syventävien opintojen seminaari Sisältö Suppea ja yleinen suhteellisuusteoria Häiriöteoria Aaltoratkaisut
Luonnonfilosofian seura. Mitä havainnot ja mallit viestittävät todellisuudesta?
Mitä havainnot ja mallit viestittävät todellisuudesta? Ari Lehto, Heikki Sipilä ja Tuomo Suntola 1 PhysicsWeb Summaries 20.7.2007: Pimeän energian tutkimusryhmät voittivat kosmologiapalkinnon (July 17,
Pimeä energia ja supernovahavainnot
Kandidaatintutkielma Teoreettinen fysiikka Pimeä energia ja supernovahavainnot Eemeli Tomberg 2013 Ohjaaja: Tarkastaja: Syksy Räsänen Syksy Räsänen HELSINGIN YLIOPISTO FYSIIKAN LAITOS PL 64 (Gustaf Hällströmin
perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi
8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät
Planck ja kosminen mikroaaltotausta
Planck ja kosminen mikroaaltotausta Elina Keihänen Helsingin yliopisto Fysikaalisten tieteiden laitos Fysiikan täydennyskoulutuskurssi 8.6.2007 Kiitokset materiaalista Hannu Kurki Suoniolle Planck satelliitti
MAAILMANKAIKKEUDEN SYNTY
MAAILMANKAIKKEUDEN SYNTY Maailmankaikkeuden synty selitetään nykyään kosmisen inflaation ja alkuräjähdysteorian ( Big Bang ) avulla. Maailmankaikkeus syntyi nykytietämyksen mukaan (2016) tyhjiöenergiasta
Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
2r s b VALON TAIPUMINEN. 1 r. osittaisdifferentiaaliyhtälö. = 2 suppea suht.teoria. valo putoaa tähteen + avaruus kaareutunut.
MUSTAT AUKOT FAQ Miten gravitaatio pääsee ulos tapahtumahorisontista? massa ei sylje gravitaatiota kuin tennispalloja. Tähti on käyristänyt avaruuden jo ennen romahtamistaan mustaksi aukoksi, eikä tätä
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
Kosmologia ja alkuaineiden synty. Tapio Hansson
Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa
Fysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto
Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?
Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa. Kari Rummukainen
Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa Kari Rummukainen Mitä hiukkasfysiikka tutkii? Mitä Oulussa tutkitaan? Opiskelu ja sijoittuminen työelämässä Teoreettinen fysiikka: työkaluja
Hiukkasfysiikkaa teoreetikon näkökulmasta
Hiukkasfysiikkaa teoreetikon näkökulmasta @ CERN Risto Paatelainen CERN Theory Department KUINKA PÄÄDYIN CERN:IIN Opinnot: 2006-2011 FM, Teoreettinen hiukkasfysiikka, Jyväskylän yliopisto 2011-2014 PhD,
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava
Crafoord palkinto 1991. nopeus-etäisyys etäisyys
Allan Sandage ja maailmankaikkeuden laajeneminen P. Teerikorpi Tuorlanobservatorio Turunyliopisto Allan Sandage (1924 2010) Mt. Palomar Observatory Crafoord palkinto 1991 hyvin tärkeistä tutkimuksista,
Kosmologinen inflaatio
Kosmologian kesäkoulu Solvalla, 25.-28.5. 2015 Inflaatio varhaisessa maailmankaikkeudessa Malli rakenteen synnylle, kiihtyvän laajenemisen jakso kun t 10 12 s Fysikaaliset mittaskaalat kasvavat tekijällä
CERN-matka
CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
YLEINEN SUHTEELLISUUSTEORIA
YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,
YLEINEN SUHTEELLISUUSTEORIA
YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,
INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN. Heikki Sipilä LF-Seura
INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN Heikki Sipilä LF-Seura 18.9.2018 Sisältö Henkilökohtaista taustaa Insinööri ja fysiikka Dimensioanalyysi insinöörin menetelmänä Esimerkki havainnon ja teorian yhdistämisestä
ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
Perusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum
Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum Luento 12: Varhainen maailmankaikkeus 24/11/2015 www.helsinki.fi/yliopisto 24/11/15 1 Tällä luennolla käsitellään 1. Varhaisen maailmankaikkeuden
FYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
Voima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
Perusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista
Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista K. Kajantie keijo.kajantie@helsinki.fi Tampere, 14.12.2008 Fysiikan (teoreettisen) professori, Helsingin yliopisto, 1970-2008
Sisällysluettelo. Alkusanat 11. A lbert E insteinin kirjoituksia
Sisällysluettelo Alkusanat 11 A lbert E insteinin kirjoituksia Erityisestä ja yleisestä su hteellisuusteoriasta Alkusanat 21 I Erityisestä suhteellisuusteoriasta 23 1 Geometristen lauseiden fysikaalinen
Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
CP-rikkovan Diracin yhtälön eksakti ratkaisu ja koherentti kvasihiukkasapproksimaatio
CP-rikkovan Diracin yhtälön eksakti ratkaisu ja koherentti kvasihiukkasapproksimaatio Olli Koskivaara Ohjaaja: Kimmo Kainulainen Jyväskylän yliopisto 30.10.2015 Kenttäteoriasta Kvanttikenttäteoria on modernin
Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on
763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa Graduseminaari Joonas Ilmavirta Jyväskylän yliopisto 15.6.2012 Joonas Ilmavirta (JYU) Neutriinot ja cqpa 15.6.2012 1 / 14 Osa 1: Neutriinot
Kohti yleistä suhteellisuusteoriaa
Kohti yleistä suhteellisuusteoriaa Miksi vakionopeudella liikkuvat koordinaatistot ovat erityisasemassa (eli miksi Lorentz-muunnos tehdään samalla tavalla joka paikassa aika-avaruudessa)? Newtonin gravitaatiolaki
Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa
Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto
Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter
KOSMOLOGISIA HAVAINTOJA
KOSMOLOGISIA HAVAINTOJA 1) Olbersin paradksi Miksi taivas n öisin musta? Js tähdet lisivat jakautuneet keskimäärin tasaisesti äärettömään ja muuttumattmaan avaruuteen, tulisi taivaan listaa yhtä kirkkaana
Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN
Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
Kokeellisen tiedonhankinnan menetelmät
Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein
Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio
Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat
Instrumenttikohina taustasäteilyanalyysissä
Pro gradu -tutkielma Teoreettinen fysiikka Instrumenttikohina taustasäteilyanalyysissä Valtteri Lindholm 2014 Ohjaaja: Tarkastajat: Elina Keihänen Elina Keihänen Kari Enqvist HELSINGIN YLIOPISTO FYSIIKAN
Aikamatkustus. Emma Beckingham ja Enni Pakarinen
Aikamatkustus Emma Beckingham ja Enni Pakarinen Aikamatkustuksen teoria Aikamatkustus on useita vuosisatoja kiinnostanut ihmiskuntaa. Nykyihminen useimmiten pitää aikamatkustusta vain kuvitteellisena konseptina,
Hiukkasfysiikka, kosmologia, ja kaikki se?
Hiukkasfysiikka, kosmologia, ja kaikki se? Kari Rummukainen Fysiikan laitos & Fysiikan tutkimuslaitos (HIP) Helsingin Yliopisto Kari Rummukainen Hiukkasfysiikka + kosmologia Varhainen maailmankaikkeus
a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki
2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
Mustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
LIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA
MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija
Luento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
Energia, energian säilyminen ja energiaperiaate
E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman
Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
L a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a