Kohti yleistä suhteellisuusteoriaa
|
|
- Jalmari Sipilä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kohti yleistä suhteellisuusteoriaa Miksi vakionopeudella liikkuvat koordinaatistot ovat erityisasemassa (eli miksi Lorentz-muunnos tehdään samalla tavalla joka paikassa aika-avaruudessa)? Newtonin gravitaatiolaki ei ole Lorentz-kovariantti. Miten se pitäisi yleistää? 1
2 Yleinen suhteellisuusteoria Suppea suhteellisuusteoria on rakennettu siten, että se on yhteensopiva klassisen sähkömagnetismin lakien (Maxwellin yhtälöiden ja sähkömagneettisen voiman) kanssa. Klassisen fysiikan toinen perustavanlaatuinen vuorovaikutus on gravitaatio. Miten se sopii yhteen suppean suhteellisuusteorian kanssa? Osoittautuu, että vastaus tähän kysymykseen selvittää myös sen, miksi suppean suhteellisuusteorian avaruus on homogeeninen (eli Lorentz-muunnoksen kertoimet ovat samat kaikkialla). Yleinen suhteellisuusteoria on suppean suhteellisuusteorian ja gravitaation yhdistävä teoria. (Yleinen suhteellisuusteoria kuvaa aika-avaruuden yleistä rakennetta, ja silloin kun gravitaatio jätetään huomiotta, se surkastuu suppeaksi suhteellisuusteoriaksi.) 2
3 Newtonin gravitaatiolaki Newtonin gravitaatiolaki ei ole yhteensopiva suppean suhteellisuusteorian kanssa. Se on Galilei-kovariantti, ei Lorentzkovariantti. F 12 =!G N m 1 m 2 x 1! x 2 x 1! x 2 3 Mikä olisi sen yleistys suppeaan suhteellisuusteoriaan? Pitäisikö löytää sopiva nelivektori, joka kuvaa gravitaatiota? Newtonin gravitaatiovoiman (toisin kuin Maxwellin sähkömagnetismin) kohdalla informaatio välittyy äärettömällä nopeudella. Vastaavasti gravitaatioaaltoja ei Newtonin teoriassa ole olemassa. Mikä välittää gravitaatiota? Kuvataan gravitaatiota kentällä, sähkömagnetismin tapaan. 3
4 Klassinen gravitaatiokenttä Otetaan käyttöön gravitaatiopotentiaali φ. Tarkastellaan paikassa x 2 sijaitsevan kappaleen, jonka massa on M, aiheuttamaa voimaa kappaleeseen, joka on paikassa x ja jonka massa on m G. Myös Newtonin 2. laissa esiintyy massa, merkitään sitä symbolilla m I (inertiaalimassa eli hitausmassa). Gravitaatiomassalla m G ja hitausmassalla m I ei tarvitsisi olla mitään tekemistä toistensa kanssa. Ne kuitenkin ovat samat suurella tarkkuudella. G m G =!"!! =!G N M 1 x! x 2 #% G =!m G "! $ &% F = m I!!x '!!x =! m G m I "! 4
5 Massojen yhteneväisyys F = mia hitausmassa, inertiaalinen massa F =! G NM G m G r 2 e r painava massa TESTS OF THE WEAK EQUIVALENCE PRINCIPLE Havaintojen mukaan Eötvös Renner Free-fall m G! m I m I << Princeton Moscow Boulder Eöt-Wash LLR Fifth-force searches Eöt-Wash = a 1 -a 2 (a 1 +a 2 )/ YEAR OF EXPERIMENT 5
6 Kaikki putoaa yhtä lailla Gravitaatiomassan ja hitausmassan yhtäsuuruudesta seuraa se, että kaikki kappaleet putoavat samalla tavalla gravitaatiokentässä. (Vrt. kappaleet eivät liiku samalla tavalla sähkökentässä, liike riippuu sähkövarauksesta.) Joskus tätä nimitetään ekvivalenssiperiaatteeksi tai heikoksi ekvivalenssiperiaatteeksi. (Selitys termille tulee myöhemmin.) #% G =!m G "! $ &% F = m I!!x '!!x =! m G m I "! 6
7 Poissonin yhtälö Newtonin gravitaatiolain voi kirjoittaa yhtälönä gravitaatiopotentiaalin ja massatiheyden välillä. Tämä yhtälö on nimeltään Poissonin yhtälö.! 2! = 4"G N # m # m = dm dv Poissonin yhtälö ei ole Lorentz-kovariantti. Miten sen voisi yleistää Lorentz-kovariantiksi? 7
8 Nordströmin gravitaatioteoria Ensimmäinen yritys yhdistää gravitaatiota ja suppeaa suhteellisuusteoria oli suomalaisen Gunnar Nordströmin käsialaa. Nordström esitti vuonna 1912 seuraavan yleistyksen Poissonin yhtälölle:! 2! " 1 c 2 # 2! #t 2 = 4"G N# m (Lisäksi pitää yleistää gravitaatiovoiman määritelmä.) Tämä yhtälö ei kuitenkaan ole Lorentz-kovariantti, koska tiheys ei ole invariantti Lorentz-muunnoksessa (tilavuus kutistuu). Nordström kehitti uuden teorian vuonna 1913, mutta se ei osoittautunut oikeaksi. 8
9 Gravitaatio aika-avaruuden kaarevuutena Einstein esitti vuonna 1915 yleisen suhteellisuusteorian. Se on käsitteellisesti hyvin erilainen kuin Nordströmin teoria. Gravitaation kuvaamiseksi ei oteta mukaan uutta voimaa aika-avaruudessa, vaan muutetaan aika-avaruuden rakennetta. Suppea suhteellisuusteoria yhdisti ajan ja avaruuden, yleinen suhteellisuusteoria tekee aika-avaruudesta dynaamisen. Yleisen suhteellisuusteorian mukaan: Aika ja avaruus eivät ole muuttumattomia, vaan muodostavat dynaamisen kokonaisuuden, jonka paikallinen muoto (kaareutuminen) määräytyy ainesisällöstä. Aineen ominaisuudet määräävät, miten aika-avaruus kaartuu. Aika-avaruus määrää, miten aine liikkuu. 9
10 SUPPEA SUHTEELLISUUSTEORIA ds 2 =! "# dx " dx # = c 2 dt 2! dx 2! dy 2! dz 2 Muuttumaton, tasainen aika-avaruus (Minkowskin avaruus) YLEINEN SUHTEELLISUUSTEORIA 3 ds 2 =! g!" (t, x) dx! dx " " g!" dx! dx "!,"=0 = g 00 dx 0 dx 0 + g 01 dx 0 dx g 33 dx 3 dx 3 Dynaaminen, kaareva aika-avaruus g ( t, x) αβ Metriikka on tensori eli 4 4 matriisi. Tuntematon suure, joka pitää ratkaista liikeyhtälöistä. g ( t, x) g ( t, x) metriikka on symmetrinen αβ = βα 10 tuntematonta funktiota 10
11 MITEN NIIN KAAREVA? 2D analogia s = t 2,x 2! ds =! g!" dx! dx " t 1,x 1 t 2,x 2 t 1,x 1 t 1,x 1 t 2,x 2 Neliulotteisen aika-avaruuden aika- ja avaruusvälit riippuvat paikasta ja ajasta, koska avaruus on kaareva. Kaarevuus määräytyy ainesisällöstä. Ei ole ylimääräistä ulottuvuutta, jossa kaareutuminen tapahtuisi. 11
12 Suoraviivainen liike kaarevassa avaruudessa näyttää käyrältä suoraviivaisissa koordinaateissa. suora viiva Paikallisesti Minkowski suppea suhteellisuusteoria voimassa paikallisesti 12
13 MITKÄ OVAT HYVÄKSYTTÄVIÄ KOORDINAATISTOJA? kaikki! YLEINEN SUHTEELLISUUSPERIAATE: Kaikki matemaattisesti säännölliset koordinaatistot ovat yhdenvertaisia. Suppea suhteellisuusteoria: fysiikka sama kaikissa inertiaalikoordinaatistoissa x α x α = L α β (v) xβ Lorentz-muunnos Yleinen suhteellisuusteoria: fysiikka sama kaikissa koordinaatistoissa x α x α = M α β (xγ ) x β yleinen koordinaattimuunnos 13
14 MIKÄ MÄÄRÄÄ METRIIKAN? liikeyhtälöt = Einsteinin yhtälö on muotoa GEOMETRIA [g!" ] = AINE [E, p, ] MITEN LÖYDETÄÄN TÄMÄ YHTÄLÖ? 14
15 ! " g!" # 2! " G!" # m " T!" Einsteinin tensori metriikan ja sen kahden ensimmäisen derivaatan funktio energia-impulssitensori riippuu aineen ominaisuuksista G!" = 8#G N c 4 T!" Einsteinin yhtälö: 2. kertaluvun differentiaaliyhtälö metriikan komponenteille g αβ tunnetaan kun aine tunnetaan 10 yhtälöä ratkaistaan metriikka g αβ (t,x) kun aine T αβ (t,x) on annettu AINE MÄÄRÄÄ AIKA-AVARUUDEN GEOMETRIAN 15
16 Heikko kenttä ja hidas liike Yleisen suhteellisuusteorian approksimaationa saadaan Newtonin gravitaatioteoria kun gravitaatiokenttä on heikko ja liikkeet ovat hitaita. Aika-avaruus on silloin Minkowskin avaruus plus pieni häiriö. ds 2 = ( 1+ 2! )c 2 dt 2! (! ij! 2"! ij! h ij )dx i dy j = (! "# + 2$% "# + h "# )dx " dx # (h 00 = h 0i = 0, " h ii = 0) 3 i=1 " T!" = diag $ #,! P c,! P 2 c,! P # 2 c 2 % ' ( diag # m, 0, 0, 0 & ( ) (v << c) 16
17 ! 2! = 4"G N c 2 # m $! 2 " 1 # 2 ' & )h % c 2 #t 2 ij = 0 (! " =!c 2 Newtonin gravitaatio Gravitaatioaallot Saadaan Newtonin laki plus aaltoyhtälö: Newtonin gravitaatiopotentiaali vastaa pientä häiriötä aika-avaruuden etäisyyksissä. Yleisessä suhteellisuusteoriassa on lisäksi gravitaatioaaltoja, joiden nopeus on valonnopeus. 17
18 Korjauksia planeettojen ratoihin Merkuriuksen radan perihelin prekessio Perihelin kiertymä poikkeaa vuodessa klassisen mekaniikan ennusteesta, kun kaikkien planeettojen vaikutus on huomioitu. Etäisyyden muutos on 29 km 46 miljoonasta kilometristä. Määrä (kaarisekuntia/100 v) Syy maapallon koordinaatiston kiertyminen toisten planeettojen vaikutus Auringon litteys ±0.04 yleisen suhteellisuusteorian korjaus yhteensä havaittu 18
19 Pioneer-anomalia: ei ongelma suhteellisuusteorialle Luotaimet Pioneer 10 ja 11 Laukaistu 1972 ja 1973 tutkimaan Jupiteria ja Saturnusta. Siistein mittaus liikkeistä aurinkokunnassa. Luotaimilla ylimääräinen kiihtyvyys (8.74 ± 1.33)x10-10 m/s 2 kohti Aurinkoa etäisyyksillä au. Selittyy luotaimien lämpösäteilyllä. 19
20 Valon suora kulku aika-avaruudessa Valo matkaa aika-avaruudessa suoraa viivaa (eli geodeettia) joka on valonkaltainen, eli etäisyys aika-avaruudessa on nolla. Minkowskin avaruus: ds 2 =! "# dx " dx # = c 2 dt 2! dx 2! dy 2! dz 2 = 0 " x = ±ct Yleinen aika-avaruus: ds 2 = g!" dx! dx " = 0 Suoraviivaisuus tarkoittaa suoraa liikettä kaarevassa avaruudessa. On tärkeää tuntea valon kulku, sillä lähes kaikki havainnot maapallon ulkopuolisesta maailmankaikkeudesta tehdään valon (sähkömagneettisen säteilyn) avulla. 20
21 Valon taipuminen avaruudessa δ Ennuste valon taipumiskulmalle: havaittu paikka ds 2 = ( 1+ 2! )c 2 dt 2! ( 1! 2! )! ij dx i dy j = 0 törmäysparametri b M! = 4G N M bc 2! 2r s b = 2 Newtonin teorian ennuste 21
22 AURINGONPIMENNYS 1919 Sobral, Brasilia Principe (Afrikka), Arthur Eddington Einsteinin ennuste Nordströmin ennuste Newtonin ennuste! =1.75"! = 0"! = 0.87" pilvistä! 16 kuvaa, 2 onnistui, 5 tähteä näkyvissä (kalibraatio: vaaditaan 7) Sobral δ δ keskim 8 hyvää huonoa Principe δ δ keskim 2 huonoa Eddington: valo taipuu! 22
23 Nykyaika: THE PARAMETER (1+ )/ Optical Radio DEFLECTION OF LIGHT VLBI 2X (1+ )/ SHAPIRO TIME DELAY Hipparcos PSR Voyager yleinen suhteellisuusteoria Viking Cassini (1X10-5 ) YEAR OF EXPERIMENT 23
24 GRAVITAATIOLINSSI Einsteinin rengas 24
25 Vahva gravitaatiolinssi: useita kuvia 25
26 26
27 Heikko gravitaatiolinssi: kuvan muutos (E. Grocutt, IfA, Edinburgh) 27
28 Hubble Ultra Deep Field 28
29 Euclid ESA 2020 ESA hyväksyi Euclid-satelliitin lokakuussa 2011 ja lopullisesti valitsi kesäkuussa 2012 Kartoittaa 40% taivaasta. Fysiikan laitos mukana. 29
30 Gravitaatioaallot Pallosymmetrinen tilanne ei synnytä gravitaatiosäteilyä. Gravitaatio heikko: tarvitaan nopeita aineen muutoksia: neutronitähtien ja mustien aukkojen törmäykset, supernovaräjähdykset, varhainen maailmankaikkeus valonsäde ohimenevä metristen ominaisuuksien muutos: kellojen käynti, pituusvälit gravitaatioaalto avaruusaika paikallisesti Minkowski (esim. maapallolla sijaitsevan mittalaitteen ympäristössä) voidaan periaatteessa havaita maapallolla 30
31 Gravitaatioaallot staattinen tai pallosymmetrinen tähti staattinen avaruusaika pallosymmetrian rikkova liike väreitä avaruusaikaan kaksoistähti 31
32 Gravitaatioaaltojen suora havaitseminen Gravitaatio on heikko pieni efekti Kahden mustan aukon törmäys (massa kymmenen Auringon massaa) gravitaatioaaltoja, jotka muuttavat etäisyyksiä tekijällä Miten mitata? Esimerkki: peili gravitaatioaalto Interferenssikuvio muuttuu koska valonsäteen kulkuaika muuttuu. (vrt. Michelsonin ja Morleyn koe) 32
33 LIGO Laser Interferometer Gravitational wave Observatory, USA Advanced LIGO km 33
34 Virgo Italia
35 Gravitaatioaaltojen epäsuora havaitseminen Kaksoispulsari PSR (Hulse & Taylor; löytö 1974, Nobel-palkinto 1993) Systeemi menettää energiaa gravitaatioaaltoihin. 35
36 Yleisen suhteellisuusteorian ennuste pätee tarkasti 3 MASS OF COMPANION (solar masses) d /dt ( %) ' (0.02%) dp b /dt (0.2 %) 2 a MASS OF PULSAR (solar masses) 36
37 Planck ESA Planck pystyy näkemään vain primordiaalisia gravitaatioaaltoja, kun taas LIGO/Virgo näkevät vain astrofysikaalisten lähteiden aaltoja. Fysiikan laitos mukana. 37
38 LISA NGO, elisa Laser Interferometer Space Antenna Next Gravitational Wave Observatory ESA LISA Pathfinder laukaistaan 2015 elisa 2020-luvulla? Erittäin haastava. 3 satelliittia lentää muodostelmassa, etäisyys 5 miljoonaa km 38
SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA
MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija
LisätiedotYLEINEN SUHTEELLISUUSTEORIA
YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,
LisätiedotYLEINEN SUHTEELLISUUSTEORIA
YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,
LisätiedotS U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria
LisätiedotLyhyt katsaus gravitaatioaaltoihin
: Lyhyt katsaus gravitaatioaaltoihin Valtteri Lindholm Helsingin Yliopisto Teoreettisen fysiikan syventävien opintojen seminaari Sisältö Suppea ja yleinen suhteellisuusteoria Häiriöteoria Aaltoratkaisut
Lisätiedot2r s b VALON TAIPUMINEN. 1 r. osittaisdifferentiaaliyhtälö. = 2 suppea suht.teoria. valo putoaa tähteen + avaruus kaareutunut.
MUSTAT AUKOT FAQ Miten gravitaatio pääsee ulos tapahtumahorisontista? massa ei sylje gravitaatiota kuin tennispalloja. Tähti on käyristänyt avaruuden jo ennen romahtamistaan mustaksi aukoksi, eikä tätä
LisätiedotGravitaatioaallot - uusi ikkuna maailmankaikkeuteen
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi
LisätiedotSuhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
LisätiedotSisällysluettelo. Alkusanat 11. A lbert E insteinin kirjoituksia
Sisällysluettelo Alkusanat 11 A lbert E insteinin kirjoituksia Erityisestä ja yleisestä su hteellisuusteoriasta Alkusanat 21 I Erityisestä suhteellisuusteoriasta 23 1 Geometristen lauseiden fysikaalinen
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotSuhteellisuusteoria. Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos
Suhteellisuusteoria Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos Ketkä pohjustivat modernin fysiikan? Rømer 1676 Ampere Fizeau 1849 Young 1800 Faraday Michelson 1878 Maxwell 1873 Hertz
LisätiedotModerni fysiikka. Syyslukukausi 2008 Jukka Maalampi
Moderni fysiikka Syyslukukausi 008 Jukka Maalampi 1 1. Suhteellisuus Galilein suhteellisuuus Fysiikan lakien suhteellisuus Suppea suhteellisuusteoria Samanaikaisuuden suhteellisuus Ajan dilaatio Pituuden
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
LisätiedotFysiikkaa runoilijoille Osa 2: suppea suhteellisuusteoria
Fysiikkaa runoilijoille Osa 2: suppea suhteellisuusteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Hiukkaset ja kentät Klassisessa mekaniikassa
LisätiedotFysiikkaa runoilijoille Osa 3: yleinen suhteellisuusteoria
Fysiikkaa runoilijoille Osa 3: yleinen suhteellisuusteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Kehyksestä toimijaksi Yleinen suhteellisuusteoria
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotTähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi
Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein
LisätiedotPimeän energian metsästys satelliittihavainnoin
Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14
LisätiedotKosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos
Kosmologian yleiskatsaus Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Päämääriä Kosmologia tutkii maailmankaikkeutta kokonaisuutena. Kehitys,
LisätiedotKosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä.
Kosmologia Kosmologia on yleisen suhteellisuusteorian sovellus suurimpaan mahdolliseen systeemiin: tutkitaan koko avaruuden aikakehitystä. Kosmologia tutkii maailmankaikkeutta kokonaisuutena. (Vrt. astrofysiikka,
LisätiedotPerusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotLeptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotTarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotMaailmankaikkeuden kriittinen tiheys
Maailmankaikkeuden kriittinen tiheys Tarkastellaan maailmankaikkeuden pientä pallomaista laajenevaa osaa, joka sisältää laajenemisliikkeessä olevia galakseja. Olkoon pallon säde R, massa M ja maailmankaikkeuden
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotCopyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden
LisätiedotFysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa
Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka
LisätiedotLORENTZIN MUUNNOSTEN FYSIKAALISIA SEURAAMUKSIA
LORENTZIN MUUNNOSTEN FYSIKAALISIA SEURAAMUKSIA Lorentzin kontraktio: liikkuva sauva kutistuu Aikadilataatio: liikkuva kello jätättää Nämä fysikaaliset efektit johtavat arkijärjen kannalta vaikeasti ymmärrettäviin
LisätiedotYleisen suhteellisuusteorian kokeelliset tes/t. Hannu Kurki- Suonio Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos
Yleisen suhteellisuusteorian kokeelliset tes/t Hannu Kurki- Suonio Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos 25.11.2015 Yleisen suhteellisuusteorian klassiset tes/t Einstein 1916:
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotMustien aukkojen astrofysiikka
Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin
Lisätiedot53714 Klassinen mekaniikka syyslukukausi 2010
53714 Klassinen mekaniikka syyslukukausi 2010 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset:
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotSuhteellisuusteorian vajavuudesta
Suhteellisuusteorian vajavuudesta Isa-Av ain Totuuden talosta House of Truth http://www.houseoftruth.education Sisältö 1 Newtonin lait 2 2 Supermassiiviset mustat aukot 2 3 Suhteellisuusteorian perusta
Lisätiedot9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit
9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
LisätiedotTeoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
LisätiedotLuento 12: Keskeisvoimat ja gravitaatio
Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotSuhteellisuusteoria. Valo on sähkömagneettisia aaltoja
Suhteellisuusteoria Suhteellisuusteoriaa on mahdoton edes yrittää ymmärtää, ellei ota ensin selkoa valon ominaisuuksista. Valon äärellinen nopeus oli tunnettu jo 1600-luvulta asti, kun Ole Roemer huomasi
LisätiedotGravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike
Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotLuento 3. Kauneus, yksinkertaisuus
Luento 3 Mittaamisesta ja luonnonlaeista - empiriikka, empiirinen tiede Matematiikan kieli luonnonlakien osana Viimeksi todettiin maailmaa kuvaavien luonnonlakien ominaisuuksista: Kauneus, yksinkertaisuus
LisätiedotDynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt
LisätiedotJOHDATUS SUHTEELLISUUSTEORIAAN 763102P
JHDATUS SUHTEELLISUUSTERIAAN 763102P Petri Mutka Fysikaalisten tieteiden laitos ulun yliopisto 2005 1. Johdanto Suhteellisuusteoria, joka koostuu kahdesta erillisestä teoriasta, on toinen modernin fysiikan
LisätiedotEtäisyyden yksiköt tähtitieteessä:
Tähtitiedettä Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on sama kuin
LisätiedotLuento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä
Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
Lisätiedot2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki
2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka
LisätiedotLuento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä
Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä 1 / 46 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotLiike pyörivällä maapallolla
Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
LisätiedotLuento 10: Keskeisvoimat ja gravitaatio
Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
Lisätiedot6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen
6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition
LisätiedotFriedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö
Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin
Lisätiedotyyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk
I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima
LisätiedotValtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9
: Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9 Horisonttiongelma Valtteri Lindholm Helsingin Yliopisto Teoreettisen fysiikan syventävien opintojen seminaari Valtteri Lindholm
LisätiedotLuento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
Lisätiedotg-kentät ja voimat Haarto & Karhunen
g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotSuhteellisuusteorian perusteet, harjoitus 6
Suhteellisuusteorian perusteet, harjoitus 6 May 5, 7 Tehtävä a) Valo kulkee nollageodeettia pitkin eli valolle pätee ds. Lisäksi oletetaan valon kulkevan radiaalisesti, jolloin dω. Näin ollen, kun K, saadaan
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotPIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden
LisätiedotPARADIGMOJEN VERTAILUPERUSTEET. Avril Styrman Luonnonfilosofian seura
PARADIGMOJEN VERTAILUPERUSTEET Avril Styrman Luonnonfilosofian seura 17.2.2015 KokonaisHede Koostuu paradigmoista Tieteen edistystä voidaan siten tarkastella prosessina missä paradigmat kehinyvät ja vaihtuvat
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon
Lisätiedotja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotEnergia, energian säilyminen ja energiaperiaate
E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman
LisätiedotFysiikan olympiavalmennus, avoin sarja Palautus mennessä
Fysiikan olympiavalmennus, avoin sarja Kirje 1 Palautus 31.1.2012 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuksen ensimmäinen
LisätiedotNeutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa Graduseminaari Joonas Ilmavirta Jyväskylän yliopisto 15.6.2012 Joonas Ilmavirta (JYU) Neutriinot ja cqpa 15.6.2012 1 / 14 Osa 1: Neutriinot
LisätiedotPerustutkimus ei elä. Gravitaatioaaltojen ensimmäiset sata vuotta. Suppeasta yleiseen suhteellisuusteoriaan
Kari Enqvist Gravitaatioaaltojen ensimmäiset sata vuotta Perustutkimus ei elä kvartaalitaloudessa. Aika-avaruuden väreilyn eli gravitaatioaaltojen ennustamisen ja niiden suoran havaitsemisen välissä ehti
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä
LisätiedotMatematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
LisätiedotLataa Maailmanviiva - Jukka Maalampi. Lataa
Lataa Maailmanviiva - Jukka Maalampi Lataa Kirjailija: Jukka Maalampi ISBN: 9789525329513 Sivumäärä: 221 Formaatti: PDF Tiedoston koko: 28.94 Mb Sata vuotta sitten Albert Einstein ilmestyi kuin tyhjästä
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotTAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ
TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus
LisätiedotKvarkeista kvanttipainovoimaan ja takaisin
1/31 Kvarkeista kvanttipainovoimaan ja takaisin Niko Jokela Hiukkasfysiikan kesäkoulu Helsinki 18. toukokuuta 2017 2/31 Säieteorian perusidea Hieman historiaa 1 Säieteorian perusidea Hieman historiaa 2
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
LisätiedotLuento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia
Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat
LisätiedotKompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava
Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
Lisätiedot