A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007"

Transkriptio

1 Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: Kurssin kotisivu: 10 op (5 ov) laajuinen aineopintotasoinen kurssi Pakollinen osa tietojenkäsittelyopin kandidaatin tutkielmaa 26 luentokertaa (52 tuntia) Pinni B:n luentosali B1097 Tiistaisin klo Keskiviikkoisin klo Viimeinen luento ke 5.12 Tietorakenteet, syksy Kurssiesittely 13 viikkoharjoituskertaa (26 tuntia) Linnan luentosali K108 Kolme eri ryhmää: tiistaisin klo 12-14, ja Ohjaajat: Pekka Niemenlehto ja Jyri Saarikoski Ensimmäiset harjoitukset ti 11.9, viimeiset ti Tietorakenteet, syksy Kurssiesittely Harjoitustyö Tietorakenteisiin liittyvää ohjelmointia Javalla Aihe loka-marraskuussa Ohjaaja: Tuomas Talvensaari Palautus tammikuussa 2008 Harjoitustyöhön liittyy tasapainotestin suorittaminen virtuaalilaboratoriossa Saatavaa testidataa voidaan hyödyntää harjoitustyön aineistona Tietorakenteet, syksy

2 Kurssiesittely Kurssin läpipääsy vaatii seuraavat osasuoritukset Tentti (13.12, uusintatentti tammikuussa 2008) Maksimi 30 pistettä, läpipääsyyraja 12 Viikkoharjoitukset: vähintään 20% tehtynä Tuottaa 0-5 pistettä Pisterajat: 33,33% = 1 p, 46,66% = 2 p, 60% = 3 p, 73,33% = 4 p, 86,66% = 5 p Harjoitustyön hyväksytty palautus Arvostellaan asteikolla 0-10 pistettä Kurssiesittely Tasapainotesti Antaa 3 lisäsuoritetta viikkoharjoitustehtäväsaldoon Kurssinumero asteikolla 1..5 määräytyy kokonaispistemäärän mukaan (välillä 12-40) Harjoitustehtävien avulla saatavissa olevat pisteet ovat bonuspisteitä Kysymyksiä kurssijärjestelyistä tms.? Tietorakenteet, syksy Tietorakenteet, syksy Tietorakenne: tapa tallentaa ja organisoida tietoa tiedon lukemisen ja/tai päivittämisen kannalta sopivalla tavalla Tietorakenteet, syksy Esim. nimiluettelo näin... SMITH ANDERSON CLARK JOHNSON THOMAS RODRIGUEZ WILLIAMS JACKSON LEWIS JONES WHITE LEE BROWN HARRIS WALKER DAVIS MARTIN HALL MILLER THOMPSON ALLEN WILSON GARCIA YOUNG MOORE MARTINEZ HERNANDEZ TAYLOR ROBINSON KING Tietorakenteet, syksy

3 ...vain näin? ALLEN JOHNSON RODRIGUEZ ANDERSON JONES SMITH BROWN KING TAYLOR CLARK LEE THOMAS DAVIS LEWIS THOMPSON GARCIA MARTIN WALKER HALL MARTINEZ WHITE HARRIS MILLER WILLIAMS HERNANDEZ MOORE WILSON JACKSON ROBINSON YOUNG Tietorakenteet, syksy Tietorakenne: tapa tallentaa ja organisoida tietoa tiedon lukemisen ja/tai päivittämisen kannalta sopivalla tavalla Algoritmi: äärellinen joukko täsmällisesti määriteltyjä ohjeita jonkin tehtävän suorittamiseksi Korkean tason suunnittelussa kaksi tärkeää päämäärää: oikeellisuus tehokkuus Tietorakenteet, syksy Toteutukseen liittyviä tavoitteita vahvuus (eng. robustness) mukautuvuus uudelleenkäytettävyys Olioperustaisia suunnittelu/toteutusmenetelmiä abstraktio kapselointi modulaarisuus Sovellus Algoritmi1 Algoritmi2 Algoritmi3 Sovellus Algoritmi1 Algoritmi2 Algoritmi3 Tietorakenteet, syksy Tietorakenteet, syksy

4 Algoritmien analysoinnista Algoritmin tehokkuuden mittaaminen? haluttaisiin muodostaa funktio f(n), joka kuvaa algoritmin suoritusaikaa Algoritmien analysoinnista Kokeellinen analyysi? algoritmin suoritusaika t Algoritmi 1 Algoritmi 2 Syötteen koko (parametri) n Tietorakenteet, syksy Tietorakenteet, syksy Algoritmien analysoinnista Kokeellinen analyysi + sinänsä varmin tapa tutkia tietyn algoritmin suorituskykyä tietyn tehtävän ratkaisussa - vaikea arvioida algoritmin suorituskykyä kaikilla mahdollisilla syötteillä - algoritmien yleisempi vertailu/luokittelu hankalaa - vaatii algoritmin toteuttamisen Algoritmien analysoinnista Ajatus 2: suoritettujen perusoperaatioiden tarkka analysointi muodostetaan algoritmille alhaisen tason koodiesitys (esim. kännetään konekielelle) määritetään t i = alhaisen tason komennon i vaatima suoritusaika määritetään n i = alhaisen tason komennon i suoritusten lukumäärä kokonaisaika = Σ i (n i t i ) Ehkä tarkkaa, mutta työlästä ja laite/kieliriippuvaista! Tietorakenteet, syksy Tietorakenteet, syksy

5 Pseudokoodi Algoritmin tarkastelu paperilla: pseudokoodi Geneeristä ohjelmakoodia, jossa sivuutetaan tarpeettomat yksityiskohdat oleellista toiminta-askeleiden kuvaus, ei esim. pilkulleen tietynlainen syntaksi sekoitus luonnollista kieltä ja geneerisiä ohjelmointirakenteita (kontrollirakenteet, aliohjelmakutsut jne.) kuvaa algoritmin toiminnan riittävän täsmällisesti (asiayhteyden vaatimalla tarkkuudella) Tietorakenteet, syksy Pseudokoodi Algorithm OddCount(A, n) Input: Taulukko A, jossa n kokonaislukua Output: Tulostaa taulukon A parittomien lukujen lukumäärän odds 0 for i 0 to n 1 Do if A[i] on pariton then odds odds + 1 end if end for tulosta arvo odds return Tietorakenteet, syksy Pseudokoodi int OddCount( int A[ ], int n ) { /* Funktio OddCount C/C++ -kielellä */ int odds = 0, i = 0; for( i = 0; i < n; i++ ) { if( (A[i] % 2) == 1 ) { odds++; } } printf( %d\n, odds ); return; } Suoritusajan arviointi yleisellä tasolla Yhä ongelma: konkreettinen suoritusaika riippuu suoritusympäristöstä suoritusajan abstraktimpi tarkastelu? Suoritusaika kuitenkin aina verrannollinen suoritettujen operaatioiden lukumäärään funktion f(n) abstrakti aikayksikkö = suoritettavien alkeisoperaatioiden määrä Alkeisoperaatio: perusoperaatio, jonka suoritusaika oletetaan vakioksi Tietorakenteet, syksy Tietorakenteet, syksy

6 Alkeisoperaatiot Esim. seuraavat voidaan katsoa alkeisoperaatioiksi arvon asetus muuttujaan taulukon alkion muistipaikan laskenta olioviitteen laskenta kahden arvon vertailu aritmeettinen operaatio metodikutsu metodin arvon palauttaminen Esimerkki alkeisoperaatioiden määrän laskennasta Algorithm OddCount(A, n) odds 0 1 operaatio for i 0 to n 1 Do 2 alkuoperaatiota, 3 operaatiota if A[i] on pariton then odds odds + 1 end if end for return odds 2 operaatiota 2 operaatiota 1 operaatio Yhteismäärä? vähintään? n (3 + 2) + 1 = 4 + 5n enintään? n (3 + 4) + 1 = 4 + 7n Tietorakenteet, syksy Tietorakenteet, syksy Toinen esimerkki Algorithm OCRepeat(A, n) for i 1 to n Do 2 alkuoperaatiota, 3 operaatiota OddCount(A, i) end for return 1 + kork i operaatiota 1 operaatio Yhteismäärä enintään? 3+n (3+1)+Σ n i=1 (4+7i) = 3+4 n+4 n+7 Σ n i=1 i = 3+8 n+7 n(n+1)/2 Tietorakenteet, syksy

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Tietorakenteet op, 50 h. Luennot alkavat 7.9. ja päättyvät

Tietorakenteet op, 50 h.  Luennot alkavat 7.9. ja päättyvät Tietorakenteet 2016 Martti Juhola luennot: Ke 7.9.2016-23.11.2016 viikoittain klo 10-12, Pinni ls B1097, huom. Aloitus päätalolla! Poikkeus: 7.9.2016 klo 10 12, PÄÄTALO ls D11 To 8.9.2016 klo 10-12, Pinni

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007 Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto 25 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Kurssijärjestelyt. CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos

Kurssijärjestelyt. CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos Kurssijärjestelyt CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos (Alkuperäiset luentokalvot: Markku Laine) 10. Tammikuuta 2017 Luennon sisältö

Lisätiedot

Vastuuopettaja. Kurssiesite Olio-ohjelmoinnin perusteet Kevät Olio-ohjelmoinnin perusteet (TIEA2.1)

Vastuuopettaja. Kurssiesite Olio-ohjelmoinnin perusteet Kevät Olio-ohjelmoinnin perusteet (TIEA2.1) Kurssiesite Olio-ohjelmoinnin perusteet Kevät 2017 Jorma Laurikkala Tietojenkäsittelytieteet Luonnontieteiden tiedekunta Tampereen yliopisto Vastuuopettaja Jorma Laurikkala, yliopistonlehtori. Luennot,

Lisätiedot

Kurssiesite Olio-ohjelmoinnin perusteet Kevät Jorma Laurikkala Tietojenkäsittelytieteet Luonnontieteiden tiedekunta Tampereen yliopisto

Kurssiesite Olio-ohjelmoinnin perusteet Kevät Jorma Laurikkala Tietojenkäsittelytieteet Luonnontieteiden tiedekunta Tampereen yliopisto Kurssiesite Olio-ohjelmoinnin perusteet Kevät 2017 Jorma Laurikkala Tietojenkäsittelytieteet Luonnontieteiden tiedekunta Tampereen yliopisto Vastuuopettaja Jorma Laurikkala, yliopistonlehtori. Luennot,

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

Vastuuopettaja. Kurssiesite Olio-ohjelmoinnin perusteet Kevät 2015. Olio-ohjelmoinnin perusteet (5 op) Tavoitteena

Vastuuopettaja. Kurssiesite Olio-ohjelmoinnin perusteet Kevät 2015. Olio-ohjelmoinnin perusteet (5 op) Tavoitteena Kurssiesite Olio-ohjelmoinnin perusteet Kevät 2015 Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto Vastuuopettaja Jorma Laurikkala, yliopistonlehtori. Luennot,

Lisätiedot

Johnson, A Theoretician's Guide to the Experimental Analysis of Algorithms.

Johnson, A Theoretician's Guide to the Experimental Analysis of Algorithms. Kokeellinen algoritmiikka (3 ov) syventäviä opintoja edeltävät opinnot: ainakin Tietorakenteet hyödyllisiä opintoja: ASA, Algoritmiohjelmointi suoritus harjoitustyöllä (ei tenttiä) Kirjallisuutta: Johnson,

Lisätiedot

Kurssiesite Olio-ohjelmoinnin perusteet (TIEA2.1) Kevät 2018

Kurssiesite Olio-ohjelmoinnin perusteet (TIEA2.1) Kevät 2018 Kurssiesite Olio-ohjelmoinnin perusteet (TIEA2.1) Kevät 2018 Jorma Laurikkala Tietojenkäsittelytieteet Luonnontieteiden tiedekunta Tampereen yliopisto Vastuuopettaja Jorma Laurikkala, yliopistonlehtori.

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Tietueet. Tietueiden määrittely

Tietueet. Tietueiden määrittely Tietueet Tietueiden määrittely Tietue on tietorakenne, joka kokoaa yhteen eri tyyppistä tietoa yhdeksi asiakokonaisuudeksi. Tähän kokonaisuuteen voidaan viitata yhteisellä nimellä. Auttaa ohjelmoijaa järjestelemään

Lisätiedot

1 Erilaisia tapoja järjestää

1 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu

Lisätiedot

Kurssijärjestelyt. ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos

Kurssijärjestelyt. ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos Kurssijärjestelyt ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos (Alkuperäiset luentokalvot: Markku Laine) 8. syyskuuta 2015 Luennon sisältö Kurssin

Lisätiedot

Kurssiesite Olio-ohjelmoinnin perusteet Kevät Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto

Kurssiesite Olio-ohjelmoinnin perusteet Kevät Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto Kurssiesite Olio-ohjelmoinnin perusteet Kevät 2016 Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto Vastuuopettaja Jorma Laurikkala, yliopistonlehtori. Luennot,

Lisätiedot

Ohjelmointi II. Erkki Pesonen Luennot ja harjoitukset. Itä-Suomen yliopisto Tietojenkäsittelytieteen laitos 2015

Ohjelmointi II. Erkki Pesonen Luennot ja harjoitukset. Itä-Suomen yliopisto Tietojenkäsittelytieteen laitos 2015 Ohjelmointi II Erkki Pesonen Luennot ja harjoitukset Itä-Suomen yliopisto Tietojenkäsittelytieteen laitos 2015 1 Johdantoa kurssilla opiskeluun: oppimistavoitteet. 1. Tiedän mitä asioita kurssilla opiskellaan

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Tentissä ratkaistaan neljä ohjelmointitehtävää Javalla. Tehdään sähköisesti mikroluokan Windows-koneilla.

Tentissä ratkaistaan neljä ohjelmointitehtävää Javalla. Tehdään sähköisesti mikroluokan Windows-koneilla. Tentti Tentti Tentissä ratkaistaan neljä ohjelmointitehtävää Javalla. Tehdään sähköisesti mikroluokan Windows-koneilla. Omia koneita ei saa käyttää. Sähköisessä tentissä on paperitentin tapaan osaamisen

Lisätiedot

Harjoitus 4 (viikko 47)

Harjoitus 4 (viikko 47) Kaikki tämän harjoituksen tehtävät liittyvät joko suoraan tai epäsuorasti kurssin toiseen harjoitustyöhön. Saa hyvän alun harjoitustyön tekoon, kun ratkaiset mahdollisimman monta tehtävää. Mikäli tehtävissä

Lisätiedot

Tutki ja kirjoita -kurssi, s-2005

Tutki ja kirjoita -kurssi, s-2005 Teoreettisen tutkimuksen raportoinnista Tutki ja kirjoita -kurssi, s-2005 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Teoreettisen tutkimuksen raportoinnista p.1/14 Sisältö Algoritmisten

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

Määrittelydokumentti

Määrittelydokumentti Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta

Lisätiedot

SAS-ohjelmiston perusteet 2010

SAS-ohjelmiston perusteet 2010 SAS-ohjelmiston perusteet 2010 Luentorunko/päiväkirja Ari Virtanen 11.1.10 päivitetään luentojen edetessä Ilmoitusasioita Opintojakso suoritustapana on aktiivinen osallistuminen harjoituksiin ja harjoitustehtävien

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 19.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 19.1.2009 1 / 25 Mihin teekkari / diplomi-insinööri tarvitsee ohjelmointia? Pienten laskentasovellusten kirjoittaminen.

Lisätiedot

Luento 5. Timo Savola. 28. huhtikuuta 2006

Luento 5. Timo Savola. 28. huhtikuuta 2006 UNIX-käyttöjärjestelmä Luento 5 Timo Savola 28. huhtikuuta 2006 Osa I Shell-ohjelmointi Ehtolause Lausekkeet suoritetaan jos ehtolausekkeen paluuarvo on 0 if ehtolauseke then lauseke

Lisätiedot

Kurssiesite. Rakentamisen tekniikat RAK-C3004

Kurssiesite. Rakentamisen tekniikat RAK-C3004 RAK-C3004 Rakentamisen tekniikat Kurssiesite Syksy 2015, periodi I Hannu Hirsi (vastaava opettaja) & Lauri Salokangas & Jouko Pakanen & Johannes Hämeri & Toomla Sander & Markku Ylinen & vierailevat tähtiluennoitsijat

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Kurssin sisältö pääpiirteittäin Tarvittavat pohjatiedot Avainsanat Abstraktio Esimerkkiohjelman tehtäväkuvaus Abstraktion käyttö tehtävässä Abstrakti tietotyyppi Hyötyjä ADT:n

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 22. huhtikuuta 2016 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille! Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit IDL - proseduurit 25. huhtikuuta 2017 Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014 18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD)

TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD) TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD) Info 15/3/11 Mikko Vuorinen Metropolia Ammattikorkeakoulu 1 Sisältö 1) Info 2) Arvostelu 3) Kurssin sisältö 4) Alustava aikataulu 5) Projekti 6) Kertaustarve

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

Sisältö. 22. Taulukot. Yleistä. Yleistä

Sisältö. 22. Taulukot. Yleistä. Yleistä Sisältö 22. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 22.1 22.2 Yleistä

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

Kurssiesite Lausekielinen ohjelmointi II Syksy Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto

Kurssiesite Lausekielinen ohjelmointi II Syksy Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto Kurssiesite Lausekielinen ohjelmointi II Syksy 2016 Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto Vastuuopettaja Jorma Laurikkala, yliopistonlehtori. Luennot,

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero

useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero Alkioiden avaimet Usein tietoalkioille on mielekästä määrittää yksi tai useampi ns. avain (tai vertailuavain) esim. opiskelijaa kuvaavassa alkiossa vaikkapa opintopistemäärä tai opiskelijanumero 80 op

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op Assembly ja konekieli Tietokoneen ja ohjelmiston rakenne Loogisilla piireillä ja komponenteilla rakennetaan prosessori ja muistit Prosessorin rakenne

Lisätiedot

HAHMONTUNNISTUKSEN PERUSTEET

HAHMONTUNNISTUKSEN PERUSTEET HAHMONTUNNISTUKSEN PERUSTEET T-61.3020, 4 op., Kevät 2008 Luennot: Laskuharjoitukset: Harjoitustyö: Erkki Oja Elia Liiitiäinen Elia Liitiäinen TKK, Tietojenkäsittelytieteen laitos 1 FOREIGN STUDENTS Lectures

Lisätiedot

T harjoitustehtävät, syksy 2011

T harjoitustehtävät, syksy 2011 T-110.4100 harjoitustehtävät, syksy 2011 Kurssiassistentit Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto T-110.4100@tkk.fi Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä ja harjoitustehtävät

Lisätiedot

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin.

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin. 2. Ohjausrakenteet Ohjausrakenteiden avulla ohjataan ohjelman suoritusta. peräkkäisyys valinta toisto Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet

Lisätiedot

Ohjelmointi 2 / 2010 Välikoe / 26.3

Ohjelmointi 2 / 2010 Välikoe / 26.3 Ohjelmointi 2 / 2010 Välikoe / 26.3 Välikoe / 26.3 Vastaa neljään (4) tehtävään ja halutessa bonustehtäviin B1 ja/tai B2, (tuovat lisäpisteitä). Bonustehtävät saa tehdä vaikkei olisi tehnyt siihen tehtävään

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 5: Sijoituslause, SICP-oliot, tietorakenteen muuttaminen (mm. SICP 33.1.3, 3.33.3.2) Riku Saikkonen 6. 11. 2012 Sisältö 1 Muuttujan arvon muuttaminen:

Lisätiedot

7/20: Paketti kasassa ensimmäistä kertaa

7/20: Paketti kasassa ensimmäistä kertaa Ohjelmointi 1 / syksy 2007 7/20: Paketti kasassa ensimmäistä kertaa Paavo Nieminen nieminen@jyu.fi Tietotekniikan laitos Informaatioteknologian tiedekunta Jyväskylän yliopisto Ohjelmointi 1 / syksy 2007

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4)

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4) 2. Lisää Java-ohjelmoinnin alkeita Muuttuja ja viittausmuuttuja Vakio ja literaalivakio Sijoituslause Syötteen lukeminen ja Scanner-luokka 1 Muuttuja ja viittausmuuttuja (1/4) Edellä mainittiin, että String-tietotyyppi

Lisätiedot

Kurssiesite Lausekielinen ohjelmointi Syksy Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto

Kurssiesite Lausekielinen ohjelmointi Syksy Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto Kurssiesite Lausekielinen ohjelmointi Syksy 2014 Jorma Laurikkala Tietojenkäsittelytieteet Informaatiotieteiden yksikkö Tampereen yliopisto Vastuuopettaja Jorma Laurikkala, lehtori. Luennot, mikroharjoitukset,

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Interaktiivisten järjestelmien arkkitehtuuriratkaisu, jolla käyttöliittymä erotetaan sovelluslogiikasta.

Interaktiivisten järjestelmien arkkitehtuuriratkaisu, jolla käyttöliittymä erotetaan sovelluslogiikasta. Malli-näkym kymä-ohjain arkkitehtuurit (Model-View View-Controller, MVC) Interaktiivisten järjestelmien arkkitehtuuriratkaisu, jolla käyttöliittymä erotetaan sovelluslogiikasta. Lähtökohdat: Sovelluksen

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Ohjelmointi 1 / 2009 syksy Tentti / 18.12

Ohjelmointi 1 / 2009 syksy Tentti / 18.12 Tentti / 18.12 Vastaa yhteensä neljään tehtävään (huomaa että tehtävissä voi olla useita alakohtia), joista yksi on tehtävä 5. Voit siis valita kolme tehtävistä 1 4 ja tehtävä 5 on pakollinen. Vastaa JOKAISEN

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 4 521475S Rinnakkaiset ei-numeeriset algoritmit: transitiivisulkeuma (transitive closure) Oletetaan suunnattu graafi G = (V,E) ja halutaan tietää onko olemassa kahta pistettä

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Ohjelmointi 1 Taulukot ja merkkijonot

Ohjelmointi 1 Taulukot ja merkkijonot Ohjelmointi 1 Taulukot ja merkkijonot Jussi Pohjolainen TAMK Tieto- ja viestintäteknologia Johdanto taulukkoon Jos ohjelmassa käytössä ainoastaan perinteisiä (yksinkertaisia) muuttujia, ohjelmien teko

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Tietorakenteet (syksy 2013)

Tietorakenteet (syksy 2013) Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti NIMI:

Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti NIMI: ITKP102 Ohjelmointi 1 C# 13.6.2014 1 / 5 Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti Tentaattori Antti-Jussi Lakanen Valitse neljä tehtävää ja vastaa niihin. Keväällä 2014 kurssin tehneille lasketaan

Lisätiedot

Graafisen käyttöliittymän ohjelmointi Syksy 2013

Graafisen käyttöliittymän ohjelmointi Syksy 2013 TIE-11300 Tietotekniikan vaihtuva-alainen kurssi Graafisen käyttöliittymän ohjelmointi Syksy 2013 Luento 1 Johdanto ja Qt työkalujen esittely Juha-Matti Vanhatupa Kurssin tavoitteet Kuvailla käyttöliittymäohjelmoinnin

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

Aliohjelmatyypit (2) Jakso 4 Aliohjelmien toteutus

Aliohjelmatyypit (2) Jakso 4 Aliohjelmien toteutus Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,

Lisätiedot

ELEC-C1210 Automaatio 1 ELEC-C1220 Automaatio 2. Kurssien esittely lukukausi

ELEC-C1210 Automaatio 1 ELEC-C1220 Automaatio 2. Kurssien esittely lukukausi ELEC-C1210 Automaatio 1 ELEC-C1220 Automaatio 2 Kurssien esittely lukukausi 2016-17 Tavoitteet. Automaatio 1 ja 2 Opiskelija tuntee erilaisten sovellusalueiden automaatioratkaisujen erot, ymmärtää automaatiojärjestelmien

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Jakso 4 Aliohjelmien toteutus

Jakso 4 Aliohjelmien toteutus Jakso 4 Aliohjelmien toteutus Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio 1 Aliohjelmatyypit (2) Korkean tason ohjelmointikielen käsitteet: aliohjelma, proseduuri parametrit funktio parametrit,

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn

Lisätiedot

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

Yhteydettömän kieliopin jäsennysongelma

Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa

Lisätiedot

1 Tehtävän kuvaus ja analysointi

1 Tehtävän kuvaus ja analysointi Olio-ohjelmoinnin harjoitustyön dokumentti Jyri Lehtonen (72039) Taneli Tuovinen (67160) 1 Tehtävän kuvaus ja analysointi 1.1 Tehtävänanto Tee luokka, jolla mallinnetaan sarjaan kytkettyjä kondensaattoreita.

Lisätiedot