A TIETORAKENTEET JA ALGORITMIT

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "A274101 TIETORAKENTEET JA ALGORITMIT"

Transkriptio

1 A TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu Antti Valmarin tekemästä TTY:n opintomonisteesta Tietorakenteet ja algoritmit KyAMK - TiRak, syksy ALGORITMIEN ANALYYSISTÄ Algoritmien suoritus vie resursseja Laskenta-aikaa Muistia Analysoinnissa oletetaan, että käytössä on tavallinen tietokone Käskyt suoritetaan peräkkäin yksi kerrallaan Erityisesti suoritusaika kiinnostaa Miten alkioiden määrä ja algoritmi vaikuttavat suoritusaikaan? ALGORITMIEN ANALYYSISTÄ Tietorakenne vaikuttaa olennaisesti Voivat suosia joitakin operaatioita Esim. lisäys voi olla nopea, mutta kysely hidas tai päinvastoin Toisaalta jotkin algoritmit voivat erota juuri ko. operaatioiden käytön osalta Käyttökohde on tiedettävä tietorakenteita ja algoritmeja valittaessa Esimerkkinä tietoaineiston järjestäminen Jos aineiston tyypillinen koko on pieni yksinkertainen algoritmi riittää Jos miljoonia alkioita algoritmin tulee olla nopea KyAMK - TiRak, syksy KyAMK - TiRak, syksy

2 ALGORITMIEN ANALYYSISTÄ Algoritmin hyvyys voi siis olla Laskenta-aika Tarvittavan muistin määrä Koodin lyhyys Kurssilla keskitytään nimenomaan algoritmien laskenta-aikaan (eli suoritusaikaan) Merkitään algoritmin suoritusaikaa T(n):llä n on algoritmin käsittelemien tietojen lukumäärä Määritellään iso O ( Big Oh ): T(n) = O(f(n)), jos on olemassa c > 0 ja n 0 > 0 siten että T(n) <= c f(n), kun n >= n 0 Tämä tarkoittaa käytännössä, että f(n) on suuruusluokkayläraja suoritusajalle T(n) KyAMK - TiRak, syksy KyAMK - TiRak, syksy Laskentaaika c f(n) T(n) = 5n 2 + 7n + 10 = O(n 2 ), T(n) sillä (ainakin) f(n) 5n 2 + 7n n 2, kun n 10 n 0 Tehtävän koko Eli tässä voitiin valita c=6 ja n 0 = KyAMK - TiRak, syksy KyAMK - TiRak, syksy

3 n 2 n 2 5n 2 +7n n T1(n) = 1000 n = O(n) T2(n) = 0.5 n 2 = O(n 2 ) Esimerkissä n:n pienillä arvoilla T2(n) < T1(n) Syötekoon kasvaessa T1(n) < T2(n) n on tällöin jotenkin pienempi funktio kuin n 2 Olemme kiinnostuneita suoritusajasta n:n suurilla arvoilla voidaan päätellä (vähän epätäsmällisesti): mitä pienempi f(n) sitä nopeampi algoritmi KyAMK - TiRak, syksy KyAMK - TiRak, syksy Iso O -notaatiota ilmoittaa, miten algoritmin suoritusaika käyttäytyy suurilla n:n arvoilla Tällöin O:n argumenttina on lähes aina jokin seuraavista ns. testifunktioista: 1 vakio n lineaarinen n 2 neliöllinen (kvadraattinen) n 3 kuutiollinen log n logaritminen log 2 n neliöllinen logaritminen Huom. log 2 n = (log n) 2 n log(n) 2 n eksponentiaalinen Huom.1 Algoritmianalyysin logaritmifunktiot ovat aina 2-kantaisia. log n tarkoittaa käytännössä log 2 n. Huom.2 Ei merkitä esim., että T(n) = O(3n n log n + 13 n), vaan tässä tapauksessa T(n) = O(n 2 ). O-merkintään vain funktion f(n) nopeimmin kasvava termi. Huom.3 Olkoon T(n) = 6n + 5. Tällöin T(n)=O(n), mutta myös T(n)=O(n 2 ), T(n)=O(n 3 ) jne. O(f(n)) on suuruusluokkayläraja T(n):lle. Tässä tapauksessa paras (ja moraalisesti ainoa oikea) on O(n), koska aina on syytä pyrkiä esittämään mahdollisimman tiukka yläraja KyAMK - TiRak, syksy KyAMK - TiRak, syksy

4 ISON O:N SUKULAISET Iso O ei ole ainoa funktio, jonka avulla voidaan luokitella algoritmien suoritusaikoja Se on kuitenkin eniten käytetty Ison O:n sukulaisia eli vastaavia luokittelufunktioita ovat: Iso Omega (Ω) Iso Theta (Θ) Pieni o ISON O:N SUKULAISET Iso Omega (Ω) T(n) = Ω(f(n)), jos on olemassa c > 0 ja n 0 > 0 s.e. T(n) c f(n), kun n n 0 Ω on muuten kuten iso O paitsi että se antaa suuruusluokka-alarajan T(n):lle T(n) on vähintään suuruusluokkaa f(n) KyAMK - TiRak, syksy KyAMK - TiRak, syksy ISON O:N SUKULAISET ISON O:N SUKULAISET Iso Theta (Θ) T(n) = Θ(f(n)), jos ja vain jos T(n) = O(f(n)) ja T(n) = Ω(f(n)) Θ siis ilmaisee T(n):n suuruusluokan täsmälleen T(n) on täsmälleen suuruusluokkaa f(n) Jostain syystä sitä käytetään kuitenkin vähemmän kuin isoa O:ta Pieni o T(n) = o(f(n)), jos T(n) = O(f(n)) ja T(n)!= Θ(f(n)) Pikku o siis antaa aidon eli reilun ylärajan T(n):lle T(n):n suuruusluokka on varmasti pienempi kuin f(n) KyAMK - TiRak, syksy KyAMK - TiRak, syksy

5 ISON O:N SUKULAISET Olkoon T(n) = 7n log n + 12n + 1 Tällöin pätevät muun muassa seuraavat: T(n) = Ω(n), T(n) = Ω(n log n) T(n) = Θ(n log n) T(n) = o(n 2 ) Sen sijaan mm. seuraavat eivät päde: T(n) = Θ(n) T(n) = Ω(n 2 ) T(n) = o(n log n) ISON O:N LASKUSÄÄNTÖJÄ 1. Jos T 1 (n) = O(f(n)) ja T 2 (n) = O(g(n)), niin T 1 (n) + T 2 (n) = O(max(f(n), g(n))) Summattaessa nopeimmin kasvava voittaa eli peittää alleen hitaammat 2. Jos T 1 (n) = O(f(n)) ja T 2 (n) = O(g(n)), niin T 1 (n)*t 2 (n) = O(f(n)*g(n)) 3. Jos T(n) on k:nnen asteen polynomi, niin T(n) = O(n k ), ja tiukemmin arvioituna Θ(n k ) Tämä on itse asiassa kohdan 1. sovellus: polynomin nopeimmin kasvava termi määrää 4. Jos T(n) = log k n tai T(n) = log(n k ) niin, T(n) = O(n) Logaritmifunktio potensseineen kasvaa hitaammin kuin lineaarinen funktio, siis tosi hitaasti KyAMK - TiRak, syksy KyAMK - TiRak, syksy OLETUKSIA - MITÄ ANALYSOIDAAN? OLETUKSIA - MITÄ ANALYSOIDAAN? Algoritmit toteutetaan tietokoneella, josta oletetaan käskyt suoritetaan peräkkäin jokainen alkeisoperaatio vie yhden yksikön aikaa sananpituus on kiinteä, esim. 32 bittiä muistia on käytössä äärettömästi (eli riittävästi ) Alkeisoperaatiolla tarkoitetaan esimerkiksi laskutoimitusta +, -, *, / sijoitusta muuttuja = lauseke (lausekkeen muodostamisaika laskettava erikseen) kahden lausekkeen arvon vertailu (lausekkeet taas erikseen) Onko oletus alkeisoperaatioiden suoritusaikojen yhtäsuuruudesta epärealistinen? Jos esimerkiksi sijoitus vie k-kertaisen ajan vertailuun nähden, n:n peräkkäisen vertailun ja sijoituksen viemä kokonaisaika on (1 + k)n eli kaikilla n:n arvoilla O(n) Näillä oletuksilla siis analysoidaan algoritmin suoritusaikaa T(n), missä n on algoritmin käsittelemien tietoalkioiden määrä Suoritusaikaa voidaan analysoida a) helpoimmassa tapauksessa T best (n) b) keskimääräisessä tapauksessa T avg (n) c) pahimmassa tapauksessa T worst (n) Kiinnostavimmat ovat kaksi viimeksimainitua, varsinkin viimeinen: algoritmi ei vie ainakaan tämän enempää aikaa KyAMK - TiRak, syksy KyAMK - TiRak, syksy

6 OLETUKSIA - MITÄ ANALYSOIDAAN? TAVALLISTEN RAKENTEIDEN T worst (n) usein helpompi määrittää kuin T avg (n) On mahdollista, että kaikilla on eri iso O, mutta on myös mahdollista, että isot O:t ovat samat Yksinkertaisella vaihtolajittelumenetelmällä (Selection Sort) kaikki kolme ovat O(n 2 ) Nopealla Quicksort-menetelmällä T best (n) = T avg (n) = O(n log n), mutta T worst (n) = O(n 2 ) Onneksi tämä pahin tapaus pystytään lähes aina välttämään KyAMK - TiRak, syksy Tarkastellaan pientä funktiota, joka laskee summan n int summa( int n ) { // 1 int s = 0; // 2 for (int i = 1; i <= n; ++i){ // 3 s = s + i; // 4 } return s; // 5 } Lasketaan suoritusaika T(n) edellisin oletuksin: Mitä tehdään Montako kertaa 1: todellisen parametrin sijoitus muodolliseen 1 2: sijoitus 1 3: i:lle alkuarvo 1 vertailu i <= n, n kertaa n kasvatus ++i, n kertaa n 4: yhteenlasku ja sijoitus 2n 5: palautusarvo Yhteensä 4n + 4 Algoritmin suoritusaika on siis T(n) = O(n) eli algoritmi on aikavaativuudeltaan lineaarinen Rekursioluvussa esitettiin parempi algoritmi, jonka aikavaativuus on O(1), siis vakio KyAMK - TiRak, syksy TAVALLISTEN RAKENTEIDEN Sääntöjä: 1. Peräkkäisrakenne lause1; lause2;... Peräkkäisten lauseiden kokonaissuoritusaika = yksittäisten lauseiden suoritusaikojen summa O-luokan määrää yksittäisten lauseiden suurin O-luokka TAVALLISTEN RAKENTEIDEN 2. for-rakenne for ( int i = 0; i < n; ++i ) lause; Suoritusaika = n*(lauseen suoritusaika + testin ja etenemisen suoritusaika) Suoritusaika on siis: 1. O(n), jos lauseen suoritusaika = O(1) 2. O(n 2 ), jos lauseen suoritusaika = O(n) 3. olettaen, että testi ja eteneminen saadaan suoritetuksi ajassa O(1) (näin tapahtuu hyvin usein) KyAMK - TiRak, syksy KyAMK - TiRak, syksy

7 TAVALLISTEN RAKENTEIDEN 3. Sisäkkäinen for-rakenne TAVALLISTEN RAKENTEIDEN 4. if-rakenne for ( int i = 0; i < n; ++i ) for ( int j = 0; j < n; ++j ) lause; Suoritusaika = n*n*(lauseen suoritusaika + testin ja etenemisen suoritusaika) if ( ehto ) lause1; else lause2; // T1(n) // T2(n) Suoritusaika on 1. O(n 2 ), jos lauseen suoritusaika = O(1) 2. O(n 3 ), jos lauseen suoritusaika = O(n) 3. Suoritusaika enintään = ehdon suoritusaika + max(t 1 (n), T 2 (n)) Jos ehto voidaan selvittää ajassa O(1), koko rakenteen suoritusaika on max(t 1 (n), T 2 (n)) KyAMK - TiRak, syksy KyAMK - TiRak, syksy ERÄIDEN ALGORITMILUOKKIEN ERÄIDEN ALGORITMILUOKKIEN Seuraavassa esitetään esimerkinomaisesti suoritusaikoja erilaisille algoritmeille Tulokset vedetään osittain hihasta Tarkat analyysit saattavat joissakin tapauksissa olla melko vaikeita, eikä niitä tässä (tilan ja varsinkin ajan puutteen :) ) vuoksi esitetä. 1. n-sääntö: Algoritmin aikavaatimus on O(n), jos O(1)-operaatioilla voidaan vähentää n:ää yhdellä. Summa n rekursiivisesti: int reksumma( int n ){ if ( n == 0 ) return 0; else return reksumma( n - 1 ) + n; } // Rekursio Peräkkäishaussa jokainen käynti n-alkioisessa taulukossa vähentää n:ää eli käymättömien alkioiden määrää 1:llä Peräkkäishaun aikavaatimus on O(n). Tällainen häntärekursio (tail recursion), missä rekursiivinen kutsu on rakenteen viimeinen lause, on oikeastaan vain piilotettu toistorakenne Esimerkin tapauksessa jokainen kutsu, O(1), pienentää käsiteltävien tapausten määrää 1:llä Koko algoritmin aikavaatimus on siten O(n) KyAMK - TiRak, syksy KyAMK - TiRak, syksy

8 ERÄIDEN ALGORITMILUOKKIEN 2. log n-sääntö: Algoritmin aikavaatimus on O(log n), jos O(1)-operaatioilla voidaan puolittaa n. Puolitushaussa jokaisella kierroksella tarkastamaton osa (vähintään) puolittuu Puolitus ja alkion tarkastaminen = O(1) koko haku on ohi ajassa O(log n) ERÄIDEN ALGORITMILUOKKIEN Eukleideen algoritmi: gcd(a,b) = gcd(b, a mod b) Voidaan osoittaa, että a eli suurempi parametri vähintään puolittuu aina kahdella jaolla algoritmin aikavaativuus on O(2 log n) eli O(log n), missä n on a:n bittimäärä Huom. O(log n) algoritmit ovat erittäin nopeita Niitä kannattaa tavoitella Harvoihin ongelmiin löytyy näin nopea algoritmi puolitustapausten joukko on eräs tällainen KyAMK - TiRak, syksy KyAMK - TiRak, syksy ERÄIDEN ALGORITMILUOKKIEN SEURAAVALLA KERRALLA 3. Eksponenttisääntö: Algoritmin aikavaatimus on O(2 n ), jos n:n kasvaessa 1:llä ongelman koko kasvaa k-kertaiseksi, k > 1 Rekursiivinen Fibonacci-algoritmi: f(n) = f(n-1) + f(n-2) osoittautui hyvin tehottomaksi: sama f(k) lasketaan rekursion edetessä toistuvasti uudestaan Voidaan osoittaa, että algoritmin suoritusaika on eksponenttityyppinen ( k on noin 1.6) eli T(n) = O(2 n ) Huom. Eksponentialiset algoritmit ovat äärimmäisen hitaita niitä tulisi kaikin voimin välttää Valitettavasti monissa tunnetuissa käytännön ongelmissa i. ei tunneta parempaa algoritmia ii. ei voida kehittää parempaa algoritmia Lineaariset abstraktit datatyypit (ADT:t): lista, pino, jono, pakka Linkitetty lista Pinoesimerkkejä KyAMK - TiRak, syksy KyAMK - TiRak, syksy

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

Algoritmianalyysin perusteet

Algoritmianalyysin perusteet Tietorakenteet ja algoritmit Algoritmianalyysin perusteet Ari Korhonen 1 5. ALGORITMIANALYYSI 5.1 Johdanto 5.2 Tavoitteet 5.3 Algoritmien luokittelu 5.4 Kertaluokkamerkinnät (Big Oh Notation) 5.5 Kertaluokkamerkinnöillä

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

1 Erilaisia tapoja järjestää

1 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Tietorakenteet, laskuharjoitus 1,

Tietorakenteet, laskuharjoitus 1, Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

Tietorakenteet ja algoritmit. Kertaus. Ari Korhonen

Tietorakenteet ja algoritmit. Kertaus. Ari Korhonen Tietorakenteet ja algoritmit Kertaus Ari Korhonen 1.12.2015 Tietorakenteet ja algoritmit - syksy 2015 1 Presemosta: 12. Kertaus» Mitkä tekijät, miten ja miksi vaiku1avat algoritmien nopeuteen» Rekursiohistoriapuut

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Tietorakenteet, laskuharjoitus 2,

Tietorakenteet, laskuharjoitus 2, Tietorakenteet, laskuharjoitus, 6.-9.1 Muista TRAKLA-tehtävien deadline 31.1. 1. Tarkastellaan ensin tehtävää yleisellä tasolla. Jos funktion T vaativuusluokka on O(f), niin funktio T on muotoa T (n) =

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin Sisällys 17. Ohjelmoinnin tekniikkaa for-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. if-else-lause vaihtoehtoisesti

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta

Lisätiedot

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista). Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

16. Ohjelmoinnin tekniikkaa 16.1

16. Ohjelmoinnin tekniikkaa 16.1 16. Ohjelmoinnin tekniikkaa 16.1 Sisällys For-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. If-else-lause vaihtoehtoisesti

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT HAJAUTUS, JÄRJESTÄMISESTÄ HAJAUTTAMISEN IDEA Jos avaimet (tai data) ovat kokonaislukuja välillä 1 N, voidaan niitä käyttää suoraan indeksointiin Järkevä rakenne on

Lisätiedot

4. Algoritmien tehokkuus

4. Algoritmien tehokkuus 4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

2. Algoritmien analysointimenetelmistä

2. Algoritmien analysointimenetelmistä 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so. runsaasti aikaavievä. Monesti

Lisätiedot

2. Algoritmien analysointimenetelmistä

2. Algoritmien analysointimenetelmistä Kokeelliset tutkimukset 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so.

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja 58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät

Lisätiedot

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy 212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa

Lisätiedot

2. Algoritmien analysointimenetelmistä

2. Algoritmien analysointimenetelmistä Kokeelliset tutkimukset 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so.

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

12. Algoritminsuunnittelun perusmenetelmiä

12. Algoritminsuunnittelun perusmenetelmiä 12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen

Lisätiedot

12. Algoritminsuunnittelun perusmenetelmiä

12. Algoritminsuunnittelun perusmenetelmiä 12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu 81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat

Lisätiedot

Algoritmit 1 Syksy 2008

Algoritmit 1 Syksy 2008 Algoritmit 1 Syksy 2008 Algoritmit 1 1 1 Algoritmit ja algoritmien analysointi Algoritmilla tarkoitetaan askel askeleelta suoritettavaa ohjetta jonkin tehtävän suorittamiseksi tai jonkun ongelman ratkaisemiseksi.

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5)

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5) Alkuarvot ja tyyppimuunnokset (1/5) Aiemmin olemme jo antaneet muuttujille alkuarvoja, esimerkiksi: int luku = 123; Alkuarvon on oltava muuttujan tietotyypin mukainen, esimerkiksi int-muuttujilla kokonaisluku,

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Luku 1. Ohjelmointitekniikka. 1.1 Kielen valinta

Luku 1. Ohjelmointitekniikka. 1.1 Kielen valinta Osa I Perusasiat 1 Luku 1 Ohjelmointitekniikka Kisakoodaus eroaa monella tavalla perinteisestä ohjelmoinnista. Koodit ovat lyhyitä, syötteet ja tulosteet on määritelty tarkasti, eikä koodeja tarvitse

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

Tutoriaaliläsnäoloista

Tutoriaaliläsnäoloista Tutoriaaliläsnäoloista Tutoriaaliläsnäolokierroksella voi nyt täyttää anomuksen läsnäolon merkitsemisestä Esim. tagi ei toiminut, korvavaltimon leikkaus, yms. Hyväksyn näitä omaa harkintaa käyttäen Tarkoitus

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Tieto- ja tallennusrakenteet

Tieto- ja tallennusrakenteet Tieto- ja tallennusrakenteet Sisältö Tyyppi, abstrakti tietotyyppi, abstraktin tietotyypin toteutus Tallennusrakenteet Taulukko Linkitetty rakenne Abstraktit tietotyypit Lista (Puu) (Viimeisellä viikolla)

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Sekvenssien segmentointi. Merkkijonoja. Sekvenssien segmentointi. ja dynaaminen ohjelmointi

Sekvenssien segmentointi. Merkkijonoja. Sekvenssien segmentointi. ja dynaaminen ohjelmointi Sekvenssien segmentointi ja dynaaminen ohjelmointi T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen syksy 2007 Sekvenssien segmentointi Erilaisia aikasarjoja esiintyy usein Miten aikasarja voidaan

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot