Tietorakenteet, laskuharjoitus 3, ratkaisuja

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Tietorakenteet, laskuharjoitus 3, ratkaisuja"

Transkriptio

1 Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan O(n) Algoritmi käyttää yhtä apumuuttujaa, tilavaatisuus on näinollen vakio O(1) (b) Rekursiivisen algoritmin aikavaativuus on O(n) ja tilavaativuus on O(n), koska funktiota kutsutaan n kertaa ja yksi kutsu vie vakiomäärän aikaa ja muistia. Esimerkiksi jos n = 4, funktiota kutsutaan seuraavasti: Summa(4) Summa(3) Summa(2) Summa(1) Summa(0) Kun funktio saa parametrin 0, se ei enää kutsu itseään vaan kutsuketju alkaa purkautua. Tässä vaiheessa algoritmin muistinkäyttö on suurimmillaan: muistissa ovat samaan aikaan kaikki n funktiokutsua. (c) Summan voi laskea myös ajassa O(1) seuraavan summakaavan avulla: n = n (n+1)/2 Tuloksena oleva algoritmi on selvästi vakioaikainen: Summa(k) return k * (k+1)/2 2. public int paalla(){ return top.key; public int toisiksiylimpana(){ return top.next.key; public int kolmanneksiylimpana(){ return top.next.next.key; public void tulostakolmeylinta(){ System.out.print("kolme ylintä: "); System.out.print( top.key + " " ); System.out.print( top.next.key + " " ); System.out.print( top.next.next.key + " " ); System.out.println(""); public int poistatoisiksiylin(){ PinoSolmu pois = top.next; top.next = pois.next; return pois.key; 1

2 3. public void lisaatoiseksi(int lisattava) { PinoSolmu vanhatoka = top.next; PinoSolmu uusi = new PinoSolmu(lisattava, vanhatoka ); top.next = uusi; public int koko() { int koko = 0; PinoSolmu p = top; while ( p!=null ) { koko++; p = p.next; return koko; public void tulostakaikki(){ System.out.print("pinossa: "); PinoSolmu p = top; while ( p!=null ) { System.out.print(p.key + " "); p = p.next; System.out.println(""); public void lisaapohjalle(int lisattava){ // HUOM: ei toimi tyhjälle pinolle! PinoSolmu uusi = new PinoSolmu(lisattava, null); PinoSolmu p = top; while ( p.next!=null ) { p = p.next; p.next = uusi; Metodi lisaapohjalle vie nyt aikaa O(n) sillä koko pino käytävä läpi pohjaa etsiessä onnistuu vakioaikaisesti jos pinolle lisätään pohjan muistava attribuutti. Push- ja pop- operaatioissa täytyy tällöin huomioida pohjan muistavan attribuutin päivitys tapauksissa joissa lisätään ensimmäinen tai poistetaan viimeinen. Näin syntyy seuraava tietorakenne: public class PinoJono { private PinoSolmu top; private PinoSolmu bottom; public PinoJono() { top = null; 2

3 bottom = null; public void push(int k) { PinoSolmu uusi = new PinoSolmu(k, top); top = uusi; // lisättään ensimmäinen if ( bottom==null ) bottom = uusi; public int pop() { PinoSolmu x = top; top = x.next; // poistetaan viimeinen if ( top==null ) bottom = null; return x.key; public boolean empty() { return (top == null); public void lisaapohjalle(int lisattava){ PinoSolmu uusi = new PinoSolmu(lisattava, null); if ( bottom==null ){ top = uusi; else { bottom.next = uusi; bottom = uusi; public void tulostakaikki(){ System.out.print("pinojonossa: "); PinoSolmu p = top; while ( p!=null ) { System.out.print(p.key + " "); p = p.next; System.out.println(""); 4. Määritellään rajapinta jonka pinot toteuttavat. public interface Pino { int pop(); void push(int lisattava); boolean empty(); 3

4 Koska molemmat pinot toimivat lähes samalla tavalla, tehdään niille abstrakti yläluokka. Ainoa poikkeava kohta eli kasvatuksen yhteydessä tulevan taulukon uuden koon laskenta määritellään abstraktiksi metodiksi. public abstract class KasvavaPino implements Pino { protected int[] taulukko; private int top; public KasvavaPino() { taulukko = new int[100]; top = 0; public int pop() { return taulukko[--top]; public void push(int luku) { if ( top==taulukko.length ) kasvatataulukkoa(); taulukko[ top++ ] = luku; public boolean empty() { return top == 0; private void kasvatataulukkoa() { int[] uusi = new int[laskeuusikoko()]; for ( int i=0 ; i < taulukko.length; i++ ) uusi[i] = taulukko[i]; taulukko = uusi; abstract protected int laskeuusikoko(); Edellisestä on helppo erikoistaa TuplautuvaPino jossa taulukon pituus aina kasinkertaistuu ja VakiollaKasvavaPino jossa taulukon koko kasvaa aina sadalla. public class TuplautuvaPino extends KasvavaPino { protected int laskeuusikoko() { return taulukko.length*2; 4

5 public class VakiollaKasvavaPino extends KasvavaPino { protected int laskeuusikoko() { return taulukko.length + 100; Mittausta varten luodaan oikeantyyppiset pino-instanssit: Pino p1 = new TuplautuvaPino(); Pino p2 = new VakiollaKasvavaPino(); for ( int operaatioita = 1000; operaatioita< ; operaatioita *= 2 ) { mittaaaika(p1, operaatoita); mittaaaika(p2, operaatoita); Pinojen käyttämä aika suhteessa tehtyihin push-operaatioihin nähdään seuraavista kuvista (x-akselissa käytetty aika ja x-akselilla operaatioiden määrä), huomaa kuvien erilaiset skaalat: 5

6 Pino jossa käytettiin tuplausstrategiaa osoittautui huomattavasti tehokkaammaksi. Pinoa jota kasvatetaan vain 100 alkiota kerrallaan vaivaa se, että joka sadas operaatio on lineaarinen alkioiden lukumäärän suhteen, sillä tällöin alkiot on kopioitava vanhasta taulukosta uuteen isompaan taulukkoon. Kopioinnin takia aikaa vievä push tehdään, niin usein, että keskimääräiseksi push:in aikavaativuudekeksi tulee O(n), ja n kpl push:eja vie aikaa O(n 2 ). Ylempi kuva näyttää tämän. Pino, jossa taulukko tuplataan on paljon nopeampi, koska kallis lineaarisen ajan vievä operaatio suoritetaan verrattain harvoin. Karkeasti ottaen jokaista O(n) aikaa vievää kallista push-operaatiota kohti tehdään n kappaletta halpoja push:eja. Näinollen yksittäisen pushin keskimääräiseksi aikavaativuudeksi tuleekin vain O(1), ja n kpl push:eja vie aikaa O(n). Alempi kuva näyttää tämän. Tässä tehty aikavaativuus "analyysi" ei siis arvioi tavanomaiseen tapaan operaation pahinta tapausta, vaan yksittäisen operaation keskimäärin vievää aikaa suoritettaessa pitempi ketju komentoja. Tälläistä analysointitapaa sanotaan tasoitetuksi analyysiksi (engl. amortized analysis). Tasoitettu analyysi ei varsinaisesti kuulu tietorakenteisiin. Hieman formaalimpi analyysi edellisestä: Jos ajatellaan taulukon yhden alkion kopiontiin kuluvan yhden askelen niin voidaan laskea kuinka monta askelta joudutaan suorittamaan n:ssä lisäyksessä, jotka tehdään tyhjään pinoon. Laskelmissa on oletuksena, että taulukon koon lisäys aloitetaan yhdestä alkiosta. Tämä ei vaikuta mitenkään laskujen suuruusluokkaan, mutta helpottaa arviointia. Lasketaan ensin sadalla kasvavan tapaus 1. 1 Lausekkeessa käytetään lattiafunktiota, joka on pyöristys lähimpään lukua pienempään kokonaislukuun. Esi- 6

7 n n i = n+100 i=1 i=1 n ( n +1) n+100 n (n+1) 2 = 50n 2 +51n = O(n 2 ) Kun tehdään n:kpl push-operaatioita, suoritettavien kopiointiaskelten määrä siis on luokaa O(n 2 ). Siis yksittäinen push vie keskimäärin O(n) kopiointiaskelta, eli keskimääräinen aikavaativuus push-operaatioille on lineaarinen.. Tarkastellaan nyt Pino2:n n:ssä peräkkäisessä lisäyksessä käytettävien askelten lukumäärää. Jälkimmäinen summa alla olevassa lausekkeessa seuraa siitä, että taulukko tarvitsee tuplata log 2 n kertaa, ja jokaisella tuplauksella kaikki alkiot pitää kopioida taulukosta toiseen. Oletetaan tässä kuitenkin laskujen yksinkertaistamiseksi, että luku log 2 n on kokonaisluku. Kun taulukko on yhden kokoinen pitää kopioida 1 = 2 0 alkiota, kun taulukko on kahden kokoinen pitää kopioida 2 = 2 1 alkiota jne. n 1+ i=1 log 2 n i=0 2 i = n+2 log 2 n+1 1 n+2 2 log 2 n = n+2 n = 3n Siis keskimäärin n:n lisäyksen jonossa jokainen lisäys vie vakioajan vaikka pahimman tapauksen aikavaativuus onkin lineaarinen. Tälläisessä tapauksessa sanotaan, että operaatio on tasoitetulta vaativuudeltaan vakioaikainen. Taulukkoon voidaan toteuttaa myös taulukon kutistaminen sopivalla tavalla poisto- operaatioiden yhteyteen. Sopiva tapa tarkoittaa tässä sitä, että taulukon koko puolitetaan esimerkiksi silloin, kun sen täyttöaste on 1 4. Tällöin voidaan osoittaa, että peräkkäisistä lisäyksistä ja poistoista saadaan tasoitetulta vaativuudeltaan vakioaikaisia. Ohitamme tässä perustelut, koska tasoitettu vaativuus ei varsinaisesti kuulu kurssin sisältöön. On kuitenkin hyödyllistä tuntea käsite. Lisäksi taulukkoja muuttuvan kokoisia taulukoita tarvitaan melko usein, joten on hyvä tietää miten se voidaan toteuttaa tehokkaasti. (a) Tehtävänä on toteuttaa algoritmi, jolle annetaan n lukua sisältävä taulukko ja joka laskee taulukon lukujen summan. Jos taulukossa olevat alkiot ovat toisistaan riippumattomia, on alkioiden summa selvästi riippuvainen jokaisesta taulukon alkiosta. Eli summan selvittämiseksi ei ole muuta mahdollisuutta kuin "katsoa"jokaisen alkion arvoa. Arvon katsominen onnistuu ajassa O(1) ja koska alkioita on n kappaletta, ei kaikkia voida käydä katsomassa nopeammin kuin ajassa O(n). (b) Algoritmin tilavaativuus ei voi olla aikavaativuutta suurempi, koska jokainen algoritmin askel voi viitata vain kiinteään määrään muistipaikkoja. Tämän vuoksi ei ole mahdollista, että algoritmi olisi vakioaikainen mutta sen muistinkäyttö kasvaisi lineaarisesti. merkiksi 3.14 = 3 ja 3 = 3 7

8 (c) Algoritmien analyysissa oletetaan yleensä, että luvut vievät vakiomäärän muistia ja esimerkiksi laskutoimitukset tapahtuvat vakioajassa. Tämä ei ole kuitenkaan järkevä oletus, jos luvut ovat huomattavan suuria. Tarkasti ottaen kokonaisluku n vie tilaa O(log n), koska siinä on luokkaa log n numeroa. Tässä logaritmin kantaluku riippuu lukujärjestelmästä, mutta sillä ei ole vaikutusta suuruusluokkaan. Esimerkiksi luvun bittiesitys sisältää 14 numeroa ja log = 14. Jos taulukossa on n positiivista kokonaislukua, tulo 2 T[1] 3 T[2] 5 T[3] on varmasti ainakin 2 T[1] 2 T[2] 2 T[3], joka taas on ainakin eli 2 n. Luvun tallennus vie siis muistia Ω(log2 n ) eli Ω(n). Käytännössä voidaan usein olettaa, että käsiteltävät luvut eivät ole kovin suuria vaan esimerkiksi 32-bittinen muuttuja riittää. Tällöin luvun suuruudella on yläraja ja se vie vain vakiomäärän tilaa. Mutta jos luvut voivat kasvaa rajatta, logaritmi kertoo todellisen muistinkäytön. 8

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Tietorakenteet, laskuharjoitus 2,

Tietorakenteet, laskuharjoitus 2, Tietorakenteet, laskuharjoitus, 6.-9.1 Muista TRAKLA-tehtävien deadline 31.1. 1. Tarkastellaan ensin tehtävää yleisellä tasolla. Jos funktion T vaativuusluokka on O(f), niin funktio T on muotoa T (n) =

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Pino S on abstrakti tietotyyppi, jolla on ainakin perusmetodit:

Pino S on abstrakti tietotyyppi, jolla on ainakin perusmetodit: Pino (stack) Pino: viimeisenä sisään, ensimmäisenä ulos (LIFO, Last In, First Out) -tietorakenne kaksi perusoperaatiota: alkion lisäys pinon päälle (push), ja päällimmäisen alkion poisto (pop) Push(alkio)

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu

Lisätiedot

4. Perustietorakenteet: pino, jono ja lista

4. Perustietorakenteet: pino, jono ja lista 4. Perustietorakenteet: pino, jono ja lista Abstrakti tietotyyppi joukko Usein ohjelma ylläpitää suoritusaikanaan jotain joukkoa tietoalkioita, esim. puhelinluettelo nimi-numeropareja Joukon tietoalkiot

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Rajapinta (interface)

Rajapinta (interface) 1 Rajapinta (interface) Mikä rajapinta on? Rajapinta ja siitä toteutettu luokka Monimuotoisuus ja dynaaminen sidonta Rajapinta vs periytyminen 1 Mikä rajapinta on? Rajapintoja käytetään, kun halutaan määritellä

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

Tietorakenteet, laskuharjoitus 1,

Tietorakenteet, laskuharjoitus 1, Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta

Lisätiedot

Tietorakenteet (syksy 2013)

Tietorakenteet (syksy 2013) Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten

Lisätiedot

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla; Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden

Lisätiedot

Sisältö. 22. Taulukot. Yleistä. Yleistä

Sisältö. 22. Taulukot. Yleistä. Yleistä Sisältö 22. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 22.1 22.2 Yleistä

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

TIETORAKENTEET JA ALGORITMIT

TIETORAKENTEET JA ALGORITMIT TIETORAKENTEET JA ALGORITMIT Timo Harju 1999-2004 1 typedef link List; /* Vaihtoehtoisia nimiä */ typedef link Stack; /* nodepointterille */ typedef link Queue typedef struct node Node; /* itse nodelle

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

Sisältö. 2. Taulukot. Yleistä. Yleistä

Sisältö. 2. Taulukot. Yleistä. Yleistä Sisältö 2. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.1 2.2 Yleistä

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset

815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset Harjoituksen aiheena ovat aliohjelmat ja abstraktit tietotyypit sekä olio-ohjelmointi. Tehtävät tehdään C-, C++- ja Java-kielillä.

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, 25.2.2013, vastauksia 1. (a) O-merkintä Ω-merkintä: Kyseessä on (aika- ja tila-) vaativuuksien kertalukumerkinnästä. O-merkintää käytetään ylärajan

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma. 2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä

Lisätiedot

Tietorakenteet, laskuharjoitus 4,

Tietorakenteet, laskuharjoitus 4, Tietorakenteet, laskuharjoitus 4, 9. 12.2 1. Tehtävässä piti toteuttaa jono käyttäen Javan valmiita LinkedList- sekä ArrayListtietorakenteita sekä tutkia niiden tehokkuutta. Kuvassa 1 näkyvät suoritettujen

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

Ohjelmointi 2 / 2010 Välikoe / 26.3

Ohjelmointi 2 / 2010 Välikoe / 26.3 Ohjelmointi 2 / 2010 Välikoe / 26.3 Välikoe / 26.3 Vastaa neljään (4) tehtävään ja halutessa bonustehtäviin B1 ja/tai B2, (tuovat lisäpisteitä). Bonustehtävät saa tehdä vaikkei olisi tehnyt siihen tehtävään

Lisätiedot

Tietorakenteet, laskuharjoitus 6,

Tietorakenteet, laskuharjoitus 6, Tietorakenteet, laskuharjoitus, 23.-2.1 1. (a) Kuvassa 1 on esitetty eräät pienimmistä AVL-puista, joiden korkeus on 3 ja 4. Pienin h:n korkuinen AVL-puu ei ole yksikäsitteinen juuren alipuiden keskinäisen

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Kirjoita jokaiseen palauttamaasi konseptiin kurssin nimi, kokeen päivämäärä, oma nimi ja opiskelijanumero. Vastaa kaikkiin tehtäviin omille konsepteilleen.

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

18. Abstraktit tietotyypit 18.1

18. Abstraktit tietotyypit 18.1 18. Abstraktit tietotyypit 18.1 Sisällys Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

JAVA-PERUSTEET. JAVA-OHJELMOINTI 3op A274615 JAVAN PERUSTEET LYHYT KERTAUS JAVAN OMINAISUUKSISTA JAVAN OMINAISUUKSIA. Java vs. C++?

JAVA-PERUSTEET. JAVA-OHJELMOINTI 3op A274615 JAVAN PERUSTEET LYHYT KERTAUS JAVAN OMINAISUUKSISTA JAVAN OMINAISUUKSIA. Java vs. C++? JAVA-OHJELMOINTI 3op A274615 JAVAN PERUSTEET LYHYT KERTAUS Teemu Saarelainen teemu.saarelainen@kyamk.fi Lähteet: http://java.sun.com/docs/books/tutorial/index.html Vesterholm, Kyppö: Java-ohjelmointi,

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 15.3.2010 T-106.1208 Ohjelmoinnin perusteet Y 15.3.2010 1 / 56 Tiedostoista: tietojen tallentaminen ohjelman suorituskertojen välillä Monissa sovelluksissa ohjelman

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Java kahdessa tunnissa. Jyry Suvilehto

Java kahdessa tunnissa. Jyry Suvilehto Java kahdessa tunnissa Jyry Suvilehto Ohjelma Ohjelmointiasioita alkeista nippelitietoon n. 45 min Tauko 10 min Oliot, luokat ja muut kummajaiset n. 45 min Kysykää Sisältöä ei oikeasti ole 2x45 min täytteeksi,

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

Metodit. Metodien määrittely. Metodin parametrit ja paluuarvo. Metodien suorittaminen eli kutsuminen. Metodien kuormittaminen

Metodit. Metodien määrittely. Metodin parametrit ja paluuarvo. Metodien suorittaminen eli kutsuminen. Metodien kuormittaminen Metodit Metodien määrittely Metodin parametrit ja paluuarvo Metodien suorittaminen eli kutsuminen Metodien kuormittaminen 1 Mikä on metodi? Metodi on luokan sisällä oleva yhteenkuuluvien toimintojen kokonaisuus

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Sisällys. 18. Abstraktit tietotyypit. Johdanto. Johdanto

Sisällys. 18. Abstraktit tietotyypit. Johdanto. Johdanto Sisällys 18. bstraktit tietotyypit Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.1 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

Listarakenne (ArrayList-luokka)

Listarakenne (ArrayList-luokka) Listarakenne (ArrayList-luokka) Mikä on lista? Listan määrittely ArrayList-luokan metodeita Listan läpikäynti Listan läpikäynti indeksin avulla Listan läpikäynti iteraattorin avulla Listaan lisääminen

Lisätiedot

Sisällys. 1. Omat operaatiot. Yleistä operaatioista. Yleistä operaatioista

Sisällys. 1. Omat operaatiot. Yleistä operaatioista. Yleistä operaatioista Sisällys 1. Omat operaatiot Yleistä operaatioista. Mihin operaatioita tarvitaan? Oman operaation määrittely. Yleisesti, nimeäminen ja hyvä ohjelmointitapa, määreet, parametrit ja näkyvyys. HelloWorld-ohjelma

Lisätiedot

Kaksiloppuinen jono D on abstrakti tietotyyppi, jolla on ainakin seuraavat 4 perusmetodia... PushFront(x): lisää tietoalkion x jonon eteen

Kaksiloppuinen jono D on abstrakti tietotyyppi, jolla on ainakin seuraavat 4 perusmetodia... PushFront(x): lisää tietoalkion x jonon eteen Viimeksi käsiteltiin pino: lisäys ja poisto lopusta jono: lisäys loppuun, poisto alusta Pinon ja jonon yleistävä tietorakenne: kaksiloppuinen jono alkion lisäys/poisto voidaan kohdistaa jonon alkuun tai

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

1. Omat operaatiot 1.1

1. Omat operaatiot 1.1 1. Omat operaatiot 1.1 Sisällys Yleistä operaatioista. Mihin operaatioita tarvitaan? Oman operaation määrittely. Yleisesti, nimeäminen ja hyvä ohjelmointitapa, määreet, parametrit ja näkyvyys. HelloWorld-ohjelma

Lisätiedot

Taulukot. Taulukon määrittely ja käyttö. Taulukko metodin parametrina. Taulukon sisällön kopiointi toiseen taulukkoon. Taulukon lajittelu

Taulukot. Taulukon määrittely ja käyttö. Taulukko metodin parametrina. Taulukon sisällön kopiointi toiseen taulukkoon. Taulukon lajittelu Taulukot Taulukon määrittely ja käyttö Taulukko metodin parametrina Taulukon sisällön kopiointi toiseen taulukkoon Taulukon lajittelu esimerkki 2-ulottoisesta taulukosta 1 Mikä on taulukko? Taulukko on

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

4. Algoritmien tehokkuus

4. Algoritmien tehokkuus 4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien

Lisätiedot

Ohjelmassa henkilön etunimi ja sukunimi luetaan kahteen muuttujaan seuraavasti:

Ohjelmassa henkilön etunimi ja sukunimi luetaan kahteen muuttujaan seuraavasti: 1 (7) Tiedon lukeminen näppäimistöltä Scanner-luokan avulla Miten ohjelma saa käyttöönsä käyttäjän kirjoittamaa tekstiä? Järjestelmässä on olemassa ns. syöttöpuskuri näppäimistöä varten. Syöttöpuskuri

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op), arvosteluraportti

ITKP102 Ohjelmointi 1 (6 op), arvosteluraportti ITKP102 Ohjelmointi 1 (6 op), arvosteluraportti Tentaattori: Antti-Jussi Lakanen 20. toukokuuta 2016 Yleistä Tentti 1 oli pistekeskiarvon (11.6) perusteella vaikea. Omasta tehtäväpaperista saa kopion Antti-Jussilta,

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

A) on käytännöllinen ohjelmointitekniikka. = laajennetaan aikaisemmin tehtyjä luokkia (uudelleenkäytettävyys)

A) on käytännöllinen ohjelmointitekniikka. = laajennetaan aikaisemmin tehtyjä luokkia (uudelleenkäytettävyys) 1(37) PERIYTYMINEN (inheritance) YLILUOKKA (superclass) ALILUOKKA (subclass) A) on käytännöllinen ohjelmointitekniikka = laajennetaan aikaisemmin tehtyjä luokkia (uudelleenkäytettävyys) B) on käsitteiden

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

Taulukot. Taulukon käsittely. Tämän osan sisältö. Esimerkki. Taulukon esittely ja luonti. Taulukon alustaminen. Taulukon koko

Taulukot. Taulukon käsittely. Tämän osan sisältö. Esimerkki. Taulukon esittely ja luonti. Taulukon alustaminen. Taulukon koko 5 Taulukot Tämän osan sisältö Taulukon esittely ja luonti Taulukon alustaminen Taulukon koko Taulukon käsittely indeksointi peräkkäiskäsittely hajakäsittely harva taulukko Taulukon järjestäminen Kaksiulotteinen

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

3. Binääripuu, Java-toteutus

3. Binääripuu, Java-toteutus 3. Binääripuu, Java-toteutus /*-------------------------------------------------------------/ / Rajapinta SearchTree: binäärisen hakupuun käsittelyrajapinta / / Metodit: / / void insert( Comparable x );

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Merkintöjen tulkintoja *++Pstack->top = item *Pstack->top++ = item (*Pstack->top)++ *(Pstack++)->top = item *(++Pstack)->top = item Lisää pinon toteutuksia Dynaaminen taulukko

Lisätiedot

2. Perustietorakenteet

2. Perustietorakenteet 2. Perustietorakenteet Tässä osassa käsitellään erilaisia perustietorakenteita, joita algoritmit käyttävät toimintansa perustana. Aluksi käydään läpi tietorakenteen abstrakti määritelmä. Tämän jälkeen

Lisätiedot

2. Olio-ohjelmoinista lyhyesti 2.1

2. Olio-ohjelmoinista lyhyesti 2.1 2. Olio-ohjelmoinista lyhyesti 2.1 Sisällys Yleistä. Oliot ja luokat. Attribuutit. Olioiden esittely ja alustus. Rakentajat. Olion operaation kutsuminen. 2.2 Yleistä Olio-ohjelmointia käsitellään hyvin

Lisätiedot

1 Tehtävän kuvaus ja analysointi

1 Tehtävän kuvaus ja analysointi Olio-ohjelmoinnin harjoitustyön dokumentti Jyri Lehtonen (72039) Taneli Tuovinen (67160) 1 Tehtävän kuvaus ja analysointi 1.1 Tehtävänanto Tee luokka, jolla mallinnetaan sarjaan kytkettyjä kondensaattoreita.

Lisätiedot

Määrittelydokumentti

Määrittelydokumentti Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta

Lisätiedot

Tehtävä 1. Tehtävä 2. Arvosteluperusteet Koherentti selitys Koherentti esimerkki

Tehtävä 1. Tehtävä 2. Arvosteluperusteet Koherentti selitys Koherentti esimerkki Tehtävä 1 Koherentti selitys Koherentti esimerkki ½p ½p Tehtävä 2 Täysiin pisteisiin edellytetään pelaajien tulostamista esimerkin järjestyksessä. Jos ohjelmasi tulostaa pelaajat jossain muussa järjestyksessä,

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet String-merkkijonoluokka 1 Ohjelmointikielten merkkijonot Merkkijonot ja niiden käsittely on välttämätöntä ohjelmoinnissa Valitettavasti ohjelmointikielten tekijät eivät tätä ole ottaneet

Lisätiedot

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja 58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Oliosuunnitteluesimerkki: Yrityksen palkanlaskentajärjestelmä

Oliosuunnitteluesimerkki: Yrityksen palkanlaskentajärjestelmä Oliosuunnitteluesimerkki: Yrityksen palkanlaskentajärjestelmä Matti Luukkainen 10.12.2009 Tässä esitetty esimerkki on mukaelma ja lyhennelmä Robert Martinin kirjasta Agile and Iterative Development löytyvästä

Lisätiedot

2. Johdanto tietorakenteisiin

2. Johdanto tietorakenteisiin 2. Johdanto tietorakenteisiin Kaikki epätriviaalit ohjelmat joutuvat tallettamaan ja käsittelemään tietoa suoritusaikanaan Esim. "puhelinluettelo": numeron lisäys numeron poisto numeron muutos numeron

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

Olio-ohjelmointi Javalla

Olio-ohjelmointi Javalla 1 Olio-ohjelmointi Javalla Olio-ohjelmointi Luokka Attribuutit Konstruktori Olion luominen Metodit Olion kopiointi Staattinen attribuutti ja metodi Yksinkertainen ohjelmaluokka Ohjelmaluokka 1 Olio-ohjelmointi

Lisätiedot

4. Olio-ohjelmoinista lyhyesti 4.1

4. Olio-ohjelmoinista lyhyesti 4.1 4. Olio-ohjelmoinista lyhyesti 4.1 Sisällys Yleistä. Oliot ja luokat. Attribuutit. Olioiden esittely ja alustus. Rakentajat. Olion operaation kutsuminen. 4.2 Yleistä Olio-ohjelmointia käsitellään hyvin

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 22. huhtikuuta 2016 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille! Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

UML ja luokkien väliset suhteet

UML ja luokkien väliset suhteet UML ja luokkien väliset suhteet -Luokan kuvaaminen UML-tekniikalla -Yhteyssuhde ja koostumussuhde 1 Luokan kuvaaminen UML-tekniikalla : Luokka - attribuutti1 : tietotyyppi # attribuutti2 : tietotyyppi

Lisätiedot

Ohjelmoinnin perusteet, kurssikoe

Ohjelmoinnin perusteet, kurssikoe Ohjelmoinnin perusteet, kurssikoe 18.6.2014 Kirjoita jokaiseen konseptiin kurssin nimi, kokeen päivämäärä, nimi, TMC-tunnus ja opiskelijanumero tai henkilötunnus. Vastaukset palautetaan tehtäväkohtaisiin

Lisätiedot