Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus
|
|
- Krista Haavisto
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat Optimointiopin seminaari Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines in Multiattribute Portfolio Analysis: A Cautionary Note. Decision Analysis, 6(4), Lindstedt, M., Liesiö, J., & Salo, A. (2008). Participatory Development of a Strategic Product Portfolio in a Telecommunication Company. International Journal of Technology Management, 42(3),
2 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä
3 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä
4 Johdanto 1/3 Monitavoitteisessa projektiportfolion valinnassa jätetään toisinaan spesifioimatta, millaiset attribuuttikohtaiset scoret projektin tekemättä jättäminen saa Näin toimittu monissa aiemmin tarkastelluissa esimerkeissä Attribuuttikohtaisiin arvofunktioihin perustuvassa lähestymistavassa ajatellaan usein kuin sisäänrakennetusti, että projektin tekemättä jättämisestä seuraa huonoimmat mahdolliset scoret kaikkien attribuuttien suhteen
5 Johdanto 2/3 Yleisesti ottaen ei voida olettaa, että projektin valitseminen tuottaisi kaikkien attribuuttien suhteen pelkästään positiivista arvoa Vastaavasti oletus siitä, että projektin valitsematta jättäminen saisi huonoimmat pisteet kaikkien attribuuttien suhteen, ei yleisesti välttämättä päde Joissain tilanteissa se, että projektin valitsematta jättämiselle ei määritellä eksplisiittisesti pistemäärää, saattaa johtaa vääriin johtopäätöksiin
6 Johdanto 3/3 Esimerkki: Valitaan autoja viidestä vaihtoehdosta Onko järkeenkäypää olettaa, että auton ostamatta jättäminen johtaa kaikkien attribuuttien erityisesti hinnan ja polttoainekulujen osalta nollascoreen? Lada Audi Mercedes-Benz Ferrari Volvo Hinta Polttoainekulut [0.6,0.7] [0.4,0.5] [0.3,0.4] [0,0.1] [0.5,0.6] Status
7 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä
8 Taustaa 1/3 Kuvitteellinen konsulttifirma CBA Associates valitsee projektiportfolioonsa ohjelmistokehitysprojekteja Kahdeksan mahdollista ohjelmistokehitysprojektia CBAA:lla kiinteä määrä ohjelmoijia Projekteihin käytössä yhteensä 2500 henkilötyöpäivää Projekteilla kolme attribuuttia: rahallinen tuotto, riski ja yhteensopivuus Rahallinen tuotto kuvaa ohjelmistokehitysprojektin arvioitua tuottoa dollareissa
9 Taustaa 2/3 Riski kuvaa arvioitua todennäköisyyttä sille, että projektin lopputuloksena syntyy kaupallinen tuote Riskillä kolme mahdollista tasoa: varma (paras), todennäköinen ja epävarma (huonoin) Yhteensopivuus kuvaa projektin arvioitua yhteensopivuutta CBAA:n muuhun liiketoimintaan Arvio 1:stä (huonoin) 5:een (paras) Tiedetään, että yhteensopivuuden attribuuttipaino 0,5, rahallisen vaikutuksen 0,25 ja riskin 0,25
10 Perustiedot projekteista: Projekti Rahallinen tuotto ($) Taustaa 3/3 Riski Yhteensopivuus Kesto henkilötyöpäivinä A Epävarma B Todennäköinen C Varma D Varma E Varma F Epävarma G Epävarma H Todennäköinen 1 400
11 Virheelliset ratkaisutavat 1/4 Ratkaistaan monitavoitteinen optimointitehtävä kahdella eri tavalla, joissa projektin valitsematta jättämistä ei määritellä: 1. Additiivisen arvofunktion maksimointi Maksimoidaan additiivista arvofunktiota samalla tavalla kuin useimmissa aikaisemmissa esitelmissä: max x i 0,1 8 i=1 8 x i v i siten, että x i c i 2500 i=1 jossa binäärinen x i viittaa projektin i valintaan, v i on projektin i additiivisen arvofunktion arvo ja c i on projektin i kustannus
12 Virheelliset ratkaisutavat 2/4 2. Attribuuttien hinnoittelu Projekti Rahallinen tuotto ($) Riski ($) Yhteensopivuus ($) Kokonaistuotto ($) A B C D E F G H
13 Virheelliset ratkaisutavat 3/4 2. Attribuuttien hinnoittelu (jatkuu) Maksimoidaan portfolion kokonaistuottoa ratkaisemalla optimointitehtävä max x i 0,1 x i p i jossa p i on projektin i kokonaistuotto. On helposti osoitettavissa, että kokonaistuotoille p i pätee p i = $ v i $ joten paremmuusjärjestys säilyy 8 i=1 8 siten, että x i c i 2500 i=1
14 Virheelliset ratkaisutavat 4/4 Ratkaisut 1. Additiivisen arvofunktion maksimointi Toteutettavat projektit: B, C, D, E ja H 2. Attribuuttien hinnoittelu Toteutettavat projektit: A, B, C ja D Ratkaisujen eriävyys johtuu siitä, että projektin valitsematta jättämisestä syntyvä pistemäärä on oletettu tehtävissä eri tavalla: Additiivisen arvofunktion maksimoinnissa: huonoimmat mahdolliset pisteet kaikkien attribuuttien suhteen Attribuuttien hinnoittelussa: kokonaistuotto nolla
15 Oikeaoppinen ratkaisutapa 1/2 Määritellään eksplisiittisesti projektin tekemättä jättämisen arvo ja merkitään sitä symbolilla v i 0 Määritellään optimointiongelma seuraavasti: max x i 0,1 8 i=1 8 0 x i v i + (1 x i )v i siten, että x i c i 2500 i=1 Siten kohdefunktiossa i:s summaustermi on v i, jos projekti i valitaan ja v i0, jos projektia i ei valita
16 Oikeaoppinen ratkaisutapa 2/2 Tarkastellussa esimerkissä valitaan projektin tekemättä jättämisen rahalliseksi tuotoksi $0; vastaava pistemäärä 0,03 riskiksi varma ; vastaava pistemäärä 1 yhteensopivuudeksi arvo 1; pistemäärä 0 Näin projektin tekemättä jättämisen arvoksi saadaan v i0 = 0,258 Oikeaoppisella ratkaisutavalla saadaan tulos, että toteutettavat projektit ovat projektit A, B, C ja D
17 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä
18 Taustaa 1/3 Tarkastellaan tilannetta, jossa suomalainen tietoliikenneyritys valitsee tuoteportfoliotaan 41 mahdollista tuotevaihtoehtoa, resurssit eivät riitä kaikkien tuotteiden kehittämiseen Tuotteilla kolme attribuuttia: rahallinen tuotto, markkinariski ja teknologiariski Rahallinen tuotto kuvaa tuotteen kehittämisestä syntyvää arvioitua tuottoa Arvio 1:stä (suuri tappio) 8:n (suuri voitto)
19 Taustaa 2/3 Markkinariski kuvaa todennäköisyyttä, että markkinaosuus hävitään kilpailijoille Arvio 0:sta (epätodennäköistä voittaa kilpailijat) 10:n (ei ollenkaan muita kilpailijoita) Teknologiariski kuvaa todennäköisyyttä, että tuote epäonnistuu teknisten ongelmien vuoksi Arvio 0:sta (vakava epäonnistumisen riski) 10:n (ei ollenkaan epäonnistumisen riskiä)
20 Taustaa 3/3 Muita huomioita: Attribuuttipainot ja vaihtoehtojen attribuuttikohtaiset pisteet tarkkojen arvojen sijaan välejä Ratkaisussa käytettiin RPM:ää Synergiat jätettiin mallintamatta yksinkertaistuksen vuoksi
21 Tehtävän ratkaisu Artikkelin ratkaisussa tuotteen kehittämättä jättämisestä syntyvää arvoa ei erikseen määritelty Tuotteen kehittämättä jättämisestä olisi siten seurannut huonoimmat mahdolliset pisteet kaikkien attribuuttien suhteen eli esim. suuri rahallinen tappio ja vakava epäonnistumisen riski teknologiassa Tässä yhteydessä olisi ollut syytä määritellä jokin järkevä arvo tuotteen kehittämättä jättämiselle ja ottaa tämä huomioon tehtävää ratkaistaessa Tällä olisi saattanut hyvinkin olla vaikutusta saatuun päätössuositukseen
22 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä
23 Tiivistelmä Yleisesti ei voida olettaa, että projektin valitseminen tuottaa kaikkien kriteereiden suhteen pelkästään positiivista arvoa Siksi tulisi määritellä eksplisiittisesti, millaisiin attribuuttikohtaisiin pisteisiin projektin tekemättä jättäminen johtaa ja huomioida tämä ongelmaa ratkaistaessa Toisinaan alan johtavat ammattilaisetkin ovat unohtaneet määritellä projektin tekemättä jättämisen arvon ja saaneet siten virheellisiä tuloksia Tuloksiin suhtauduttava kriittisesti oli lähde mikä tahansa
24 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä
25 Kotitehtävä 1/3 Päätöksentekijä suunnittelee, mitä projekteja valitsisi projektiportfolioonsa Mahdollisia projekteja neljä kappaletta ja näitä arvioitu kolmen attribuutin suhteen: Rahallinen tuotto Yhteensopivuus päätöksentekijän muun liiketoiminnan kanssa Arvio 1:stä (ei sovi ollenkaan) 5:n (sopii loistavasti) Riski lopputuloksesta Arvio 0:sta (lopputulos hyvin epävarma) 10:n (lopputulos täysin varma) Rahallisen tuoton attribuuttipaino on 1/5, yhteensopivuuden 3/5 ja riskin 1/5
26 Kotitehtävä 2/3 Alla olevassa taulukossa on esitetty kunkin projektin attribuuttikohtaiset scoret (näiden arvojen perässä kauttaviivan jälkeen on esitetty vastaavat välille [0, 1] normalisoidut scoret) Projekti Rahallinen tuotto ($) Yhteensopivuus ($) Riski A / 0,6 3 / 0,5 0 / 0 B / 0 5 / 1 2 / 0,2 C 0 / 0,2 4 / 0,75 10 / 1 D / 1 1 / 0 6 / 0,6
27 Kotitehtävä 3/3 Kysymys 1. Millaisen rahallisen tuoton ja riskin arvioisit projektin tekemättä jättämiselle? Jos projektin tekemättä jättämisen yhteensopivuus päätöksentekijän muun liiketoiminnan arvioidaan kanssa arvioidaan 3:n suuruiseksi, niin millainen on projektin tekemättä jättämisen additiivisen arvofunktion arvo v 0? Kysymys 2. Laske muiden projektien additiivisten arvofunktioiden arvot. Onko projektin tekemättä jättämisen additiivisen arvofunktion arvo v 0 suurempi kuin minkään projektin A D additiivisen arvofunktion arvo? Voidaanko siten jo suoraan sanoa, että jo(t)kin projekteista A D tulisi jättää tekemättä?
Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi
Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.
Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)
Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Additiivinen arvofunktio
Additiivinen arvofunktio Mat-.44 Optimointiopin seminaari kevät 0 Preferenssi Päätöksentekijällä preferenssi vaihtoehtojen a,b A välillä a parempi kuin b ( a b) b parempi kuin a ( b a) Indifferentti vaihtoehtojen
Additiivinen arvofunktio projektiportfolion valinnassa
Esitelmä 5 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Additiivinen arvofunktio projektiportfolion valinnassa Antti Toppila 2.2.2011 Esitelmä 5 Antti Toppila sivu 2/19 Optimointiopin seminaari
Projektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille
Projektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,
Kaksi sovellusta robustien päätössuositusten tuottamisesta
Esitelmä 12 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Kaksi sovellusta robustien päätössuositusten tuottamisesta Antti Toppila 2.3.2011 Esitelmä 12 Antti Toppila sivu 2/19 Optimointiopin
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely)
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Juha Kännö 23..22 Ohjaajat: TkL Antti Punkka, DI Eeva Vilkkumaa Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa
Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla
Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähde: Liesiö, J., Mild, P., Salo, A., 2008. Robust portfolio
Referenssipiste- ja referenssisuuntamenetelmät
Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari
Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa
Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin
Luento 6: Monitavoitteinen optimointi
Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f
Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet
Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet
Investointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
Lineaaristen monitavoiteoptimointitehtävien
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014
Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan
Preference Programming viitekehys tehokkuusanalyysissä
Preference Programming viitekehys tehokkuusanalyysissä Mat-2.4142 Optimointiopin seminaari kevät 2011 Salo, A., Punkka, A., 2011. Ranking Intervals and Dominance Relations for Ratio-Based Efficiency Analysis,
Mat Optimointiopin seminaari
Lähde: Preferenssi-informaatio DEA-malleissa: Value Efficiency Analysis (VEA) -menetelmä Mat-2.4142 Optimointiopin seminaari 23.3.2011 Halme, M., Joro, T., Korhonen, P., Wallenius, J., 1999. A Value Efficiency
Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena
Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena Mat-2.4142 Optimointiopin seminaari kevät 2011 Sisällys 1. Ongelma: Lentoliikenteen parannus 2. Ongelma: Projektien valinta 3. Esimerkki
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
Diskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä
Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa
, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu
Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.
Dynaaminen ohjelmointi ja vaikutuskaaviot
Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin
Malliratkaisut Demot
Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan
Päätöksentekomenetelmät
L u e n t o Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päätösongelmia löytyy joka paikasta Päästökauppa:
Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Luento 6: Monitavoiteoptimointi
Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien
Päätöksentekomenetelmät
L u e n t o Päätöksentekomenetelmät Luennon sisältö Hanna Virta / Liikkeenjohdon systeemit Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Johdanto päätöksentekoon Päätösongelmia löytyy
Mat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut
Projektien valintapäätöksiä voidaan pyrkiä tekemään esimerkiksi hyöty-kustannus-suhteen (so. tuottojen nykyarvo per kustannusten nykyarvo) tai nettonykyarvon (so. tuottojen nykyarvo - kustannusten nykyarvo)
Malliratkaisut Demot
Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
Esteet, hyppyprosessit ja dynaaminen ohjelmointi
Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa
Juha Kännö Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa Perustieteiden korkeakoulu Kandidaatintyö Espoo 23..22 Vastuuopettaja: Prof. Ahti Salo Työn ohjaajat: TkL Antti Punkka DI Eeva Vilkkumaa
Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti
isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen
Harjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)
Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Esitelmöijä Olli Rentola päivämäärä 21.1.2013 Ohjaaja: TkL Anssi Käki Valvoja: Prof. Ahti Salo Työn saa tallentaa
Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L
Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
Paretoratkaisujen visualisointi
Paretoratkaisujen visualisointi Optimointiopin seminaari - Kevät 2000 / 1 Esityksen sisältö Vaihtoehtoisten kohdevektorien visualisointi Arvopolut Palkkikaaviot Tähtikoordinaatit Hämähäkinverkkokaavio
Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista
INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti
12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee
Malliratkaisut Demo 4
Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku
1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina
Taloustieteen mat.menetelmät syksy27 materiaali II-2 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina. Tuotanto Yritys valmistaa yhtä tuotetta n:stä tuotannontekijästä/panoksesta
Vastauksia. Topologia Syksy 2010 Harjoitus 1
Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.
Investointimahdollisuudet ja investoinnin ajoittaminen
Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
Harjoitus 12: Monikriteerinen arviointi
Harjoitus 12: Monikriteerinen arviointi MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Monikriteerinen arviointi Kurssin opetusteemojen
A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6
A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.
Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu
Mainonta ja laatu tuotteiden erilaistamisessa
Mainonta ja laatu tuotteiden erilaistamisessa Samuel Aulanko Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Mainonta Tiedollinen ja ohjaileva mainonta Monopolistinen kilpailu Oligopolinen kilpailu
JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä. Jari Mustonen, 47046C,
Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä Jari Mustonen, 47046C, jari.mustonen@iki. 4. huhtikuuta 2005 Sisältö 1 Johdanto 2 2 Aikaisempi tutkimus 3 2.1 Arvopuuanalyysi.........................
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
Dynaaminen ohjelmointi ja vaikutuskaaviot
Teknillinen Korkeakoulu / Ssteemianalsin laboratorio Mat-2.42 Optimointiopin seminaari / Referaatti esitelmästä Sami Mllmäki Dnaaminen ohjelmointi ja vaikutuskaaviot OHDANTO Dnaamiset ohjelmointitehtävät
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin
ESSEE-TEHTÄVÄT 1. KYSYMYS
KOE 1 Elintarvike-ekonomia ja yrittäjyys, kuluttajaekonomia, maatalousekonomia ja yrittäjyys, markkinointi, metsäekonomia ja markkinointi Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli
MS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen 07.05.2012 Ohjaaja: Raimo Hämäläinen Valvoja: Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV
Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.
Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.
Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2
Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi
Mat Optimointiopin seminaari
reference rogramming portfoliopäätösanalyysissa: Robust ortfolio Modeling (RM) -menetelmä Lähteet: Mat-2.4142 Optimointiopin seminaari 16.2.2011 Liesiö, J., Mild,., Salo, A., 2007. reference programming
Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)
Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2
Harjoitus 12: Monikriteerinen arviointi
Harjoitus 12: Monikriteerinen arviointi MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Monikriteerinen arviointi Kurssin opetusteemojen
Prof. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
Lyhyen aikavälin hintakilpailu 2/2
Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta
Luento 4: Lineaarisen tehtävän duaali
Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea
Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen
MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon
Haitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen
Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä
Riitojen hallinta ja riidanratkaisutavan valinta. Tavoitteet riidanratkaisussa
3 Riitojen hallinta ja riidanratkaisutavan valinta Tavoitteet riidanratkaisussa Yleensä kun puhutaan riidanratkaisusta, tarkoitetaan lähinnä osapuolten väliseen riitaan liittyvien juridisten kysymysten
Uusien keksintöjen hyödyntäminen
Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi
Projektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)
Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia
TAUCHI Tampere Unit for Computer-Human Interaction Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia Veikko Surakka Research Group for Emotions, Sociality, and Computing Tampere
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
Päätöksentekomenetelmät
L u e n t o Päätösongelmia löytyy joka paikasta Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päästökauppa:
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Demo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x