Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus"

Transkriptio

1 Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat Optimointiopin seminaari Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines in Multiattribute Portfolio Analysis: A Cautionary Note. Decision Analysis, 6(4), Lindstedt, M., Liesiö, J., & Salo, A. (2008). Participatory Development of a Strategic Product Portfolio in a Telecommunication Company. International Journal of Technology Management, 42(3),

2 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä

3 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä

4 Johdanto 1/3 Monitavoitteisessa projektiportfolion valinnassa jätetään toisinaan spesifioimatta, millaiset attribuuttikohtaiset scoret projektin tekemättä jättäminen saa Näin toimittu monissa aiemmin tarkastelluissa esimerkeissä Attribuuttikohtaisiin arvofunktioihin perustuvassa lähestymistavassa ajatellaan usein kuin sisäänrakennetusti, että projektin tekemättä jättämisestä seuraa huonoimmat mahdolliset scoret kaikkien attribuuttien suhteen

5 Johdanto 2/3 Yleisesti ottaen ei voida olettaa, että projektin valitseminen tuottaisi kaikkien attribuuttien suhteen pelkästään positiivista arvoa Vastaavasti oletus siitä, että projektin valitsematta jättäminen saisi huonoimmat pisteet kaikkien attribuuttien suhteen, ei yleisesti välttämättä päde Joissain tilanteissa se, että projektin valitsematta jättämiselle ei määritellä eksplisiittisesti pistemäärää, saattaa johtaa vääriin johtopäätöksiin

6 Johdanto 3/3 Esimerkki: Valitaan autoja viidestä vaihtoehdosta Onko järkeenkäypää olettaa, että auton ostamatta jättäminen johtaa kaikkien attribuuttien erityisesti hinnan ja polttoainekulujen osalta nollascoreen? Lada Audi Mercedes-Benz Ferrari Volvo Hinta Polttoainekulut [0.6,0.7] [0.4,0.5] [0.3,0.4] [0,0.1] [0.5,0.6] Status

7 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä

8 Taustaa 1/3 Kuvitteellinen konsulttifirma CBA Associates valitsee projektiportfolioonsa ohjelmistokehitysprojekteja Kahdeksan mahdollista ohjelmistokehitysprojektia CBAA:lla kiinteä määrä ohjelmoijia Projekteihin käytössä yhteensä 2500 henkilötyöpäivää Projekteilla kolme attribuuttia: rahallinen tuotto, riski ja yhteensopivuus Rahallinen tuotto kuvaa ohjelmistokehitysprojektin arvioitua tuottoa dollareissa

9 Taustaa 2/3 Riski kuvaa arvioitua todennäköisyyttä sille, että projektin lopputuloksena syntyy kaupallinen tuote Riskillä kolme mahdollista tasoa: varma (paras), todennäköinen ja epävarma (huonoin) Yhteensopivuus kuvaa projektin arvioitua yhteensopivuutta CBAA:n muuhun liiketoimintaan Arvio 1:stä (huonoin) 5:een (paras) Tiedetään, että yhteensopivuuden attribuuttipaino 0,5, rahallisen vaikutuksen 0,25 ja riskin 0,25

10 Perustiedot projekteista: Projekti Rahallinen tuotto ($) Taustaa 3/3 Riski Yhteensopivuus Kesto henkilötyöpäivinä A Epävarma B Todennäköinen C Varma D Varma E Varma F Epävarma G Epävarma H Todennäköinen 1 400

11 Virheelliset ratkaisutavat 1/4 Ratkaistaan monitavoitteinen optimointitehtävä kahdella eri tavalla, joissa projektin valitsematta jättämistä ei määritellä: 1. Additiivisen arvofunktion maksimointi Maksimoidaan additiivista arvofunktiota samalla tavalla kuin useimmissa aikaisemmissa esitelmissä: max x i 0,1 8 i=1 8 x i v i siten, että x i c i 2500 i=1 jossa binäärinen x i viittaa projektin i valintaan, v i on projektin i additiivisen arvofunktion arvo ja c i on projektin i kustannus

12 Virheelliset ratkaisutavat 2/4 2. Attribuuttien hinnoittelu Projekti Rahallinen tuotto ($) Riski ($) Yhteensopivuus ($) Kokonaistuotto ($) A B C D E F G H

13 Virheelliset ratkaisutavat 3/4 2. Attribuuttien hinnoittelu (jatkuu) Maksimoidaan portfolion kokonaistuottoa ratkaisemalla optimointitehtävä max x i 0,1 x i p i jossa p i on projektin i kokonaistuotto. On helposti osoitettavissa, että kokonaistuotoille p i pätee p i = $ v i $ joten paremmuusjärjestys säilyy 8 i=1 8 siten, että x i c i 2500 i=1

14 Virheelliset ratkaisutavat 4/4 Ratkaisut 1. Additiivisen arvofunktion maksimointi Toteutettavat projektit: B, C, D, E ja H 2. Attribuuttien hinnoittelu Toteutettavat projektit: A, B, C ja D Ratkaisujen eriävyys johtuu siitä, että projektin valitsematta jättämisestä syntyvä pistemäärä on oletettu tehtävissä eri tavalla: Additiivisen arvofunktion maksimoinnissa: huonoimmat mahdolliset pisteet kaikkien attribuuttien suhteen Attribuuttien hinnoittelussa: kokonaistuotto nolla

15 Oikeaoppinen ratkaisutapa 1/2 Määritellään eksplisiittisesti projektin tekemättä jättämisen arvo ja merkitään sitä symbolilla v i 0 Määritellään optimointiongelma seuraavasti: max x i 0,1 8 i=1 8 0 x i v i + (1 x i )v i siten, että x i c i 2500 i=1 Siten kohdefunktiossa i:s summaustermi on v i, jos projekti i valitaan ja v i0, jos projektia i ei valita

16 Oikeaoppinen ratkaisutapa 2/2 Tarkastellussa esimerkissä valitaan projektin tekemättä jättämisen rahalliseksi tuotoksi $0; vastaava pistemäärä 0,03 riskiksi varma ; vastaava pistemäärä 1 yhteensopivuudeksi arvo 1; pistemäärä 0 Näin projektin tekemättä jättämisen arvoksi saadaan v i0 = 0,258 Oikeaoppisella ratkaisutavalla saadaan tulos, että toteutettavat projektit ovat projektit A, B, C ja D

17 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä

18 Taustaa 1/3 Tarkastellaan tilannetta, jossa suomalainen tietoliikenneyritys valitsee tuoteportfoliotaan 41 mahdollista tuotevaihtoehtoa, resurssit eivät riitä kaikkien tuotteiden kehittämiseen Tuotteilla kolme attribuuttia: rahallinen tuotto, markkinariski ja teknologiariski Rahallinen tuotto kuvaa tuotteen kehittämisestä syntyvää arvioitua tuottoa Arvio 1:stä (suuri tappio) 8:n (suuri voitto)

19 Taustaa 2/3 Markkinariski kuvaa todennäköisyyttä, että markkinaosuus hävitään kilpailijoille Arvio 0:sta (epätodennäköistä voittaa kilpailijat) 10:n (ei ollenkaan muita kilpailijoita) Teknologiariski kuvaa todennäköisyyttä, että tuote epäonnistuu teknisten ongelmien vuoksi Arvio 0:sta (vakava epäonnistumisen riski) 10:n (ei ollenkaan epäonnistumisen riskiä)

20 Taustaa 3/3 Muita huomioita: Attribuuttipainot ja vaihtoehtojen attribuuttikohtaiset pisteet tarkkojen arvojen sijaan välejä Ratkaisussa käytettiin RPM:ää Synergiat jätettiin mallintamatta yksinkertaistuksen vuoksi

21 Tehtävän ratkaisu Artikkelin ratkaisussa tuotteen kehittämättä jättämisestä syntyvää arvoa ei erikseen määritelty Tuotteen kehittämättä jättämisestä olisi siten seurannut huonoimmat mahdolliset pisteet kaikkien attribuuttien suhteen eli esim. suuri rahallinen tappio ja vakava epäonnistumisen riski teknologiassa Tässä yhteydessä olisi ollut syytä määritellä jokin järkevä arvo tuotteen kehittämättä jättämiselle ja ottaa tämä huomioon tehtävää ratkaistaessa Tällä olisi saattanut hyvinkin olla vaikutusta saatuun päätössuositukseen

22 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä

23 Tiivistelmä Yleisesti ei voida olettaa, että projektin valitseminen tuottaa kaikkien kriteereiden suhteen pelkästään positiivista arvoa Siksi tulisi määritellä eksplisiittisesti, millaisiin attribuuttikohtaisiin pisteisiin projektin tekemättä jättäminen johtaa ja huomioida tämä ongelmaa ratkaistaessa Toisinaan alan johtavat ammattilaisetkin ovat unohtaneet määritellä projektin tekemättä jättämisen arvon ja saaneet siten virheellisiä tuloksia Tuloksiin suhtauduttava kriittisesti oli lähde mikä tahansa

24 Esityksen rakenne Johdanto Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa Esimerkkitapaus: projektiportfolion valinta tietoliikenneyrityksessä Tiivistelmä Kotitehtävä

25 Kotitehtävä 1/3 Päätöksentekijä suunnittelee, mitä projekteja valitsisi projektiportfolioonsa Mahdollisia projekteja neljä kappaletta ja näitä arvioitu kolmen attribuutin suhteen: Rahallinen tuotto Yhteensopivuus päätöksentekijän muun liiketoiminnan kanssa Arvio 1:stä (ei sovi ollenkaan) 5:n (sopii loistavasti) Riski lopputuloksesta Arvio 0:sta (lopputulos hyvin epävarma) 10:n (lopputulos täysin varma) Rahallisen tuoton attribuuttipaino on 1/5, yhteensopivuuden 3/5 ja riskin 1/5

26 Kotitehtävä 2/3 Alla olevassa taulukossa on esitetty kunkin projektin attribuuttikohtaiset scoret (näiden arvojen perässä kauttaviivan jälkeen on esitetty vastaavat välille [0, 1] normalisoidut scoret) Projekti Rahallinen tuotto ($) Yhteensopivuus ($) Riski A / 0,6 3 / 0,5 0 / 0 B / 0 5 / 1 2 / 0,2 C 0 / 0,2 4 / 0,75 10 / 1 D / 1 1 / 0 6 / 0,6

27 Kotitehtävä 3/3 Kysymys 1. Millaisen rahallisen tuoton ja riskin arvioisit projektin tekemättä jättämiselle? Jos projektin tekemättä jättämisen yhteensopivuus päätöksentekijän muun liiketoiminnan arvioidaan kanssa arvioidaan 3:n suuruiseksi, niin millainen on projektin tekemättä jättämisen additiivisen arvofunktion arvo v 0? Kysymys 2. Laske muiden projektien additiivisten arvofunktioiden arvot. Onko projektin tekemättä jättämisen additiivisen arvofunktion arvo v 0 suurempi kuin minkään projektin A D additiivisen arvofunktion arvo? Voidaanko siten jo suoraan sanoa, että jo(t)kin projekteista A D tulisi jättää tekemättä?

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.

Lisätiedot

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Additiivinen arvofunktio

Additiivinen arvofunktio Additiivinen arvofunktio Mat-.44 Optimointiopin seminaari kevät 0 Preferenssi Päätöksentekijällä preferenssi vaihtoehtojen a,b A välillä a parempi kuin b ( a b) b parempi kuin a ( b a) Indifferentti vaihtoehtojen

Lisätiedot

Additiivinen arvofunktio projektiportfolion valinnassa

Additiivinen arvofunktio projektiportfolion valinnassa Esitelmä 5 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Additiivinen arvofunktio projektiportfolion valinnassa Antti Toppila 2.2.2011 Esitelmä 5 Antti Toppila sivu 2/19 Optimointiopin seminaari

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,

Lisätiedot

Kaksi sovellusta robustien päätössuositusten tuottamisesta

Kaksi sovellusta robustien päätössuositusten tuottamisesta Esitelmä 12 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Kaksi sovellusta robustien päätössuositusten tuottamisesta Antti Toppila 2.3.2011 Esitelmä 12 Antti Toppila sivu 2/19 Optimointiopin

Lisätiedot

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely)

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Juha Kännö 23..22 Ohjaajat: TkL Antti Punkka, DI Eeva Vilkkumaa Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa

Lisätiedot

Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla

Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähde: Liesiö, J., Mild, P., Salo, A., 2008. Robust portfolio

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet

Lisätiedot

Investointimahdollisuudet ja niiden ajoitus

Investointimahdollisuudet ja niiden ajoitus Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Preference Programming viitekehys tehokkuusanalyysissä

Preference Programming viitekehys tehokkuusanalyysissä Preference Programming viitekehys tehokkuusanalyysissä Mat-2.4142 Optimointiopin seminaari kevät 2011 Salo, A., Punkka, A., 2011. Ranking Intervals and Dominance Relations for Ratio-Based Efficiency Analysis,

Lisätiedot

Mat Optimointiopin seminaari

Mat Optimointiopin seminaari Lähde: Preferenssi-informaatio DEA-malleissa: Value Efficiency Analysis (VEA) -menetelmä Mat-2.4142 Optimointiopin seminaari 23.3.2011 Halme, M., Joro, T., Korhonen, P., Wallenius, J., 1999. A Value Efficiency

Lisätiedot

Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena

Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena Sovellus: Portfoliopäätösanalyysi lentoliikenteen parantamisen tukena Mat-2.4142 Optimointiopin seminaari kevät 2011 Sisällys 1. Ongelma: Lentoliikenteen parannus 2. Ongelma: Projektien valinta 3. Esimerkki

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä

Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Data Envelopment Analysis (DEA) - menetelmät + CCR-DEA-menetelmä Mat-2.4142 Optimointiopin seminaari kevät 2011 Esityksen rakenne I osa Tehokkuudesta yleisesti DEA-mallin perusajatus CCR-painotus II osa

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Dynaaminen ohjelmointi ja vaikutuskaaviot

Dynaaminen ohjelmointi ja vaikutuskaaviot Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin

Lisätiedot

Päätöksentekomenetelmät

Päätöksentekomenetelmät L u e n t o Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päätösongelmia löytyy joka paikasta Päästökauppa:

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien

Lisätiedot

Päätöksentekomenetelmät

Päätöksentekomenetelmät L u e n t o Päätöksentekomenetelmät Luennon sisältö Hanna Virta / Liikkeenjohdon systeemit Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Johdanto päätöksentekoon Päätösongelmia löytyy

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa

Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa Juha Kännö Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa Perustieteiden korkeakoulu Kandidaatintyö Espoo 23..22 Vastuuopettaja: Prof. Ahti Salo Työn ohjaajat: TkL Antti Punkka DI Eeva Vilkkumaa

Lisätiedot

Esteet, hyppyprosessit ja dynaaminen ohjelmointi

Esteet, hyppyprosessit ja dynaaminen ohjelmointi Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva

Lisätiedot

Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti

Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)

Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Esitelmöijä Olli Rentola päivämäärä 21.1.2013 Ohjaaja: TkL Anssi Käki Valvoja: Prof. Ahti Salo Työn saa tallentaa

Lisätiedot

Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L

Paretoratkaisujen visualisointi. Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L Paretoratkaisujen visualisointi Optimointiopin seminaari / Kevät 2000 Esitelmä 11 Petteri Kekäläinen 45305L 1. Johdanto Monitavoiteoptimointitehtävät ovat usein laajuutensa takia vaikeasti hahmotettavia

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista

Lisätiedot

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti 12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee

Lisätiedot

Paretoratkaisujen visualisointi

Paretoratkaisujen visualisointi Paretoratkaisujen visualisointi Optimointiopin seminaari - Kevät 2000 / 1 Esityksen sisältö Vaihtoehtoisten kohdevektorien visualisointi Arvopolut Palkkikaaviot Tähtikoordinaatit Hämähäkinverkkokaavio

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina

1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina Taloustieteen mat.menetelmät syksy27 materiaali II-2 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina. Tuotanto Yritys valmistaa yhtä tuotetta n:stä tuotannontekijästä/panoksesta

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot

Investointimahdollisuudet ja investoinnin ajoittaminen

Investointimahdollisuudet ja investoinnin ajoittaminen Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla

Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.

Lisätiedot

Harjoitus 12: Monikriteerinen arviointi

Harjoitus 12: Monikriteerinen arviointi Harjoitus 12: Monikriteerinen arviointi MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Monikriteerinen arviointi Kurssin opetusteemojen

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Mainonta ja laatu tuotteiden erilaistamisessa

Mainonta ja laatu tuotteiden erilaistamisessa Mainonta ja laatu tuotteiden erilaistamisessa Samuel Aulanko Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Mainonta Tiedollinen ja ohjaileva mainonta Monopolistinen kilpailu Oligopolinen kilpailu

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä. Jari Mustonen, 47046C,

Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä. Jari Mustonen, 47046C, Arvohäviö Rank Inclusion in Criteria Hierarchies menetelmässä Jari Mustonen, 47046C, jari.mustonen@iki. 4. huhtikuuta 2005 Sisältö 1 Johdanto 2 2 Aikaisempi tutkimus 3 2.1 Arvopuuanalyysi.........................

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)

Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Dynaaminen ohjelmointi ja vaikutuskaaviot

Dynaaminen ohjelmointi ja vaikutuskaaviot Teknillinen Korkeakoulu / Ssteemianalsin laboratorio Mat-2.42 Optimointiopin seminaari / Referaatti esitelmästä Sami Mllmäki Dnaaminen ohjelmointi ja vaikutuskaaviot OHDANTO Dnaamiset ohjelmointitehtävät

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

ESSEE-TEHTÄVÄT 1. KYSYMYS

ESSEE-TEHTÄVÄT 1. KYSYMYS KOE 1 Elintarvike-ekonomia ja yrittäjyys, kuluttajaekonomia, maatalousekonomia ja yrittäjyys, markkinointi, metsäekonomia ja markkinointi Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen

Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen 07.05.2012 Ohjaaja: Raimo Hämäläinen Valvoja: Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Mat Optimointiopin seminaari

Mat Optimointiopin seminaari reference rogramming portfoliopäätösanalyysissa: Robust ortfolio Modeling (RM) -menetelmä Lähteet: Mat-2.4142 Optimointiopin seminaari 16.2.2011 Liesiö, J., Mild,., Salo, A., 2007. reference programming

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2 Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization

Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana

Lisätiedot

Harjoitus 12: Monikriteerinen arviointi

Harjoitus 12: Monikriteerinen arviointi Harjoitus 12: Monikriteerinen arviointi MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Monikriteerinen arviointi Kurssin opetusteemojen

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Riitojen hallinta ja riidanratkaisutavan valinta. Tavoitteet riidanratkaisussa

Riitojen hallinta ja riidanratkaisutavan valinta. Tavoitteet riidanratkaisussa 3 Riitojen hallinta ja riidanratkaisutavan valinta Tavoitteet riidanratkaisussa Yleensä kun puhutaan riidanratkaisusta, tarkoitetaan lähinnä osapuolten väliseen riitaan liittyvien juridisten kysymysten

Lisätiedot

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä

Lisätiedot

Projektin arvon määritys

Projektin arvon määritys Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin

Lisätiedot

Uusien keksintöjen hyödyntäminen

Uusien keksintöjen hyödyntäminen Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi

Lisätiedot

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa

Lisätiedot

Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia

Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia TAUCHI Tampere Unit for Computer-Human Interaction Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia Veikko Surakka Research Group for Emotions, Sociality, and Computing Tampere

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Päätöksentekomenetelmät

Päätöksentekomenetelmät L u e n t o Päätösongelmia löytyy joka paikasta Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päästökauppa:

Lisätiedot

Dynaaminen optimointi

Dynaaminen optimointi Dynaaminen optimointi Tapa ratkaista optimointitehtävä Tehtävä ratkaistaan vaiheittain ja vaiheet yhdistetään rekursiivisesti Perustuu optimaalisuusperiaatteeseen: Optimaalisen ratkaisupolun loppuosa on

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

Metsien kestävä käyttö Suomessa laskennan vai äänestyksen tulos?

Metsien kestävä käyttö Suomessa laskennan vai äänestyksen tulos? Metsien kestävä käyttö Suomessa laskennan vai äänestyksen tulos? Riittävätkö tiedot metsien kestävän käytön määrittämiseen? Metsätieteen päivä 2015, Taksaattoriklubi Tuula Packalen, Luonnonvarakeskus 1

Lisätiedot

Ilmastonmuutoksen vaikutus Suomen sisävesiin

Ilmastonmuutoksen vaikutus Suomen sisävesiin Mat-2.142 Optimointiopin seminaari, syksy 1999 9.11.1999 Referaatti, esitelmä 12 Matti Vesanen, 44467j Lähde: Kuikka, S. & Varis, O. 1997. Uncertainties of climatic change impacts in Finnish watersheds:

Lisätiedot

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi. KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely)

Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely) Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely) Sara Melander 1.11.2016 Ohjaaja: DI Malin Östman Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot