Dynaaminen ohjelmointi ja vaikutuskaaviot

Koko: px
Aloita esitys sivulta:

Download "Dynaaminen ohjelmointi ja vaikutuskaaviot"

Transkriptio

1 Teknillinen Korkeakoulu / Ssteemianalsin laboratorio Mat-2.42 Optimointiopin seminaari / Referaatti esitelmästä Sami Mllmäki Dnaaminen ohjelmointi ja vaikutuskaaviot

2 OHDANTO Dnaamiset ohjelmointitehtävät ratkaistaan leensä rekursiivisten htälöien avulla, jolloin itse tehtävän mmärtäminen saattaa heikentä monimutkaisten matemaattisten formulointien takia. Tämän vuoksi on naamisille ongelmille pritt kehittämään mahollisimman havainnollista esitstapaa siten, että saataisiin esille tehtävän luonne ilman matemaattisten lausekkeien eksplisiittistä esittämistä. Motivaationa havainnollisuuen kehittämiselle voiaan pitää niitä useita naamiseen ohjelmoitiin perustuvia päätöksenteko-ongelmia, joissa itse päätöksentekijät eivät välttämättä hallitse prosessiin liittviä matemaattisia operaatioita. Esitelmässä, jonka pohjalta tämä referaatti on kirjoitettu, käsiteltiin sellaisten naamisten ongelmien havainnollistamista, joien arvofunktiot ovat separoituvia. Havainnollistaminen tehään muokkaamalla perinteistä vaikutuskaaviota siten, että arvofunktion separoituvaa luonnetta voiaan kättää hväksi. Tällaisen vaikutuskaavion muoostamismenetelmät on esitett kappaleessa 2. Samaisessa kappaleessa on määritelt mös arvofunktion separoituvuus. Kappaleessa 3 on kät läpi muoostetun vaikutuskaavion ratkaisemiseen tarvittavat säännöt. Varsinainen ratkaisualgoritmi on nähtävissä joko lähteestä [] tai aiheesta pietn esitelmän kalvoista. Viimeisenä on hteenveto sekä joitakin pohintoja ja sovelluksia kseiseen aiheeseen liitten. Esitelmän ja siten mös tämän referaatin lähteenä on kätett oseph A. Tatmanin ja Ross D. Shachterin artikkelia Dnamic Programming an Influence Diagrams []. 2 VAIKUTUSKAAVION MUODOSTAMINEN SUPERARVOSOLMUEN AVULLA Vaikutuskaaviota muoostettaessa on oletettu, että kätetllä arvofunktiolla on separoituva luonne. Tässä esitelt vaikutuskaaviomalli ei siis päe leisesti naamisiin ohjelmointitehtäviin, vaan ainoastaan silloin, kun separoituvuus on voimassa. Arvofunktio g() on separoituva, jos se voiaan esittää summana tai tulona seuraavasti: q g( ) = g i ( i ) tai g( ) = g i ( i ). () i= q i= Kun arvofunktio on separoituva, voiaan kokonaisarvo esittää usean arvosolmun avulla, jolloin kokonaisarvo on näien arvosolmuista saatavien arvojen summa (tai tulo). otta separoituvuus voiaan esittää eksplisiittisesti vaikutuskaaviossa, on määriteltävä seuraavat arvosolmut:. Summasolmu: os arvosolmun r, jonka eeltäjiä ovat arvosolmut r, r 2,, r n, arvo voiaan esittää muoossa [ r r,..., rn ] = g( r,..., rn ) = r +... rn E +, (2) niin r on summasolmu. 2. Tulosolmu: os arvosolmun r, jonka eeltäjiä ovat arvosolmut r, r 2,, r n, arvo voiaan esittää muoossa E [ r r,..., rn ] = h( r,..., rn ) = r... rn, (3)

3 niin r on tulosolmu. Näitä arvosolmuja kutsutaan leisesti nimellä superarvosolmut (super value noes). Superarvosolmun eeltäjät ovat siis aina joko tavallisia arvosolmuja tai superarvosolmuja. Superarvosolmujen avulla voiaan arvofunktion separoituva luonne esittää vaikutuskaaviossa. Tästä on piirrett esimerkki kuvaan. [,,, ] = E[ u, ] + E[ r ] E[ s ] E, u w u Σ s Π w r Σ Kuva. Separoituvan arvofunktion esittäminen vaikutuskaaviossa superarvosolmujen avulla. os tehtävän arvofunktio on separoituva, voiaan tämä ominaisuus siis esittää vaikutuskaaviossa superarvosolmuilla. Tällöin on mös olemassa menetelmä vaikutuskaavion ratkaisemiseksi. Vaikutuskaavion ratkaisumenetelmä solmujen poistamissääntöineen on esitelt seuraavassa kappaleessa. 3 VAIKUTUSKAAVION RATKAISUMENETELMÄ Superarvosolmuja sisältävälle vaikutuskaaviolle voiaan muoostaa sellainen ratkaisualgoritmi, että tehtävä saaaan aina reusoitua hestä arvosolmusta muoostuvaksi vaikutuskaavioksi. Tätä varten on seuraavassa esitett ne oletukset ja lauseet, jotka tarvitaan algoritmin muoostamiseen. Lauseien toistukset on ohitettu. (Lauseet toistuksineen ovat lähteessä [].) Oletetaan, että ratkaistava vaikutuskaavio toteuttaa ns. no forgetting ehon, mikä tarkoittaa sitä, että jokaisen päätössolmun suorina seuraajina ovat kaikki muut päätössolmut: tehtjä päätöksiä ei siis unoheta. Lisäksi oletetaan arvofunktiolle separoituva luonne.

4 Reusointilauseet. Kahen sattumasolmun välisen kaaren suunnan kääntäminen: Sattumasolmujen välinen kaari voiaan kääntää, jolloin molemmat solmut perivät toistensa eeltäjät. 2. Loppuarvoon vaikuttamattomien solmujen poistaminen: Sellaiset sattuma- ja päätössolmut, joilla ei ole seuraajia voiaan poistaa vaikutuskaaviosta. 3. Yksinkertainen sattumasolmun poistaminen: os on sattumasolmu, loppuarvosolmu ja on eeltäjä vain arvosolmulle r (eikä millekään muulle), voiaan poistaa vaikutuskaaviosta kättämällä sen ootusarvoa r:n arvon määräämisessä. 4. Yksinkertainen päätössolmun poistaminen: os on sellaisen vaikutuskaavion päätössolmu, jonka loppuarvosolmuna on ja joka toteuttaa seuraavat ehot: - Kaikkien arvosolmujen arvot ovat einegatiiviset - on vain arvosolmun r suora eeltäjä (eikä minkään muun) - r:n kaikki eholliset eeltäjät, paitsi, ovat :n informatiivisia eeltäjiä Tällöin voiaan poistaa vaikutuskaaviosta maksimoimalla r :n suhteen. Lauseille 3 ja 4 voiaan johtaa mös leiset muoot:. Sattumasolmun poistaminen: os on sattumasolmu, jolla ei ole päätössolmuseuraajia, niin voiaan poistaa. 2. Päätössolmun poistaminen: os lauseen 4 ehot toteutuvat ja lisäksi kaikki polut :stä loppuarvosolmuun sisältävät arvosolmun r, niin voiaan poistaa vaikutuskaaviosta poistamalla ensin ne arvosolmut, jotka kuuluvat joukkoon C in (r) V (missä C in (r) tarkoittaa r:n epäsuoria eeltäjiä ja V arvosolmujen joukkoa) ja maksimoimalla sitten r :n suhteen. Lisäksi seuraavassa on esitett menetelmä arvosolmurakenteen reusoimiseksi: 3. Subset rule: os arvosolmuilla r ja r 2 on sama seuraaja, superarvosolmu r, ja C(r ) sisält C(r 2 ):een, ei ko. arvosolmujen poistaminen lisää vaikutuskaavion ratkaisemiseen tarvittavien operaatioien kokonaismäärää. Eellä mainittujen oletusten ja lauseien avulla voiaan muoostaa sellainen algoritmi [], jolla voiaan reusoia vaikutuskaavio hteen arvosolmuun. 4 YHTEENVETO Superarvosolmujen avulla voiaan muoostaa vaikutuskaavio sellaiselle naamiselle tehtävälle, jonka arvofunktiolla on separoituva luonne. Kaavion muoostamisen tarkoituksena on tehä kseisestä tehtävästä mahollisimman havainnollinen, kuitenkaan tehokkuuen näkökulmaa unohtamatta. Saausta

5 vaikutuskaaviosta nähään helposti eri solmujen eholliset riippuvuuet, ja algoritmi huolehtii riippuvuuksien päivittämisestä prosessin eri vaiheissa. Lisäksi rekursiivisten kaavojen eksplisiittisestä esittämisestä voiaan luopua. Tässä esitettä superarvosolmuihin perustuvaa vaikutuskaaviota sekä sen ratkaisemista voiaan soveltaa mm. erilaisiin päätöksentekotehtäviin, kuten Markovin päätösprosesseihin. Arvofunktion separoituvan luonteen vaatimus rajoittaa kuitenkin menetelmän kättämistä laajemmin. [] IEEE Transactions on Sstem, Man. An Cbernetics, Vol 20, No. 2, March/April 990

Dynaaminen ohjelmointi ja vaikutuskaaviot

Dynaaminen ohjelmointi ja vaikutuskaaviot Dynaaminen ohjelmointi ja vaikutuskaaviot. Taustaa 2. Vaikutuskaaviot ja superarvosolmut 3. Vaikutuskaavion ratkaiseminen 4. Vaikutuskaavio ja dynaaminen ohjelmointi: 5. Yhteenveto Esitelmän sisältö Optimointiopin

Lisätiedot

Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV

Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV Mat-.4 Optimointiopin seminaari, syksy 999 Referaatti 7.0.999 Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV JOHDATO Ross D. Shachter a C. Robert Kenley (989) esittelevät artikkelissaan Gaussian

Lisätiedot

2. M : T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M :

2. M : T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M : T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 2. M : a 1. M : a c b, e b f,r c e a) M,a = A(U), sillä (esim.) (a,b,,,,...) on tilasta a alkava täysi polku, joka ei

Lisätiedot

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.

monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu

Lisätiedot

T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut

T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut T-79.146 Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut 1. M : a P P f Q, R Q e P a) M, a = A(P UQ), sillä (esim.) (a,,,,,...) on tilasta a alkava täysi polku, joka

Lisätiedot

f (t) + t 2 f(t) = 0 f (t) f(t) = t2 d dt ln f(t) = t2, josta viimeisestä yhtälöstä saadaan integroimalla puolittain

f (t) + t 2 f(t) = 0 f (t) f(t) = t2 d dt ln f(t) = t2, josta viimeisestä yhtälöstä saadaan integroimalla puolittain Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoituksen mallit Kevät 09 Tehtävän ratkaisu a) Analyysin peruslauseen mukaan missä c, c R y () = 3 sin() y () = 3 sin() = 3 cos()

Lisätiedot

Sarjoja ja analyyttisiä funktioita

Sarjoja ja analyyttisiä funktioita 3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi Sähköstatiikka ja magnetismi Konensaattorit ja kapasitanssi ntti Haarto 1.5.13 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

Aseiden leviämisen estäminen

Aseiden leviämisen estäminen Mat-2.142 Optimointiopin seminaari 6.10.1999 Antti Pirinen Aseiden leviämisen estäminen Menetelmä sotilaallisten järjestelmien tehokkuuden arvioimiseksi Referaatti Lähde: Stafira, Parnell, Moore : A Methodology

Lisätiedot

πx) luvuille n N. Valitaan lisäksi x = m,

πx) luvuille n N. Valitaan lisäksi x = m, Lisäyksiä Muutamia lisäyksiä laskuharjoitusten 9 tehtävien ratkaisuihin. Sarjan n n cos4 n π termeittäin erivoituvuus Sarjan n n cos4 n πtermeittäinerivoitavuusonhiukkasenhankalaasia tutkia. Olkoon a n

Lisätiedot

Fysiikka 1. Kondensaattorit ja kapasitanssi. Antti Haarto

Fysiikka 1. Kondensaattorit ja kapasitanssi. Antti Haarto Fysiikka Konensaattorit ja kapasitanssi ntti Haarto 4..3 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja jännitteen suhe Yksikkö

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet

Mat Optimointiopin seminaari kevät Monitavoiteoptimointi. Tavoitteet Mat-2.142 Optimointiopin seminaari kevät 2000 Monitavoiteoptimointi Optimointiopin seminaari - Kevät 2000 / 1 Tavoitteet Monitavoitteisten optimointitehtävien ratkaisukäsitteet ja soveltamismahdollisuudet

Lisätiedot

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti

INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E. Mat Optimointiopin seminaari Referaatti 12.11.1999 INTERVALLIPÄÄTÖSPUUT JANNE GUSTAFSSON 45433E Mat-2.142 Optimointiopin seminaari Referaatti Syksy 1999 1. JOHDANTO Thomas M. Stratin artikkeli Decision Analysis Using Belief Functions käsittelee

Lisätiedot

Jatkuva-aikaisten Markov-prosessien aikakehitys

Jatkuva-aikaisten Markov-prosessien aikakehitys 5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.

Lisätiedot

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin Tietorakenteet, esimerkkivastauksia viikon laskareiin (a) Oletetaan seuraavan kuvan mukainen verkko ja etsitään lyyimpiä polkuja solmusta Ensimmäiseksi käsitellään solmu B, jonka etäisyys on kolme Seuraavaksi

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin Tietorakenteet, esimerkkivastauksia viikon laskareiin (a) Oletetaan seuraavan kuvan mukainen verkko ja etsitään lyyimpiä polkuja solmusta Ensimmäiseksi käsitellään solmu B, jonka etäisyys on kolme Seuraavaksi

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines

Lisätiedot

Uskomusverkot: Lääketieteelliset sovellukset

Uskomusverkot: Lääketieteelliset sovellukset Teknillinen korkeakoulu Systeemianalyysin laboratorio Mat-2.142 Optimointiopin seminaari Referaatti Uskomusverkot: Lääketieteelliset sovellukset Sami Nousiainen 44433N Tf V 2 1. JOHDANTO 3 2. YKSINKERTAINEN

Lisätiedot

Sisällys. 7. Oliot ja viitteet. Olion luominen. Olio Java-kielessä

Sisällys. 7. Oliot ja viitteet. Olion luominen. Olio Java-kielessä Sisälls 7. Oliot ja viitteet Olio Java-kielessä. Olion luominen, elinikä ja tuhoutuminen.. Viitteiden vertailu. Varautuminen null-arvoon. Viite metodin paluuarvona.. Muuttumattomat ja muuttuvat merkkijonot.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 Differentiaalikehitelmä Funktion f erivaatta pisteessä x 0 eli f (x 0 ) on erotusosamäärän rajaarvo: f (x) f (x 0 ). x x 0 x x 0 Tämä voiaan esittää hieman eri muoossa

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 3. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 3. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/07 Differentiaali- ja integraalilaskenta Ratkaisut 3. viikolle / 5. 7.4. Taylorin Polynomit, Taylorin sarjat, potenssisarjat, Newtonin menetelmä Tehtävä

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita. 4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 ) BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

MAOL-pisteytysohje. Matematiikka lyhyt oppimäärä Kevät 2014

MAOL-pisteytysohje. Matematiikka lyhyt oppimäärä Kevät 2014 0..0 MAOL-pistetsohje Matematiikka lht oppimäärä Kevät 0 Hvästä suorituksesta näk, miten vastaukseen on päädtt. Ratkaisussa on oltava tarvittavat laskut tai muut riittävät perustelut ja lopputulos. Arvioinnissa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin

Lisätiedot

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 11. harjoitus - ratkaisut

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 11. harjoitus - ratkaisut TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-239 Optimointioppi Kimmo Berg harjoitus - ratkaisut Logaritmiseksi estefunktiotehtäväksi saaaan min F() = µ(ln 2 + ln( + )) Etsitään lokaalit minimit

Lisätiedot

Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite

Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite Hakemisto KATSO MYÖS: potenssi, juuret, polnomit, rationaalifunktiot, eksponenttifunktio, logaritmifunktio, trigonometriset funktiot, arcusfunktiot,

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen) TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa.

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa. ORMS00 Päätöksenteko epävarmuuden vallitessa Syksy 008 Harjoitus Ratkaisuehdotuksia Nämä harjoitukset liittyvät päätöspuiden rakentamiseen: varsinaista päätöksentekoa päätöspuiden avulla tarkastellaan

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5...

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5... Calkinin-Wiln jono Funktio f : X Y on bijektio, jos sillä on käänteisfunktio f : Y X. Joukko X on äärellinen, jos se on thjä tai jos on olemassa bijektio f : X {,,,..., n}. Joukko X on numeroituva, jos

Lisätiedot

Lineaaristen monitavoiteoptimointitehtävien

Lineaaristen monitavoiteoptimointitehtävien Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

Investointimahdollisuudet ja investoinnin ajoittaminen

Investointimahdollisuudet ja investoinnin ajoittaminen Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman

Lisätiedot

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Demonstraatio 7, 6.7... Ratkaise dierentiaalihtälöpari = = Vastaus: DY-pari voidaan esittää muodossa ( = Matriisin ominaisarvot ovat i ja i ja näihin kuuluvat ominaisvektorit (

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 Ratkaisuehdotuksia 1. (a) Päätöspuu on matala, jos mitään sattumasolmua ei välittömästi seuraa sattumasolmu eikä mitään päätössolmua

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R): Diskreetti matematiikka, sks 2010 Harjoitus 2, ratkaisuista 1. Seuraavassa on kuvattu kolme virtapiiriä, joissa on paristo, sopiva lamppu L ja katkaisimia P, Q, R, joiden läpi virta kulkee (1) tai ei kulje

Lisätiedot

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että: Mapu I Laskuharjoitus 2, tehtävä 1 1. Eräs trigonometrinen ientiteetti on sin2x = 2sinxcosx Derivoimalla yhtälön molemmat puolet x:n suhteen, joha lauseke cos 2x:lle. Ratkaisu: Derivoiaan molemmat puolet,

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

4 YLEINEN ELEMENTTIMENETELMÄ

4 YLEINEN ELEMENTTIMENETELMÄ Elementtimenetelmän perusteet 4. 4 YLEINEN ELEMENIMENEELMÄ 4. Johdanto Elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä. ällöin tarkastellaan tiettä

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Kokonaislukuoptimointi hissiryhmän ohjauksessa

Kokonaislukuoptimointi hissiryhmän ohjauksessa Kokonaislukuoptimointi hissiryhmän ohjauksessa Systeemianalyysin laboratorio Teknillinen Korkeakoulu, TKK 3 Maaliskuuta 2008 Sisällys 1 Johdanto Taustaa Ongelman kuvaus 2 PACE-graafi Graafin muodostaminen

Lisätiedot

4.6 Matriisin kääntäminen rivioperaatioilla

4.6 Matriisin kääntäminen rivioperaatioilla Vaasan liopiston julkaisuja 9 kuva.plot(,n, k-o,,n, k-s,,n3, k-d ); kuva.set_label( kausi ); kuva.set_label( lkm ); kuva.ais([,,,8]); kuva = fig.add_subplot(); kuva.plot(,tulo, k-o ); kuva.set_label( kausi

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi

Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

Investointimahdollisuudet ja niiden ajoitus

Investointimahdollisuudet ja niiden ajoitus Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille:

Opetusperiodi:I, suunnattu hakukohteille: Kurssin nimi ja koodi Muut kommentit MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi Teknillinen fysiikka ja matematiikka käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Mikä on probabilistinen malli? Kutsumme probabilistisiksi malleiksi kaikkia

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka Kurssin nimi ja koodi MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja sovelluksineen. Sisältö: vektorilaskentaa, matriisit

Lisätiedot

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet 58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 15.6.2018 malliratkaisut ja arvosteluperusteet 1. [10 pistettä] Hakemistorakenteet. Vertaa linkitettyjen listojen, tasapainoisten hakupuiden ja

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja Elementtimenetelmän perusteet 7. 7 D-SOLIDIRAKEEE 7. ohdanto Edellä tarkasteltiin interpolointia ja numeerista integrointia emoneliön ja emokolmion alueissa. Emoelementtien avulla voidaan muodostaa vaihtelevan

Lisätiedot

Additiivinen arvofunktio projektiportfolion valinnassa

Additiivinen arvofunktio projektiportfolion valinnassa Esitelmä 5 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Additiivinen arvofunktio projektiportfolion valinnassa Antti Toppila 2.2.2011 Esitelmä 5 Antti Toppila sivu 2/19 Optimointiopin seminaari

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y.

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y. 3.8 Yhtedettömien kielten rajoitksista Yhtedettömille kielille on oimassa säännöllisten kielten pmppaslemman astine. Nt kitenkin merkkijonoa on pmpattaa samanaikaisesti kahdesta paikasta. Lemma 3.9 ( -lemma

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

S Liikenneteorian perusteet (2 ov) K-98

S Liikenneteorian perusteet (2 ov) K-98 S-38.145 Liikenneteorian perusteet (2 ov) K-98 Samuli Aalto Teletekniikan laboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/ preface.ppt Opintojakson puitteet luennot

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko

= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko 238 7.2 Luokka NP Luokka NP on: NP = { NTIME(t) t on polynomi } = k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko P NP Luokan NP ongelmista

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot