Laskuharjoitus 2. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016
|
|
- Siiri Tikkanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Laskuharjoitus 2 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4 Benin). Katso tarkemmin tehtävien vaikutus loppuarvosanaan kurssiohjeesta (esim. arvosana 5 edellyttää, että on tehty yhteensä 18 tehtävää ja palautettu 10 referaattia ja vertaisarvioinnit). UUSI: Bonustehtävä, jolla voi halutessaan korvata yhden tehtävän Käy sivulla NobelPrize.org ja etsi sieltä yksi taloustieteen palkinnonsaaja. Lue palkinnon populaari kuvaus ( About the Prize in Economic Sciences YYYY, popular information ja popular science background) ja vastaa seuraaviin kysymyksiin: Mistä syystä palkinto on myönnetty ja mihin talustieteen osa-alueeseen se liittyy? 1/3 pistettä. Mitä tutkimuskysymyksiä palkinnonsaaja on työssänsä käsitellyt? 1/3 pistettä. Mitkä ovat palkintoon liittyvän tutkimuksen keskeiset tulokset? 1/3 pistettä. Saaran luennot Jokainen kohdista (a, b ja c) tuottaa yleensä 1/3 pistettä; jos kohtia onkin kaksi, kumpikin antaa 1/2 pistettä. Luento 7: (Saara) Katso kalvot: History of the Internet, Betchie Aguinaldo 2010 (Slide Share) (a) Kirjoita lyhyesti noin viidellä-kymmenellä lauseella Internetin historiasta. Jos kalvoilla on vieraita käsitteitä, katso viisi ensimmäistä Wikipediasta tms. ja kirjaa myös niiden määritelmät osaksi vastausta. 1
2 (b) Etsi luentojen ensimmäisen koordinaatiopelin (standardisaatio ja yhteinäisyys) puhtaat Nash-tasapainot, kun a > c ja kun c > a. Perustele jotenkin, miksi se mitä esität tasapainoksi, on todella tasapaino, esim. Näytä, ettei kummallakaan i ole kannattavia poikkeamia u i (a i, a i) > u i (a i, a i ). Näytä, että molemmat pelaajat i pelaavat parasta vastaustaan a i = BR i (a i ). (c) Pohdi, mitkä ovat Internetin ja niin sanotun digitaalitalouden tuomat keskeiset muutokset hyödykemarkkinoihin/työmarkkinoihin/rahoitusmarkkinoihin taloustieteen näkökulmasta? Mainitse tuntemiasi käytännön esimerkkejä näistä ilmiöistä. Nimeä joitain yrityksiä ja kerro niiden strategioita internet-markkinoilla. Luento 8: (Saara) (a) Laske mallin mukaan edellisen luennon ensimmäisen koordinaatiopelin (standardisaatio ja yhteinäisyys) sekatasapaino symmetrisissä strategioissa, kun c = 5 ja a = 3. Miksi sekatasapaino symmetrisissä strategioissa voi olla joskus kiinnostavampi kuin asymmetrinen tasapaino puhtaissa strategioissa erityisesti, kun mallinnetaan koordinointiongelmia? (b) Lue johdanto toisesta Ronald Coasen artikkelista: joko The Nature of the Firm (1937) tai The Problem of Social Cost (1960) ja kirjoita sen ja luentojen pohjalta lyhyesti transaktiokustannusten merkityksestä talouden toiminnan kannalta. Millaisia transaktiokustannuksia liittyy (i) perinteiseen offline-kauppaan ja (ii) online-kauppaan? (c) Vastaa seuraaviin kysymyksiin: Miksi asymmetrinen informaatio voi olla ongelma verkkokaupassa ja mitkä ratkaisut ovat kehittyneet lievittämään sitä? Miten verkkokauppa vaikuttaa jakelukustannuksiin? Miten verkkokauppa vaikuttaa etsintäkustannuksiin? Luento 9: (Saara) (a) Tarkatellaan edellisen luennon esimerkkiä, jossa luottokunta asettaa kuluttajille ja kauppiaille maksut t b ja t b, yhtälöt (4) ja (5). Laske nämä maksut, kun kuluttajapuolen kysynnän hintajousto on ɛ b = 1 ja kauppiaspuolen kysynnän hintajousto on ɛ s = 1/2. Mitä havaitset? Kerro vielä lyhyesti parilla lauseella kaksipuolisista markkinoista digitaalitaloudessa. (b) Tarkastellaan edellisen luennon esimerkkiä, jossa yritykset valitsevat hintansa jostakin hintajakaumasta F. Käytä yhtälöitä (10) ja (11) ja ratkaise niiden avulla hintajakauma 2
3 F A. Huomaa, että molempien oikeat puolet Π ovat yhtä suuret (sekatasapaino). Aseta parametreille σ ja α numeroarvot σ = 0, 4 ja α = 0, 3 ja valitse rekisteröitymismaksuksi a = 0, 2. (c) Tarkastellaan luentojen tapausta seuraavin muutoksin: tarjolla kaksi erillistä hyödykettä: tekstinkäsittely (WP) ja taulukkolaskenta (SS). puolet kuluttajista pääaineena kirjallisuus: v W P = 50 ja v SS = 30. puolet kuluttajista pääaineena kirjanpito: v SS = 50 ja v W P = 30. Jos hyödykkeet myydään erikseen, miten suuret hinnat p W P ja p SS myyjän kannattaa asettaa ja kuinka suuri on voitto? Jos hyödykkeet myydään pakettina, miten suuri hinta p SS,W P myyjän kannattaa asettaa ja kuinka suuri on voitto? Mistä tässä on kyse? Luento 10: (Saara) (a) Kerro täydellisestä hintadiskriminaatiosta ja sen yhteydestä pakettitarjouksiin (kirjoita yksi kappale tekstiä ja piirrä aiheeseen sopiva kuva). (b) Kerro hakusanahuutokaupoista ja niiden vaikutuksesta kuluttajien etsintään (kirjoita yksi kappale tekstiä ja piirrä aiheeseen sopiva kuva). (c) Kerro lyhyesti Swoopon kaikki maksaa -huutokaupasta. ( Luento 11: (Saara) (a) Mitkä ovat rahan perusominaisuudet? (b) Anna esimerkki käyttäjien tuottamasta sisällöstä Internetissä ja asiaan liittyvistä kannustimista. (c) Selitä viivästetyn hyväksynnän -algoritmi ja anna yksi esimerkki siitä, miten sitä voi soveltaa. Luento 12: (Saara) (a) Tarkastellaan hakusivustoa kuten luentojen mallissa (Eliaz ja Spiegler, 2011). Ajatellaan, että sivusto voi valita joko klikkimaksun r 1 = 0, 24 (jolla E(q) = 0, 8) tai klikkimaksun r 2 = 0, 25 (jolla E(q) = 0, 9). Olkoon etsintäkustannus s = 0, 2. Laske v ja p molemmissa tapauksissa ja selitä mitä nämä ovat. Laske myös etsinnän odotettu kesto ja hakusivun voitto molemmissa tapauksissa. Sivusto valitsee tässä klikkimaksun, jolla q < 1. Mitä se tarkoittaa kuluttajan kannalta? 3
4 (b) Tarkastele mainontarahoitteista nettisivua, kuten luennoilla. Piirrä kuva, jossa mainonnan haitta on kuluttajille niin suuri, että nettisivuilla on liikaa mainontaa suhteessa tehokkaaseen lopputulemaan. Ota huomioon mainonnan kuluttajille aiheuttama hyöty ja haitta. Merkitse tehokkuustappio. (c) Hahmottele malli kuvaamaan tilitietojen kalastelua pimeässä netissä. Voit käyttää apuna luennon 12 kuvaa ja luennon 4 mallia vertikaalisista rajoitteista. Mallia ei tarvitse ratkaista loppuun asti. Kirjoita kuitenkin kullekin toimijalle voitonmaksimointiongelma, määrittele sopivat muuttujat jne. Benin luennot Ensimmäinen alakohta (luennoista) antaa 1/3 pistettä ja jälkimmäinen alakohta (harjoitus) antaa 2/3 pistettä. Luento 15: Backward induction (Ben) 1. Ben todistaa luennolla 15 Zermelon lauseen. Kuvaile todistuksen pääkohtia muutamalla lauseella. Mitä Zermelon lause sanoo shakista? 2. Kaksi vapaavalintaista kohtaa (a,b,c,d,e) tehtävästä 2, Harjoitus 7: 1.pdf Luento 18: Imperfect information (Ben) Ben antaa luennolla 18 esimerkin siitä, miten pelimatriisin voi muuttaa pelipuuksi ja joskus päinvastoin. Anna itse oma esimerkki. Kaksi vapaavalintaista kohtaa (a,b,c,d,e) tehtävästä 3, Harjoitus 8: 3.pdf Luento 23: Asymmetric information: Signaling (Ben) Ben käsittelee luennolla 23 koulutusta signaalina. Mikä on keskeinen edellytys separoivan tasapainon olemassaololle? Tehtävä 3, Harjoitus: problems on asymmetric information.pdf (huomaa, että tähän löytyy luntti, jos tehtävä käy liian vaikeaksi) 4
5 Luento 24: Asymmetric information: Auctions (Ben) Ben käsittelee luennolla 24 voittajan kirousta. Mitä se tarkoittaa ja miten sen uhka vaikuttaa huutajien käyttäytymiseen? Tehtävä 4, Harjoitus: problems on asymmetric information.pdf (huomaa, että tähän löytyy luntti, jos tehtävä käy liian vaikeaksi) 5
Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016
Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kahdeksan tehtävää, yksi per luento (5 Saaran, 3 Benin). Katso
Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016
Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4
Markkinoitten mallintaminen ja Internet-markkinat
Markkinoitten mallintaminen ja Internet-markkinat Kurssiohjeita: Lue ainakin kertaalleen huolella! Vastaanotto (ECO A415): luentojen jälkeen tai sopimuksen mukaan. Sähköposti: saara.hamalainen@helsinki.fi
Markkinoitten mallintaminen ja Internet-markkinat
Markkinoitten mallintaminen ja Internet-markkinat Kurssiohjeita: Lue ainakin kertaalleen huolella! Harjoitustyö ja harjoitukset Harjoitustyö palautetaan kahdessa osassa Moodleen. Ensimmäisen osan palautuspäivä
Y56 laskuharjoitukset 6
Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on
Sekastrategia ja Nash-tasapainon määrääminen
May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat
MS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien
Luennot 9 ja 10: Pakettitarjoukset, informaatiohyödykkeet ja hakusanahuutokaupat
Luennot 9 ja 10: Pakettitarjoukset, informaatiohyödykkeet ja hakusanahuutokaupat Saara Hämäläinen Helsingin yliopisto TA6m Luennot 9-10 2016 1 / 24 Kirjallisuutta: PW luvut 11 ja 12 Athey ja Ellison: Position
SEKASTRATEGIAT PELITEORIASSA
SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer
Johdanto peliteoriaan Kirja kpl. 2
Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu
Luento 8: Internet-hinnoittelu
Luento 8: Internet-hinnoittelu Saara Hämäläinen Helsingin yliopisto TA5 Luento 8 2017 1 / 33 Game Theory by Ben Polak (Open Yale) "Repeated games"(luento 21, kokonaan) Internetin vaikutukset Transaktiokustannuksista
KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
Luento 9: Verkostovaikutukset ja kaksipuoliset markkina-alustat
Luento 9: Verkostovaikutukset ja kaksipuoliset markkina-alustat Saara Hämäläinen Helsingin yliopisto TA5 Luento 9 2017 1 / 34 Kaksipuoliset markkina-alustat Verkostovaikutukset Kaksi- tai useampipuoliset
Signalointi: autonromujen markkinat
Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla
Luento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena
Luento 3: Bayesiläiset pelit
Luento 3: Bayesiläiset pelit Saara Hämäläinen Helsingin yliopisto TA5 Luento 3 2017 1 / 33 Game Theory by Ben Polak (Open Yale) "Nash Equilibrium"(luento 5, kokonaan) "Mixed strategies: definition"(luento
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016
Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Assignment: 2016 www1 1. Mitkä seuraavista asioista kuuluvat mikrotaloustieteen ja mitkä makrotaloustieteen piiriin?
Dynaaminen hintakilpailu ja sanattomat sopimukset
Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan
Pystysuuntainen hallinta 2/2
Pystysuuntainen hallinta 2/2 Noora Veijalainen 19.2.2003 Yleistä Tarkastellaan tilannetta jossa: - Ylävirran tuottajalla on yhä monopoliasema - Alavirran sektorissa vallitsee kilpailu - Tuottaja voi rajoitteillaan
Luento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Haitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
Taloustieteen perusteet 31A Ratkaisut 3, viikko 4
Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
Asymmetrinen informaatio
Asymmetrinen informaatio Luku 36 Marita Laukkanen November 24, 2016 Marita Laukkanen Asymmetrinen informaatio November 24, 2016 1 / 10 Entä jos informaatio tuotteen laadusta on kallista? Ei ole uskottavaa,
1 Komparatiivinen statiikka ja implisiittifunktiolause
Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '
1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
Luento 5: Pysäytyspelit
Luento 5: Pysäytyspelit Saara Hämäläinen Helsingin yliopisto TA5 Luento 5 2017 1 / 24 Game Theory by Ben Polak (Open Yale) "Backward induction"(luento 15, kokonaan) Kirjallisuutta Weitzman, Martin (1979):
Luento 8: Online ja offline-kilpailu, kaksipuoliset markkina-alustat, vertailusivustot
Luento 8: Online ja offline-kilpailu, kaksipuoliset markkina-alustat, vertailusivustot Saara Hämäläinen Helsingin yliopisto TA6m Luento 8 2016 1 / 46 Transaktiokustannuksista Ehkä merkittävin asia, jonka
Luento 8. June 3, 2014
June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa
Nollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
Strategiset valinnat. Taloustieteen perusteet Matti Sarvimäki
Strategiset valinnat Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen peliteorian
Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)
Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan
talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?
TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)
Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos
Rubikin kuutio ja ryhmät Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos Kehittäjä unkarilainen Erno Rubik kuvanveistäjä ja arkkitehtuurin professori 1974 Halusi leikkiä geometrisilla
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
1/6. Erikoissosiaalityöntekijän koulutus HAKULOMAKE 2012
1/6 Täytä hakulomake tietokoneella (lomakkeen saa sähköisesti osoitteesta: www.sosnet.fi/haku2012) tai selvällä käsialalla. Valintaprosessin helpottamiseksi toivomme, ettet niittaa papereita yhteen, vaan
Pohdiskeleva ajattelu ja tasapainotarkennukset
Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen
Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka
1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.
Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin
Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi
1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto
Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto
Iso kysymys: Miten saan uusia asiakkaita ja kasvatan myyntiä internetin avulla? Jari Juslén 2014 2
Jari Juslén 2014 1 Iso kysymys: Miten saan uusia asiakkaita ja kasvatan myyntiä internetin avulla? Jari Juslén 2014 2 Agenda Myynnin suurin ongelma Ongelman ratkaiseminen, ensimmäiset vaiheet Jari Juslén
Strateginen kanssakäyminen. Taloustieteen perusteet Matti Sarvimäki
Strateginen kanssakäyminen Taloustieteen perusteet Matti Sarvimäki Johdanto Viime viikolla tilanteet joissa valinnat eivät riipu muiden valinnoista Tänään aloitamme valintojen vuorovaikutuksen tutkimisen
MIKROTALOUSTIEDE A31C00100
MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi & Emmi Martikainen emmi.martikainen@kkv.fi Luennon sisältö Hintakilpailu ja tuotedifferentiaatio Peräkkäiset pelit (12.4-12.5) Alalle tulon estäminen Taloudellinen
1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100
HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat
Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi
1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat
TN-IIa (MAT22001), syksy 2017
TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012
HUUTOKAUPPATEORIAA TTS-Kurssille/Kultti 2012 A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä: 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. Muun muassa Yhdysvaltain
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Markkinoiden suunnittelu ja Gale-Shapley-algoritmi
Markkinoiden suunnittelu ja Gale-Shapley-algoritmi Markkinat eivät välttämättä synny itsestään ja monesti on useita tapoja järjestää markkinat. Markkinoiden keskeinen tehtävä on mahdollistaa vaihdanta.
Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli / Monopolimarkkinat - oletuksia Seuraavissa tarkasteluissa oletetaan, että monopolisti tuntee kysyntäkäyrän täydellisesti monopolisti myy suoraan tuotannosta, ts. varastojen vaikutusta ei huomioida
ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2
Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,
Talousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 7. harjoitus, viikko 7 1. Oheisessa taulukossa on erään tuotteen hintaindeksejä. Laske hinnan keskimääräinen kasvuvauhti vuosina 2000-2005 vuosi indeksi
b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
Lyhyen aikavälin hintakilpailu 2/2
Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta
4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
Yhteistyötä sisältämätön peliteoria jatkuu
Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 4 Ratkaisuehdotuksia 1. Olkoon herra K.:n hyötyfunktio u(x) = ln x. (a) Onko herra K. riskinkaihtaja, riskinrakastaja vai riskineutraali?
2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
Mikrotaloustiede (31C00100)
Mikrotaloustiede (31C00100) Syksy 2017 Prof. Marko Terviö Aalto-yliopisto Luento 1: Johdanto 1. Mitä on mikrotaloustiede 2. Miksi opiskella mikrotaloustiedettä 3. Tyypillisiä käsitteitä 4. Esimerkki: niputtaminen
= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.
HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (
Luento 7. June 3, 2014
June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.
Luento 12: Monimutkainen hinnoittelu ja kuluttajien viivyttäminen, Internet-mainonta ja Internet-rikokset
Luento 12: Monimutkainen hinnoittelu ja kuluttajien viivyttäminen, Internet-mainonta ja Internet-rikokset Saara Hämäläinen Helsingin yliopisto TA6m Luento 12 2016 1 / 43 Kirjallisuutta PW 14 ja 21 Kfir
Kolmion kulmien summa. Maria Sukura
Kolmion kulmien summa Maria Sukura Oppituntien johdanto Oppilaat kuulevat triangelin äänen. He voivat katsoa sitä ja yrittää nimetä tämän soittimen. Tutkimme, miksi triangelia kutsutaan tällä nimellä,
Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus
Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)
1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Päähaku, ympäristö- ja elintarviketalouden kandiohjelma Valintakoe klo
Päähaku, ympäristö- ja elintarviketalouden kandiohjelma Valintakoe 22.5.2019 klo 9.00 13.00 Kirjoita henkilö- ja yhteystietosi tekstaamalla. Kirjoita nimesi latinalaisilla kirjaimilla (abcd...), älä esimerkiksi
Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
3. Harjoitusjakso I. Vinkkejä ja ohjeita
3. Harjoitusjakso I Tämä ensimmäinen harjoitusjakso sisältää kaksi perustason (a ja b) ja kaksi edistyneen tason (c ja d) harjoitusta. Kaikki neljä harjoitusta liittyvät geometrisiin konstruktioihin. Perustason
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU ACTIVATOR 1 ACTIVATOR 2 PELIPUU ACTIVATOR 1 ACTIVATOR 2 -1 0 1 PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu)) v = for each Lapsi in
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X
Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2
1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään
Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
ESIMERKKEJÄ JA HARJOITUKSIA
ESIMERKKEJÄ JA HARJOITUKSIA OSA I: MATEMAATTISTEN MERKINTÖJEN JA KIRJAINSYMBOLIEN KÄYTTÖÄ (ja tutustumista tilinpitoon ja keynesiläiseen malliin) Harjoitellaan seuraavassa kirjainsymbolien käyttöä ja yhtälöiden
Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero
Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa
PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA
PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli