OPETUSSUUNNITELMALOMAKE v0.90

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "OPETUSSUUNNITELMALOMAKE v0.90"

Transkriptio

1 OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida opintojaksoasi koskevat tiedot tähän lomakkeeseen ja päivittää ne vuosittain Oodiin. 1 PERUSTIEDOT Tiedekunta Laitos Vastuuyksikkö IL: Informaatio ja luonnontieteiden tiedekunta Matematiikan ja systeemianalyysin laitos Moduuli Tunniste Opintojakson nimi Opetusjakso(t) Esitiedot Korvaavuudet P Mat Matematiikan peruskurssi S1 I II Mat matematiikan peruskurssi S1 Mat Opetuskieli suomi Päiväys Laatija (nimi+s posti) Jarmo Malinen, Vastuuopettaja Jarmo Malinen Kurssin muu henkilökunta (esim. kurssin opettaja jos eri kuin vastuuopettaja) ja heidän tehtävänsä Liitynnät toisiin kursseihin Pääassistentti: kurssin käytännön asioiden hoito, harjoitusassistenttien työnjako, pienryhmäopetus. Harjoitusassistentit: pienryhmäopetus Kurssille ilmoittautumine Kurssi tarjoaa esitiedot kursseille Mat (S2) ja Mat (S3) varten. oodi.tkk.fi Uusi rivi: Alt+enter 2 YDINAINESANALYYSI Opintojakson sisältö/taitoalueen määrittelyn perusteet 1(4)

2 Aina välttämätön aines (must know) Tieteellinen osaaminen Kompleksilukujen laskutoimitukset ja polaariesitys. Lineaaristen yhtälöryhmien ratkaisu Gaussin eliminaatiolla ja Cramerin säännöllä. Matriisin ominaisarvot ja diagonalisointi. Raja arvot, jatkuvuus ja derivoituvuus. Lineaariset vakiokertoimiset differentiaaliyhtälöt. Differentiaaliyhtälösysteemit. Minimija maksimioppia. Taylorin ja l'hopitalin lauseet. Riemann integraali. Muuttujanvaihto ja osittaisintegrointi. Laplace muunnosten perusteet Usein tarpeellinen aines (should know) Polynomiyhtälöt kompleksitasossa. Lineaaristen differentiaalisysteemie n teoria ml. vakionvariointikaava. Neliömatriisin eksponenttifunktio. Resonanssitarkastelut. Tietyt sähkötekniikassa esiin tulevat määrätyt integraalit. Rationaalifunktioiden osamurtokehitelmät ja Laplace muunnoksen kääntäminen Joskus hyödyllinen aines (nice to know) Joukko opin ja logiikan perusteita. Lukujärjestelmien teoriaa kompleksiluvuista ja reaaliluvuista. Bisektiomenetelmä ja Newtonin iteraatio epälineaarisen yhtälön ratkaisemiseksi. Laskennallisia tekniikoita eräiden raja arvojen määräämiseksi. osaaminen Kompleksilukujen, matriisien, differentiaaliyhtälöiden ja Laplacemuunnoksen käyttö sähkötekniikan sovellutuksissa. Useat matemaattiset esimerkit sähkötekniikan ja Newtonin mekaniikan alalta. Teoreettista johdantoa yhtälöiden ratkaisemiseen tietokoneohjelmien avulla 3 OSAAMISTAVOITTEET Osaamistavoitteiden tarkoituksena on kuvata, millä tasolla opiskelija hallitsee opiskeltavat asiat. Osaamistavoitteet perustuvat edellä kuvattuun opintojakson sisältömääritykseen. Sopiva osaamistavoitteiden määrä opintojakson laajuudesta riippuen on 1 6 kappaletta. Opintojakson suoritettuaa opiskelija 1. osaa laskea kompleksiluvuilla, käsitellä polaarimuotoja ja kompleksimuuttujan rationaalilausekkeita 2. Osaa ratkaista lineaarisen yhtälöryhmän 3. osaa laskea matriisin ominaisarvot ja vektorit ja pystyy soveltamaan niitä matriisin diagonalisointiin 4. Osaa ratkaista vakiokertoimisen lineaarisen differentiaaliyhtälön 4. Osaa integraalilaskennon perustekniikat 5. Tutustuu Laplacemuunnoksen teoriaan Uusi rivi: Alt+enter 4 OPISKELUTYÖN MITOITUS SUORITUSTAVOITTAIN Opintopistemäärä Tuntimäärä TKK:n Opiskelutyön mitoitusmallin m ukainen opintopistemäärä on: Toteutus/suoritustapa Opiskelijan työmäärä (h) Luennot 72 2(4)

3 Harjoitukset 48 Kotitehtävien tekeminen 48 Oppimateriaaleihin tutustuminen ja kertaus 36 Verkkotehtävien tekeminen 30 Kokeeseen valmistautuminen 24 Tenttiin osallistuminen 9 Kommentteja opiskelutyön mitoitukseen liittyen Opintopisteiden ja tuntimäärän sitominen toisiinsa TKK:n mitoitusmallin mukaisesti soveltuu huonosti tähän kurssiin. Esimerkiksi suositus käyttää 20 % ajasta kokeeseen valmistautumiseen antaa opiskelijalle väärän kuvan siitä, miten ajankäyttöä pitäisi suunnitella. Uusi rivi: Alt+enter 5 OPETUKSEN KEHITTÄMINEN Saatu palaute (esim. yhteenveto kurssipalautteesta) Palaute on ollut viimeisen seitsemän vuoden aikana suurinpiirtein samanlaista ja varsin positiivista. Erityisiä kipupisteitä ei ole havaittu. Useimmin esitetty toivomus olisi konekirjoitetun luentomateriaalin jakaminen. Toteutetut uudistukset Luentojen sisältö on rakennettu vastaamaan sähkötekniikan opiskelijoiden muita opintoja. Kurssilla on käytössä automaattisesti tarkastettavat STACK tehtävät, jotka ovat erittäin suosittuja. Viimeisen kolmen vuoden ajan kunkin päivän luennoilla kirjoitetut kalvot on skannattu kurssin kotisivulle. Kehittämisideat tulevaisuudessa Luentomateriaalin puhtaaksikirjoittaminen (vaatii lisätyövoimaa). Luentojen aloittaminen klo. 9:15, jolloin opiskelijat ovat jo heränneet. Mikään näistä parannusehdotuksista ei ole kurssin luennoitsijan vallassa toteuttaa. 3(4)

4 Muut kommentit 4(4)

5 Tiedekunnat: Valitse tiedek ET IL: IA KMERI: Erillislaitos Valitse laitos Ar AuBioBITEleEn KeKieK ola Lä M M M M M PuRaRaSigSoSä TeTieTieTieTuYhMuu, täytä kohtaan yksikkö 5(4)

6 6(4)

7 7(4)

8 8(4)

9 ö 9(4)

10 10(4)

11 11(4)

12 12(4)

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE v0.90

OPETUSSUUNNITELMALOMAKE v0.90 OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille:

Opetusperiodi:I, suunnattu hakukohteille: Kurssin nimi ja koodi Muut kommentit MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi Teknillinen fysiikka ja matematiikka käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja

Lisätiedot

OPISKELUTYÖN MITOITUS Opetuksen suunnittelun työväline, jolla arvioidaan opiskelijan työmäärää suhteessa 1 PERUSTIEDOT

OPISKELUTYÖN MITOITUS Opetuksen suunnittelun työväline, jolla arvioidaan opiskelijan työmäärää suhteessa 1 PERUSTIEDOT OPISKELUTYÖN MITOITUS Opetuksen suunnittelun työväline, jolla arvioidaan opiskelijan työmäärää suhteessa 1 PERUSTIEDOT Tiedekunta Laitos Yksikkö Taso (kandidaatti, maisteri, jatkoopinnot) Moduuli Kurssikoodi

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka Kurssin nimi ja koodi MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja sovelluksineen. Sisältö: vektorilaskentaa, matriisit

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Syksy 2015 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 27.10.2015 1 / 8 Kangaslampi Lineaarialgebra ja differentiaaliyhtälöt

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

Funktiot ja raja-arvo P, 5op

Funktiot ja raja-arvo P, 5op Funktiot ja raja-arvo 800119P, 5op Pekka Salmi 15. syyskuuta 2017 Pekka Salmi FUNK 15. syyskuuta 2017 1 / 122 Yleistä Luennot: ke 810, to 1214 (ensi viikosta lähtien) Luennoitsija: Pekka Salmi, MA327 Laskupäivä:

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A = Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa

Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa 27.-28.10.2016 Mira Tengvall Terhi Kaarakka Simo Ali-Löytty Johdanto Matemaattinen osaaminen on olennainen

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Esipuhe. Sirkka-Liisa Eriksson

Esipuhe. Sirkka-Liisa Eriksson 3 Esipuhe Matematiikka tieteiden kuningatar ja palvelija on lukioihin ja ammattikorkeakouluihin suunnattuun koulukohtaiseen valinnaiseen syventävään kurssiin perustuva kirja. Kirjan tarkoituksena on kerrata

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Matematiikan opintosuunta

Matematiikan opintosuunta Matematiikan opintosuunta Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on mahdotonta antaa. Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

DEE Aurinkosähkön perusteet (Foundations of Solar Power) Sali SE211 Keskiviikkoisin ja perjantaisin klo

DEE Aurinkosähkön perusteet (Foundations of Solar Power) Sali SE211 Keskiviikkoisin ja perjantaisin klo 1 DEE-53010 Aurinkosähkön perusteet (Foundations of Solar Power) Sali SE211 Keskiviikkoisin ja perjantaisin klo 12.15 14.00 2 Luennot pidetään salissa SE211 keskiviikkoisin ja perjantaisin klo 12.15 14.00

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Lakkautetut vastavat opintojaksot: Mat Matematiikan peruskurssi P2-IV (5 op) Mat Sovellettu todennäköisyyslaskenta B (5 op)

Lakkautetut vastavat opintojaksot: Mat Matematiikan peruskurssi P2-IV (5 op) Mat Sovellettu todennäköisyyslaskenta B (5 op) KORVAVUUSLISTA 31.10.2005/RR 1 KURSSIT, jotka luennoidaan 2005-2006 : Lakkautetut vastavat opintojaksot: Mat-1.1010 Matematiikan peruskurssi L 1 (10 op) Mat-1.401 Mat-1.1020 Matematiikan peruskurssi L

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

Sarjat ja integraalit, kevät 2014

Sarjat ja integraalit, kevät 2014 Sarjat ja integraalit, kevät 2014 Peter Hästö 12. maaliskuuta 2014 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

OPETUSOHJELMAAN LUKUVUODEKSI 2009-2010 TULEVAT LISÄYKSET, POISTOT JA MUUTOKSET

OPETUSOHJELMAAN LUKUVUODEKSI 2009-2010 TULEVAT LISÄYKSET, POISTOT JA MUUTOKSET IL 3/2009/15/2 TEKNILLINEN KORKEAKOULU Informaatio- ja luonnontieteiden tiedekunta Teknillisen fysiikan ja matematiikan tutkinto-ohjelma 1(7) OPETUSOHJELMAAN LUKUVUODEKSI 2009-2010 TULEVAT LISÄYKSET, POISTOT

Lisätiedot

Eeva Harjulahti - Insinöörikoulutuksen foorumi 2012 Opetuksen ja oppimisen laatu. Opiskelutyön mitoitus OPMITKU-hanke

Eeva Harjulahti - Insinöörikoulutuksen foorumi 2012 Opetuksen ja oppimisen laatu. Opiskelutyön mitoitus OPMITKU-hanke Eeva Harjulahti - Insinöörikoulutuksen foorumi 2012 Opetuksen ja oppimisen laatu Opiskelutyön mitoitus OPMITKU-hanke www.tuas.fi Motto: Tavoitteena oppiminen Oppimisen voi saavuttaa keinolla millä hyvänsä.

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Hallintotieteiden opinto-opas lkv 2014 15, Yleisopinnot ok 16.4.14. Yleisopinnot

Hallintotieteiden opinto-opas lkv 2014 15, Yleisopinnot ok 16.4.14. Yleisopinnot Yleisopinnot STAT1020 Tilastotieteen johdantokurssi 5 op TITE1022 Tietokone työvälineenä 3 op LIIK1200 Johdatus liiketoimintaosaamiseen 5 op Kansainvälistyminen 10 op OPIS0033 Harjoittelu 5 op Tilastotieteen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

Numeeriset Menetelmät

Numeeriset Menetelmät Numeeriset Menetelmät Kurssilla käydään läpi laskennallisen matematiikan perusteet. Opitaan kuinka matematiikkaa oikeasti käytetään sekä millaisia perustehtäviä ratkaistaan numeerisesti. (Monimutkaisemmat

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet orms.1030 Vaasan yliopisto / kevät 2011 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 12-13 huone D211/Tervahovi Sähköposti: matti.laaksonen@uwasa.fi

Lisätiedot

Hankintojen johtaminen

Hankintojen johtaminen Hankintojen johtaminen sähköinen kurssipalaute, syksy 06 Opetus,0 Yleisarvio,8 Opetustapa, Oma panos,8 Osaamistavoitteet,8 Suhteellinen työmäärä,86 OSTO 6 n= C000 Hankintojen johtaminen (060 0608). Yleisarvioni

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

Tietojenkäsittelytieteet Tutkinto-ohjelman info. Henrik Hedberg Heli Alatalo

Tietojenkäsittelytieteet Tutkinto-ohjelman info. Henrik Hedberg Heli Alatalo Tietojenkäsittelytieteet Tutkinto-ohjelman info Henrik Hedberg Heli Alatalo Orientoivat opinnot 810020Y, 2 op Orientaatioviikko Teemaluennot Pienryhmätoiminta Omaopettajatapaamiset Henkilökohtainen opintosuunnitelma

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

031010P MATEMATIIKAN PERUSKURSSI I 5,0 op

031010P MATEMATIIKAN PERUSKURSSI I 5,0 op 031010P MATEMATIIKAN PERUSKURSSI I 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava WebOodissa (https://weboodi.oulu.fi/oodi/etusivu.html). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MATEMATIIKKA. Perusopinnot

MATEMATIIKKA. Perusopinnot MATEMATIIKKA Perusopinnot Algebra I Algebra I Koodi: MATH1010 Laajuus: 4 op Edellytykset: Matematiikan peruskurssi ja Lineaarialgebra Osaamistavoitteet: opiskelija oppii perustiedot algebran keskeisistä

Lisätiedot

PERUSAINEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2007 informaatiotilaisuudet: MA 3.9. klo G-salissa/ TI 4.9. klo G-salissa TERVETULOA!

PERUSAINEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2007 informaatiotilaisuudet: MA 3.9. klo G-salissa/ TI 4.9. klo G-salissa TERVETULOA! PERUSAINEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2007 informaatiotilaisuudet: MA 3.9. klo 14-15 G-salissa/ TI 4.9. klo 15-16 G-salissa TERVETULOA! Prof. Juhani Pitkäranta (mat.) Prof. Juhani von Boehm (fys.) suunn.

Lisätiedot

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 = TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko

Lisätiedot

Kurssijärjestelyt. ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos

Kurssijärjestelyt. ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos Kurssijärjestelyt ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos (Alkuperäiset luentokalvot: Markku Laine) 8. syyskuuta 2015 Luennon sisältö Kurssin

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Opiskelun aloitusvuosi:

Opiskelun aloitusvuosi: Kurssi: Steroidien kemia - KEMS3 (Kevät 9) Vastaamalla kurssista esitettyihin kysymyksiin, mielipiteesi kurssista ja sen hyödyllisyydestä välittyvät kurssin järjestäjille. Palautetta tullaan käyttämään

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

Mitoitussuositus. Opetussuunnitelmien suunnitteluun

Mitoitussuositus. Opetussuunnitelmien suunnitteluun Mitoitussuositus Opetussuunnitelmien suunnitteluun Mitoitussuositus Opetussuunnitelmien suunnitteluun Päätöspäivämäärä 01.06.2012 Opintojen mitoitus ja oppiminen Aika on oppimisen välttämätön edellytys

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

WebOodin opinto-opas ja ilmoittautuminen

WebOodin opinto-opas ja ilmoittautuminen Aloitus Homma alkaa osoitteesta www.helsinki.fi/weboodi. Jos et omista yliopiston atk-tunnuksia, voit hypätä kohdan 1. yli. Voit huoletta tutustua WebOodin saloihin ilman tunnuksiakin. WebOodin opinto-opas

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

PSYKOTERAPEUTTI- KOULUTUKSEN JÄRJESTÄMINEN JYVÄSKYLÄN YLIOPISTOSSA. Jaakko Seikkula, jaakko.seikkula@jyu.fi Jarl Wahlström, jarl.wahlstrom@jyu.

PSYKOTERAPEUTTI- KOULUTUKSEN JÄRJESTÄMINEN JYVÄSKYLÄN YLIOPISTOSSA. Jaakko Seikkula, jaakko.seikkula@jyu.fi Jarl Wahlström, jarl.wahlstrom@jyu. PSYKOTERAPEUTTI- KOULUTUKSEN JÄRJESTÄMINEN JYVÄSKYLÄN YLIOPISTOSSA Jaakko Seikkula, jaakko.seikkula@jyu.fi Jarl Wahlström, jarl.wahlstrom@jyu.fi Säädökset ja päätökset Valtioneuvoston asetus terveydenhuollon

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

järjestelmät Luento 8

järjestelmät Luento 8 DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot

Lisätiedot

Juha Merikoski. Jyväskylän yliopiston Fysiikan laitos Kevät 2009

Juha Merikoski. Jyväskylän yliopiston Fysiikan laitos Kevät 2009 FYSP120 FYSIIKAN NUMEERISET MENETELMÄT Juha Merikoski Jyväskylän yliopiston Fysiikan laitos Kevät 2009 1 Kurssin sisältö JOHDANTOA, KÄSITTEITÄ, VÄLINEITÄ [1A] Laskennallista fysiikkaa [1B] Matlabin alkeita

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

KASVATUSTIETEEN PERUSOPINNOT (25 op) sivuaineopiskelijoiden info

KASVATUSTIETEEN PERUSOPINNOT (25 op) sivuaineopiskelijoiden info KASVATUSTIETEEN PERUSOPINNOT (25 op) sivuaineopiskelijoiden info lv. 2017-2018 kasvatustieteen perusopintoja koordinoiva opettaja Maarit Koskinen maarit.g.koskinen@jyu.fi Perusopinnot sivuaineopiskelijalle

Lisätiedot

Näkökulmia monimuoto-opetukseen

Näkökulmia monimuoto-opetukseen 1 Näkökulmia monimuoto-opetukseen Tietokoneohjelma on kuin runo, se ei valmistu koskaan Bill Gates Aiheita 2 Lähtötason arviointi Tentti ja/tai tentitön vaihtoehto yhdessä Kotitehtävät vs. luokkaharjoitukset

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

KASVATUSTIETEIDEN (YLEINEN JA AIKUISKASVATUSTIEDE) PERUSOPINTOJEN 25 OP OPINTOPOLUT LUKUVUONNA 2015-2016 AVOIMESSA YLIOPISTOSSA VERKKO-OPETUS

KASVATUSTIETEIDEN (YLEINEN JA AIKUISKASVATUSTIEDE) PERUSOPINTOJEN 25 OP OPINTOPOLUT LUKUVUONNA 2015-2016 AVOIMESSA YLIOPISTOSSA VERKKO-OPETUS KASVATUSTIETEIDEN (YLEINEN JA AIKUISKASVATUSTIEDE) PERUSOPINTOJEN 25 OP OPINTOPOLUT LUKUVUONNA 2015- AVOIMESSA YLIOPISTOSSA VERKKO-OPETUS Kasvatustieteiden (yleinen ja aikuiskasvatustiede) perusopinnot

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot