4.2 Akustista fonetiikkaa

Koko: px
Aloita esitys sivulta:

Download "4.2 Akustista fonetiikkaa"

Transkriptio

1 4.2 Akustista fonetiikkaa Akustisessa fonetiikassa tutkitaan puheen akustisia ominaisuuksia ja sitä miten ne seuraavat puheentuottomekanismin toiminnasta. Aiheen tarkka käsitteleminen vaatisi oman kurssinsa, mutta seuraavassa on kuvattu aiheesta oleellisimmat tiedot. Tärkein ääntöväylän akustinen ominaisuus ovat siinä esiintyvät resonanssit, jotka syntyvät samaan tapaan kuin esim. puhallinsoittimissa, eli värähtelevän ilmapatsaan seisovina aaltoina. Mikäli kyseessä on tasapaksu putki, jonka toinen pää on umpinainen ja toinen avoin, siinä muodostuu seisovia aaltoja siten, että paineenvaihtelu umpinaisessa päässä on pienimmillään ja avoinaisessa suurimmillaan, kuten kuviossa 1 on esitetty. Mikäli putken pituus on, seisovien aaltojen aallonpituudet ( ) ovat Tyypillisesti aikuisen ihmisen ääntöväylän pituus on luokkaa cm, ja äänen nopeudeksi ilmassa (merk. ) voidaan olettaa n. m/s. Ominaisresonanssitaajuudet ( ) voidaan laskea aaltoliikkeen perusyhtälöä = käyttäen, eli tässä tapauksessa eli Hz:n parittomat harmoniset.! #" Kuvio 1: Toisesta päästä umpinaisessa putkessa muodostuvat seisovat aallot. Kuvassa on näytetty paineenvaihtelu, joka on nolla umpinaisessa päässä ja suurimmillaan avonaisessa päässä. Ihmisen ääntöväylä ei ole tasapaksu putki, mutta silti vokaaliäänteissä formantteja on yleensä karkeasti ottaen 1 kilohertsiä kohden, kuten tasapaksun putken tapauksessa. Formanttien taajuudet eivät vain enää ole harmonisissa suhteissa toisiinsa vaan siirtyvät ääntöväylän muodon mukana. 24

2 B = B = B Formanttitaajuuksien laskeminen ääntöväylän muodon perusteella on yleisesti analyyttisesti ratkeamaton ongelma (numeerisia ratkaisuja voidaan kyllä laskea). Myös käytetyn mallin suhdetta todellisuuteen voidaan kyseenalaistaa. Tarkkaan puheentuoton malliin pyrittäessä pitäisi ottaa huomioon lukuisia seikkoja, kuten erilaiset kurkunpään herätteet, ajalliset ja paikasta riippuvat muutokset ääntöväylän muodossa, nenäväylän kytkeytyminen järjestelmään, huulten kohdalla tapahtuva ääniaallon leviäminen ympäristöön eli nk. säteily, erilaiset energiahäviöt, pyörteiset ilmavirtaukset jne. Itse asiassa sellaista formaalia teoriaa ei ole olemassakaan, joka ottaisi kaikki tekijät täydellisesti huomioon puheentuoton mallinnuksessa. Yksinkertaistettujakin analogisia malleja tarkastelemalla päästään kuitenkin melko pitkälle äänentuoton ymmärryksessä. Erityisen kiinnostava ja hyödyllinen lähestymistapa on ääntöväylän mallintaminen useamman peräkkäisen tasapaksun putken avulla, sillä tämä malli saadaan ratkaistua kohtuullisella vaivalla, ja sen tuloksetkin ovat käytännössä varsin hyviä. Tarkastellaan ensin yhtä häviötöntä tasapaksua putkea ja oletetaan että putkessa etenevät paineaallot ovat tasomaisia, kuten kuviossa 2. Tällaisessa putkessa esiintyy ainoastaan paineaaltoja, jotka liikkuvat äänen nopeudella jompaan kumpaan suuntaan, sekä näiden superpositioita eli usempia aaltoja summautuneena yhteen. Kun liitämme kaksi tasapaksua putkea yhteen, paineaallot kulkevat edelleen äänen nopeudella kummankin putken sisällä, mutta putkien liitoskohdassa tapahtuu myös heijastumista. Merkitään vasemman putken poikkipintaalaa $&% ja oikean $&%('*). Määritellään heijastuskerroin +,% seuraavasti: $&%0/1$&%('*) +,%. $&%324$&%('*) Huomaa, että aina /.056+,%758. Heijastuskerroin ilmaisee, kuinka suuri osa putkesta toiseen liikkuvasta paineaallosta heijastuu takaisin. Esimerkiksi putkessa oikealle kulkevasta aallosta +9) :n ilmaisema osuus heijastuu takaisin putkeen ja loppuosa (:/;+9) ) etenee putken " puolelle rajapinnan yli. Putkessa " vasemmalle kulkevasta aallosta takaisin päin heijastuu vastaavasti /<+9) :n ilmaisema osuus. Siirrytäänpä sitten varsinaiseen diskreettiaikaiseen malliin. Oletetaan että kaikki peräkkäin liitetyt putket ovat yhtä pitkiä ja näytteistetään järjestelmän toiminta sillä näytteenottovälillä, joka ääniaallolta kuluu yhden putken kulkemiseen. Paineaaltojen heijastuminen putkien liitoskohdassa voidaan ilmaista yhtälöillä = AGIH ED %C??F/;+,% ) HIJ /<+,% AF H +,%?FK24+,% ) D >%L? ND %('*)M? missä B %L? on taaksepäin kulkevan paineaallon muunnos O :nnen putken alussa, >%L? on sama eteenpäin kulkevalle aallolle, ja +,% on heijastuskerroin O ja OP2Q :nnen putken välillä. Putkien indeksointi on vasemmalta oikealle. Nämä ovat ns. KellyLochbaum yhtälöt, ja ne voidaan esittää myös vuokaaviona, kuten kuviossa 3. Nyt putkia voidaan liittää useampiakin yhteen, ja em. yhtälöiden avulla saadaan ratkaistua järjestelmän toiminta kullekin putkelle. Puheenkäsittelyn tapauksessa ajatellaan, että glottis on kaavion vasemmalla laidalla ja suu oikealla. Järjestelmän toiminta reunoilla pitää vielä lisäksi mallintaa jotenkin, esim. (R,? TSU? 2WV R? missä SX? on glottiksen paineaallon muunnos, ja V ilmaisee kuinka paljon paineaallosta heijastuu glottiksessa takaisin. Vastaavasti ääntöväylän loppupää mallinnetaan yleisesti muodossa BZY?, missä [ on viimeisen putken indeksi, jolloin viimeiseen putkeen ei tule ulkoa heijastusta. 25

3 Y? Kuvio 2: Tasapaksussa putkessa esiintyy ainoastaan äänen nopeudella liikkuvien paineaaltojen summia. Tässä aalto oletetaan tasomaiseksi. Nyt jos otetaan järjestelmän ulostuloksi \? viimeisen putken eteenpäin kulkeva aalto eli \?, järjestelmä on rehellinen lineaarinen suodatin, koska sen toteutuksessa on ainoastaan viiveitä, summauksia sekä vakiolla kertomisia. Tällaista suodattimen toteutusta nimitetään ristikkorakenteeksi, ja sillä on muutenkin käyttöa esimerkiksi adaptiivisten suodattimien yhteydessä. Ohessa Matlabkoodi edellisen suodattimen toteuttamiseen (löytyneet bugit pyydetään ilmoittamaan luennoitsijalle), koodi löytyy myös kurssin kotisivulta. % Demo KellyLochbaumyhtälöistä clear close all %S = [ ]; % putkien pintaalat, viimeinen ulkona S = [ ]; len = 0.03; % putken pituus, m 26

4 Kuvio 3: KellyLochbaum yhtälöt esitettynä vuokaaviona. v = 340; % äänen nopeus, m/s k = (S(1:1)S(2:))./(S(1:1)+S(2:)); %heijastuskertoimet fs = round( v/len); % näytteenottotaajuus x = zeros(1,1000); x(1) = 1; %lasketaan 1000 tapin impulssivaste g = 0.5; % heijastuminen glottiksessa d = 0.95; % hihasta otettu häviökerroin F0 = zeros(1,length(s)); % eteenpäin kulkevat aallot ennen viivettä, % eka = glottis F1 = zeros(1,length(s)1); % eteenpäin kulkevat aallot viiveen jälk. B0 = zeros(1,length(s)); % taaksepäin kulkevat aallot viiveen jälk. % (signaalin etenemissuuntaan) B1 = zeros(1,length(s)); % taaksepäin ennen viivettä 27

5 for n = 1:length(x), F0old = F0; F1old = F1; B0old = B0; B1old = B1; B0(1) = B1old(1); F0(1) = B0(1)*g + x(n); % glottisheräte + heijastus F1(1) = F0old(1); if ( length(b0) < 3), B1(1) = 0; else B1(1) = B1(2)*d*(1+k(1)) + F1(1)*d*k(1); for i = 2:length(F1), B0(i) = B1old(i); F0(i) = F1(i1)*d*(1k(i1)) + B0(i)*d*(k(i1)); F1(i) = F0old(i1); B1(i) = B1(i+1)*d*(1+k(i)) + F1(i)*d*k(i); B0() = 0; % ei heijastuksia takaisin F0() = F1()*d*(1k()); y(n) = F0(); % ulostulo talteen figure freqz(y,1,1024,fs); title( Taajuusvaste ) 28

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi. 3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ 1 JOHDANTO 2 HYBRIDIMENETELMÄN MATEMAATTINEN ESITYS

PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ 1 JOHDANTO 2 HYBRIDIMENETELMÄN MATEMAATTINEN ESITYS PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ Erkki Numerola Oy PL 126, 40101 Jyväskylä erkki.heikkola@numerola.fi 1 JOHDANTO Työssä tarkastellaan putkijärjestelmässä etenevän

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz. 3 Ääni ja kuulo 3.1 Intro e1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien toimintaperiaatteet Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien luokittelu Sähköinen toimintaperiaate Akustinen toimintaperiaate Suuntakuvio Herkkyys Taajuusvaste

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Ääni, akustiikka. 1 Johdanto. 2.2 Energia ja vaimeneminen (1) 2 Värähtelevät järjestelmät

Ääni, akustiikka. 1 Johdanto. 2.2 Energia ja vaimeneminen (1) 2 Värähtelevät järjestelmät Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Sisältö: 1. Johdanto 2. Värähtelevät järjestelmät 3. Aallot 4. Resonanssi 5. Huoneakustiikka 1 Johdanto Akustiikka

Lisätiedot

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23.

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Sisältö: 1. Johdanto 2. Värähtelevät järjestelmät 3. Aallot 4. Resonanssi 5. Huoneakustiikka 1 Johdanto Sanaa akustiikka

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN Antti Kelloniemi 1, Vesa Välimäki 2 1 Tietoliikenneohjelmistojen ja multimedian laboratorio, PL 5, 15 TKK, antti.kelloniemi@tkk.fi

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia

Lisätiedot

REUNAEHTOJEN TOTEUTUSTAPOJA AALTOJOHTOVERKOSSA

REUNAEHTOJEN TOTEUTUSTAPOJA AALTOJOHTOVERKOSSA Antti Kelloniemi, Lauri Savioja Teknillinen Korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio PL 54, 215 TKK antti.kelloniemi@hut.fi, lauri.savioja@hut.fi 1 JOHDANTO Aaltojohtoverkko (digital

Lisätiedot

Akustiikka ja toiminta

Akustiikka ja toiminta Akustiikka ja toiminta Äänitiede on kutsumanimeltään akustiikka. Sana tulee Kreikan kielestä akoustos, joka tarkoittaa samaa kuin kuulla. Tutkiessamme värähtelyjä ja säteilyä, voimme todeta että värähtely

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 03 Fysiikan laitos, Ilmakehätieteien osasto Tuulen nopeuen ja suunnan mittaaminen Tuuli on vektorisuure, jolla on siis nopeus ja suunta Yleensä tuulella tarkoitetaan

Lisätiedot

Åbo Akademi 3.5.2011 klo 12-16. Mietta Lennes mietta.lennes@helsinki.fi. Nykykielten laitos Helsingin yliopisto

Åbo Akademi 3.5.2011 klo 12-16. Mietta Lennes mietta.lennes@helsinki.fi. Nykykielten laitos Helsingin yliopisto Åbo Akademi 3.5.2011 klo 12-16 Mietta Lennes mietta.lennes@helsinki.fi Nykykielten laitos Helsingin yliopisto Praat-puheanalyysiohjelma Mikä on Praat? Mikä on Praat? Praat [Boersma and Weenink, 2010] on

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

T-61.246 DSP: GSM codec

T-61.246 DSP: GSM codec T-61.246 DSP: GSM codec Agenda Johdanto Puheenmuodostus Erilaiset codecit GSM codec Kristo Lehtonen GSM codec 1 Johdanto Analogisen puheen muuttaminen digitaaliseksi Tiedon tiivistäminen pienemmäksi Vähentää

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä

Lisätiedot

Historiaa musiikillisten äänten fysikaalisesta mallintamisesta

Historiaa musiikillisten äänten fysikaalisesta mallintamisesta Äänilähteiden fysikaalinen mallintaminen uusin äänisynteesimetodi simuloi soittimen äänentuottomekanismia käyttö musiikillisissa äänissä: -jäljitellään olemassaolevia akustisia instrumentteja -mahdollistaa

Lisätiedot

SGN-4200 Digitaalinen audio

SGN-4200 Digitaalinen audio SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2011 1 / 37 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 3.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 3.2.2010 1 / 36 Esimerkki: asunnon välityspalkkio Kirjoitetaan ohjelma, joka laskee kiinteistönvälittäjän asunnon

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Pietsoelementtien sovelluksia

Pietsoelementtien sovelluksia Pietsoelementtien sovelluksia S-108.2010 Elektroniset mittaukset Luento 20.2.2006 Maija Ojanen Taustaa Pietsosähköisen ilmiön havaitsivat Jacques ja Pierre Curie 1880 Mekaaninen voima aiheuttaa varauksen

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

IVK-Tuote Oy Jani Saarvo Äänenhallinnan esitelmä 19.10.2009 JYVÄSKYLÄN ROTARYKLUBI

IVK-Tuote Oy Jani Saarvo Äänenhallinnan esitelmä 19.10.2009 JYVÄSKYLÄN ROTARYKLUBI IVK-Tuote Oy Jani Saarvo Äänenhallinnan esitelmä 19.10.2009 JYVÄSKYLÄN ROTARYKLUBI IVK-TUOTE OY perustettiin vuonna 1988. Pienestä 7 henkilön työpajasta on kehittynyt Suomen johtava ilmastointijärjestelmien

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

2.2 Ääni aaltoliikkeenä

2.2 Ääni aaltoliikkeenä 2.1 Äänen synty Siirrymme tarkastelemaan akustiikkaa eli äänioppia. Ääni on ilman tai nesteen paineen vaihteluita (pitkittäistä aaltoliikettä). Kiinteissä materiaaleissa ääni voi edetä poikittaisena aaltoliikkeenä.

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla

HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla Tämä työohje on kirjoitettu ESR-projektissa Mikroanturitekniikan osaamisen kehittäminen Itä-Suomen lääninhallitus, 2007, 86268 HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla Tarvittavat laitteet: 2 kpl

Lisätiedot

Mono- ja stereoääni Stereoääni

Mono- ja stereoääni Stereoääni 1 Mitä ääni on? Olet ehkä kuulut puhuttavan ääniaalloista, jotka etenevät ilmassa näkymättöminä. Ääniaallot käyttäytyvät meren aaltojen tapaan. On suurempia aaltoja, jotka ovat voimakkaampia kuin pienet

Lisätiedot

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Juhana Kanainen j8081 Teemu Lahti l8636 Henri Taranen l84319 SATE010 Dynaaminen enttäteoria AALTO-OPAS H-BEND Sivumäärä: 1 Jätetty tarastettavasi:

Lisätiedot

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ Henna Tahvanainen 1, Jyrki Pölkki 2, Henri Penttinen 1, Vesa Välimäki 1 1 Signaalinkäsittelyn ja akustiikan laitos Aalto-yliopiston sähkötekniikan

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

http://www.opiskelijakirjasto.lib.helsinki.fi/fonterm/006.htm

http://www.opiskelijakirjasto.lib.helsinki.fi/fonterm/006.htm Luku 2 Fonetiikkaa Puhe on kaiken kaikkiaan hyvin monitasoinen ja monimutkainen inhimillinen ja fysikaalinen ilmiö, sisältäen kysymyksiä liittyen mm. kognitioon, kieleen, fysiologiaan, kuuloon ja akustiikkaan.

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

Kulmaheijastinantenni

Kulmaheijastinantenni Kulmaheijastinantenni Asettamalla syö ttö an ten n i jo h d elev yjen k u lmaan k u v an 5-4 2 mu k aisesti, saad aan n o stettu a v ah v istu sta 1 0-1 2 d B p u o liaalto d ip o lin taso sta. S en an

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? 1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

» Fonetiikka tutkii puheen: Tuottamista -> ARTIKULATORINEN Akustista ilmenemismuotoa -> AKUSTINEN Havaitsemista -> AUDITIIVINEN

» Fonetiikka tutkii puheen: Tuottamista -> ARTIKULATORINEN Akustista ilmenemismuotoa -> AKUSTINEN Havaitsemista -> AUDITIIVINEN » Fonetiikka tutkii puheen: Tuottamista -> ARTIKULATORINEN Akustista ilmenemismuotoa -> AKUSTINEN Havaitsemista -> AUDITIIVINEN 1 Puhe-elimistä Helsingin Yliopiston sivuilla» Puhe-elimet voidaan jakaa

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82.

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Fysiikka 2, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Tämä dokumentin versio on päivätty 6. syyskuuta 2013. Uusin löytyy osoitteesta http://rikun.net/mat

Lisätiedot

Ultraäänen kuvausartefaktat. UÄ-kuvantamisen perusoletukset. Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005

Ultraäänen kuvausartefaktat. UÄ-kuvantamisen perusoletukset. Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005 Ultraäänen kuvausartefaktat Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005 kaikissa radiologisissa kuvissa on artefaktoja UÄ:ssä artefaktat ovat kaikuja, jotka näkyvät kuvassa, mutta eivät vastaa sijainniltaan

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka Vfo135 ja Vfp124 Martti Vainio Akustiikka Äänityksen tarkoitus on taltioida paras mahdo!inen signaali! Tärkeimpinä kolme akustista muuttujaa:

Lisätiedot

Satelliittipaikannus

Satelliittipaikannus Kolme maailmalaajuista järjestelmää 1. GPS (USAn puolustusministeriö) Täydessä laajuudessaan toiminnassa v. 1994. http://www.navcen.uscg.gov/gps/default.htm 2. GLONASS (Venäjän hallitus) Ilmeisesti 11

Lisätiedot

Puheentuoton fonetiikan kertausta Vfo 251, Puhesynteesin perusteet. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen.

Puheentuoton fonetiikan kertausta Vfo 251, Puhesynteesin perusteet. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puheentuoton fonetiikan kertausta Vfo 251, Puhesynteesin perusteet Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheentuoton fonetiikan kertausta p.1/109 Vfo251 Puhesynteesin

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 12 Aaltojen heijastuminen ja taittuminen Tarkastelemme tässä luvussa sähkömagneettisten aaltojen heijastumis- ja taittumisominaisuuksia erilaisten väliaineiden rajapinnalla, ja lopuksi tutustutaan

Lisätiedot

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi)

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi) Kenguru 2014 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

4 Fonetiikkaa. Puhe-elimet

4 Fonetiikkaa. Puhe-elimet 4 Fonetiikkaa Puhe on kaiken kaikkiaan hyvin monitasoinen ja monimutkainen inhimillinen ja fysikaalinen ilmiö, sisältäen kysymyksiä liittyen mm. kognitioon, kieleen, fysiologiaan, kuuloon ja akustiikkaan.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot