4.2 Akustista fonetiikkaa

Koko: px
Aloita esitys sivulta:

Download "4.2 Akustista fonetiikkaa"

Transkriptio

1 4.2 Akustista fonetiikkaa Akustisessa fonetiikassa tutkitaan puheen akustisia ominaisuuksia ja sitä miten ne seuraavat puheentuottomekanismin toiminnasta. Aiheen tarkka käsitteleminen vaatisi oman kurssinsa, mutta seuraavassa on kuvattu aiheesta oleellisimmat tiedot. Tärkein ääntöväylän akustinen ominaisuus ovat siinä esiintyvät resonanssit, jotka syntyvät samaan tapaan kuin esim. puhallinsoittimissa, eli värähtelevän ilmapatsaan seisovina aaltoina. Mikäli kyseessä on tasapaksu putki, jonka toinen pää on umpinainen ja toinen avoin, siinä muodostuu seisovia aaltoja siten, että paineenvaihtelu umpinaisessa päässä on pienimmillään ja avoinaisessa suurimmillaan, kuten kuviossa 1 on esitetty. Mikäli putken pituus on, seisovien aaltojen aallonpituudet ( ) ovat Tyypillisesti aikuisen ihmisen ääntöväylän pituus on luokkaa cm, ja äänen nopeudeksi ilmassa (merk. ) voidaan olettaa n. m/s. Ominaisresonanssitaajuudet ( ) voidaan laskea aaltoliikkeen perusyhtälöä = käyttäen, eli tässä tapauksessa eli Hz:n parittomat harmoniset.! #" Kuvio 1: Toisesta päästä umpinaisessa putkessa muodostuvat seisovat aallot. Kuvassa on näytetty paineenvaihtelu, joka on nolla umpinaisessa päässä ja suurimmillaan avonaisessa päässä. Ihmisen ääntöväylä ei ole tasapaksu putki, mutta silti vokaaliäänteissä formantteja on yleensä karkeasti ottaen 1 kilohertsiä kohden, kuten tasapaksun putken tapauksessa. Formanttien taajuudet eivät vain enää ole harmonisissa suhteissa toisiinsa vaan siirtyvät ääntöväylän muodon mukana. 24

2 B = B = B Formanttitaajuuksien laskeminen ääntöväylän muodon perusteella on yleisesti analyyttisesti ratkeamaton ongelma (numeerisia ratkaisuja voidaan kyllä laskea). Myös käytetyn mallin suhdetta todellisuuteen voidaan kyseenalaistaa. Tarkkaan puheentuoton malliin pyrittäessä pitäisi ottaa huomioon lukuisia seikkoja, kuten erilaiset kurkunpään herätteet, ajalliset ja paikasta riippuvat muutokset ääntöväylän muodossa, nenäväylän kytkeytyminen järjestelmään, huulten kohdalla tapahtuva ääniaallon leviäminen ympäristöön eli nk. säteily, erilaiset energiahäviöt, pyörteiset ilmavirtaukset jne. Itse asiassa sellaista formaalia teoriaa ei ole olemassakaan, joka ottaisi kaikki tekijät täydellisesti huomioon puheentuoton mallinnuksessa. Yksinkertaistettujakin analogisia malleja tarkastelemalla päästään kuitenkin melko pitkälle äänentuoton ymmärryksessä. Erityisen kiinnostava ja hyödyllinen lähestymistapa on ääntöväylän mallintaminen useamman peräkkäisen tasapaksun putken avulla, sillä tämä malli saadaan ratkaistua kohtuullisella vaivalla, ja sen tuloksetkin ovat käytännössä varsin hyviä. Tarkastellaan ensin yhtä häviötöntä tasapaksua putkea ja oletetaan että putkessa etenevät paineaallot ovat tasomaisia, kuten kuviossa 2. Tällaisessa putkessa esiintyy ainoastaan paineaaltoja, jotka liikkuvat äänen nopeudella jompaan kumpaan suuntaan, sekä näiden superpositioita eli usempia aaltoja summautuneena yhteen. Kun liitämme kaksi tasapaksua putkea yhteen, paineaallot kulkevat edelleen äänen nopeudella kummankin putken sisällä, mutta putkien liitoskohdassa tapahtuu myös heijastumista. Merkitään vasemman putken poikkipintaalaa $&% ja oikean $&%('*). Määritellään heijastuskerroin +,% seuraavasti: $&%0/1$&%('*) +,%. $&%324$&%('*) Huomaa, että aina /.056+,%758. Heijastuskerroin ilmaisee, kuinka suuri osa putkesta toiseen liikkuvasta paineaallosta heijastuu takaisin. Esimerkiksi putkessa oikealle kulkevasta aallosta +9) :n ilmaisema osuus heijastuu takaisin putkeen ja loppuosa (:/;+9) ) etenee putken " puolelle rajapinnan yli. Putkessa " vasemmalle kulkevasta aallosta takaisin päin heijastuu vastaavasti /<+9) :n ilmaisema osuus. Siirrytäänpä sitten varsinaiseen diskreettiaikaiseen malliin. Oletetaan että kaikki peräkkäin liitetyt putket ovat yhtä pitkiä ja näytteistetään järjestelmän toiminta sillä näytteenottovälillä, joka ääniaallolta kuluu yhden putken kulkemiseen. Paineaaltojen heijastuminen putkien liitoskohdassa voidaan ilmaista yhtälöillä = AGIH ED %C??F/;+,% ) HIJ /<+,% AF H +,%?FK24+,% ) D >%L? ND %('*)M? missä B %L? on taaksepäin kulkevan paineaallon muunnos O :nnen putken alussa, >%L? on sama eteenpäin kulkevalle aallolle, ja +,% on heijastuskerroin O ja OP2Q :nnen putken välillä. Putkien indeksointi on vasemmalta oikealle. Nämä ovat ns. KellyLochbaum yhtälöt, ja ne voidaan esittää myös vuokaaviona, kuten kuviossa 3. Nyt putkia voidaan liittää useampiakin yhteen, ja em. yhtälöiden avulla saadaan ratkaistua järjestelmän toiminta kullekin putkelle. Puheenkäsittelyn tapauksessa ajatellaan, että glottis on kaavion vasemmalla laidalla ja suu oikealla. Järjestelmän toiminta reunoilla pitää vielä lisäksi mallintaa jotenkin, esim. (R,? TSU? 2WV R? missä SX? on glottiksen paineaallon muunnos, ja V ilmaisee kuinka paljon paineaallosta heijastuu glottiksessa takaisin. Vastaavasti ääntöväylän loppupää mallinnetaan yleisesti muodossa BZY?, missä [ on viimeisen putken indeksi, jolloin viimeiseen putkeen ei tule ulkoa heijastusta. 25

3 Y? Kuvio 2: Tasapaksussa putkessa esiintyy ainoastaan äänen nopeudella liikkuvien paineaaltojen summia. Tässä aalto oletetaan tasomaiseksi. Nyt jos otetaan järjestelmän ulostuloksi \? viimeisen putken eteenpäin kulkeva aalto eli \?, järjestelmä on rehellinen lineaarinen suodatin, koska sen toteutuksessa on ainoastaan viiveitä, summauksia sekä vakiolla kertomisia. Tällaista suodattimen toteutusta nimitetään ristikkorakenteeksi, ja sillä on muutenkin käyttöa esimerkiksi adaptiivisten suodattimien yhteydessä. Ohessa Matlabkoodi edellisen suodattimen toteuttamiseen (löytyneet bugit pyydetään ilmoittamaan luennoitsijalle), koodi löytyy myös kurssin kotisivulta. % Demo KellyLochbaumyhtälöistä clear close all %S = [ ]; % putkien pintaalat, viimeinen ulkona S = [ ]; len = 0.03; % putken pituus, m 26

4 Kuvio 3: KellyLochbaum yhtälöt esitettynä vuokaaviona. v = 340; % äänen nopeus, m/s k = (S(1:1)S(2:))./(S(1:1)+S(2:)); %heijastuskertoimet fs = round( v/len); % näytteenottotaajuus x = zeros(1,1000); x(1) = 1; %lasketaan 1000 tapin impulssivaste g = 0.5; % heijastuminen glottiksessa d = 0.95; % hihasta otettu häviökerroin F0 = zeros(1,length(s)); % eteenpäin kulkevat aallot ennen viivettä, % eka = glottis F1 = zeros(1,length(s)1); % eteenpäin kulkevat aallot viiveen jälk. B0 = zeros(1,length(s)); % taaksepäin kulkevat aallot viiveen jälk. % (signaalin etenemissuuntaan) B1 = zeros(1,length(s)); % taaksepäin ennen viivettä 27

5 for n = 1:length(x), F0old = F0; F1old = F1; B0old = B0; B1old = B1; B0(1) = B1old(1); F0(1) = B0(1)*g + x(n); % glottisheräte + heijastus F1(1) = F0old(1); if ( length(b0) < 3), B1(1) = 0; else B1(1) = B1(2)*d*(1+k(1)) + F1(1)*d*k(1); for i = 2:length(F1), B0(i) = B1old(i); F0(i) = F1(i1)*d*(1k(i1)) + B0(i)*d*(k(i1)); F1(i) = F0old(i1); B1(i) = B1(i+1)*d*(1+k(i)) + F1(i)*d*k(i); B0() = 0; % ei heijastuksia takaisin F0() = F1()*d*(1k()); y(n) = F0(); % ulostulo talteen figure freqz(y,1,1024,fs); title( Taajuusvaste ) 28

Puheenkäsittelyn menetelmät

Puheenkäsittelyn menetelmät 8003051 Puheenkäsittelyn menetelmät Luento 16.9.2004 Akustista fonetiikkaa Ääniaalto Ääniaallolla tarkoitetaan häiriön etenemistä väliaineessa ilman että väliaineen hiukkaset (yleensä ilman kaasumolekyylit)

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Alipäästösuotimen muuntaminen muiksi perussuotimiksi

Alipäästösuotimen muuntaminen muiksi perussuotimiksi Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Puheen akustiikan perusteita

Puheen akustiikan perusteita Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 Äänet, resonanssi ja spektrit S-114.770 Kieli kommunikaatiossa...

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien toimintaperiaatteet Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien luokittelu Sähköinen toimintaperiaate Akustinen toimintaperiaate Suuntakuvio Herkkyys Taajuusvaste

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/39 ctl103 Fonetiikan perusteet kieliteknologeille

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =? Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN Antti Kelloniemi 1, Vesa Välimäki 2 1 Tietoliikenneohjelmistojen ja multimedian laboratorio, PL 5, 15 TKK, antti.kelloniemi@tkk.fi

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

REUNAEHTOJEN TOTEUTUSTAPOJA AALTOJOHTOVERKOSSA

REUNAEHTOJEN TOTEUTUSTAPOJA AALTOJOHTOVERKOSSA Antti Kelloniemi, Lauri Savioja Teknillinen Korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio PL 54, 215 TKK antti.kelloniemi@hut.fi, lauri.savioja@hut.fi 1 JOHDANTO Aaltojohtoverkko (digital

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23.

Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Sisältö: 1. Johdanto 2. Värähtelevät järjestelmät 3. Aallot 4. Resonanssi 5. Huoneakustiikka 1 Johdanto Sanaa akustiikka

Lisätiedot

= = = 1 3.

= = = 1 3. 9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala

Lisätiedot

5 Lineaarinen ennustus

5 Lineaarinen ennustus 5 Lineaarinen ennustus Lineaarinen ennustus (linear prediction, LP) on yksi tärkeimmistä puheenkäsittelyn työkaluista Sitä voidaan eri tilanteessa käyttää eri tavoilla, mutta puheenkäsittelyn kannalta

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ Henna Tahvanainen 1, Jyrki Pölkki 2, Henri Penttinen 1, Vesa Välimäki 1 1 Signaalinkäsittelyn ja akustiikan laitos Aalto-yliopiston sähkötekniikan

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Ruiskuvalumuotin jäähdytys, simulointiesimerkki Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

(1) Novia University of Applied Sciences, Vaasa,

(1) Novia University of Applied Sciences, Vaasa, DIESELMOOTTORIN PAKOKAASUMELUN SIMULOINTI Mats Braskén(1), Matias Aura() (1) Novia University of Applied Sciences, Vaasa, mats.brasken@novia.fi () Wärtsilä Finland Oy, Research & Development, Vaasa, matias.aura@wartsila.com

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta)

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) Mekanismisynteesi Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) 1 Sisältö Synteesin ja analyysin erot Mekanismisynteesin vaiheita Mekanismin konseptisuunnittelu Tietokoneavusteinen mitoitus

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

2 AALTOLIIKKEIDEN YHDISTÄMINEN

2 AALTOLIIKKEIDEN YHDISTÄMINEN 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Virtaus ruiskutusventtiilin reiästä

Virtaus ruiskutusventtiilin reiästä Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-

Lisätiedot

2.2 Ääni aaltoliikkeenä

2.2 Ääni aaltoliikkeenä 2.1 Äänen synty Siirrymme tarkastelemaan akustiikkaa eli äänioppia. Ääni on ilman tai nesteen paineen vaihteluita (pitkittäistä aaltoliikettä). Kiinteissä materiaaleissa ääni voi edetä poikittaisena aaltoliikkeenä.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 6 5 4 5 4 3 + 4 3 2 3 2 1. a) 88 b) 66 c) 78 d) 76 Ratkaisu. Suoralla laskulla: 6 5 4 5 4 3 + 4 3 2 3 2 1

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Juhana Kanainen j8081 Teemu Lahti l8636 Henri Taranen l84319 SATE010 Dynaaminen enttäteoria AALTO-OPAS H-BEND Sivumäärä: 1 Jätetty tarastettavasi:

Lisätiedot

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? 1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa

Lisätiedot

Y ja

Y ja 1 Funktiot ja raja-arvot Y100 27.10.2008 ja 29.10.2008 Aki Hagelin aki.hagelin@helsinki.fi Department of Psychology / Cognitive Science University of Helsinki 2 Funktiot (Lue Häsä & Kortesharju sivut 4-9)

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

Yleistä äänestä. Ääni aaltoliikkeenä. (lähde

Yleistä äänestä. Ääni aaltoliikkeenä. (lähde Yleistä äänestä (lähde www.paroc.fi) Ääni aaltoliikkeenä Ilmaääntä voidaan ajatella paineen vaihteluna ilmassa. Sillä on aallonpituus, taajuus ja voimakkuus. Ääni etenee lähteestä kohteeseen väliainetta

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAB6. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3] Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

S Laskennallinen Neurotiede

S Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan

Lisätiedot

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka Vfo135 ja Vfp124 Martti Vainio Akustiikka Äänityksen tarkoitus on taltioida paras mahdo!inen signaali! Tärkeimpinä kolme akustista muuttujaa:

Lisätiedot

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

S MRI sovellukset Harjoitustehtävät. Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen

S MRI sovellukset Harjoitustehtävät. Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen S-66.3326 MRI sovellukset Harjoitustehtävät Ryhmä 1 Juha-Pekka Niskanen Eini Niskanen Tehtävä 8.3 Tehtävä 8.3 - Teoria Käytännössä MRI-kuvaan muodostuu aina virhettä rajallisen resoluution vuoksi Käytännössä

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina 1 Kohina Kohina on yleinen ongelma integroiduissa piireissä. Kohinaa aiheuttavat pienet virta- ja jänniteheilahtelut, jotka ovat komponenteista johtuvia. Myös ulkopuoliset lähteet voivat aiheuttaa kohinaa.

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Topologia Syksy 2010 Harjoitus 11

Topologia Syksy 2010 Harjoitus 11 Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot 3. Muuttujat ja operaatiot Sisällys Muuttujat. Nimi ja arvo. Algoritmin tila. Muuttujan nimeäminen. Muuttujan tyyppi. Muuttuja ja tietokone. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeetiikka.

Lisätiedot