Taulukko 1 Kiintopiste Lämpötila ( C) Tila He -270,15-268,15 höyrypainepiste e-h 2 (H 2, missä orto- ja paramuodot

Koko: px
Aloita esitys sivulta:

Download "Taulukko 1 Kiintopiste Lämpötila ( C) Tila He -270,15-268,15 höyrypainepiste e-h 2 (H 2, missä orto- ja paramuodot"

Transkriptio

1 Lämpötila-asteikko ITS- Kansainvälinen lämpötila-asteikko ITS- efeenssi 1) on ollut voimassa vuodesta 19 lähtien. Se poikkeaa hiukan vanhasta asteikosta IPTS-6876), joka edelleen on käytössä monessa lämpötilaa mittaavassa laitteessa. Lämpötila-asteikon lisäksi käytetään IEC-standadit Pt100-antueille ja temoelementeille. Lämpötila-asteikkoon kuuluu kiintopisteitä ja antueita, joilla voi intepoloida kiintopisteiden välillä. Lämpötila-asteikon ITS- kiintopisteet ovat Taulukossa 1. Asteikkoon kuuluvat mittauslaitteet ovat kapselityyppiset platinavastusantuit, standadiplatinavastusantuit, kokean lämpötilan platinavastusantuit ja säteilypyometit. a) Lämpötila-asteikon ITS- kiintopisteet Taulukko 1 Kiintopiste Lämpötila C) Tila He -270,15-268,15 höyypainepiste e-h 2 H 2, missä oto- ja paamuodot -259,3467 kolmoispiste ovat tasapainossa) e-h 2 tai He H 2, missä oto- ja paamuodot ovat tasapainossa) -256,15 höyypainepiste tai kaasulämpömittaipiste) e-h 2 tai He H 2, missä oto- ja paamuodot ovat tasapainossa) -252,85 höyypainepiste tai kaasulämpömittaipiste) Ne -248,5939 kolmoispiste O 2-218,7916 kolmoispiste A -189,3442 kolmoispiste Hg -38,8344 kolmoispiste H 2 O 0,01 kolmoispiste Ga 29,7646 sulamispiste In 156,5985 jähmettymispiste Sn 231,928 jähmettymispiste Zn 419,527 jähmettymispiste Al 660,323 jähmettymispiste Ag 961,78 jähmettymispiste Au 1064,18 jähmettymispiste Cu 1084,62 jähmettymispiste

2 b) Lämpötila-asteikon ITS- efeenssifunktiot Lämpötilat määitellään esistanssin RT ) lämpötilassa T ) ja esistanssin R263,16 K) veden kolmoispisteen lämpötilassa) välisen suhteen avulla: WT ) = RT ) R 27316, K) 1) Lämpötila-alueella 13,8033 K 273,16 K käytetään efeenssifunktiota i ln[ W T )] = A + A{[ln T / 27316, K) + 15, ] / 15, 12 0 i i= 1 Käänteisfunktio, joka antaa saman T -avon kuin yhtälö 2a) 0,1 mk:n takkuudella: 2a) 15 T B B W T 16 / ) 065, i / 27316, K = 0 + i{ i=1 035, Vakioiden A 0, B 0, A i ja B i avot ovat taulukossa 2. 2b) Lämpötila-alueella 0 C 961,78 C on efeenssifunktio: 9 W T C C T / K 754, 15 i ) = 0 + i{ 481 i=1 3a) Käänteisfunktio, joka antaa saman T -avon kuin yhtälö 3a) 0,13 mk:n takkuudella: T D W T 264, i / K 27315, = 0{ 164, 3b) Vakioiden C 0, D 0, C i ja D i avot ovat taulukossa 2.

3 Taulukko 2: Refeenssifunktioiden 2), 2a), 3) ja 3a) vakioiden A 0, B 0, A i ja B i sekä C 0, D 0, C i ja D i avot A 0-2, B 0 0, B 13-0, A 1 3, B 1 0, B 14 0, A 2-1, B 2 0, B 15 0, A 3 0, B 3 0, A 4 0, B 4 0, A 5-0, B 5 0, A 6-0, B 6 0, A 7 0, B 7-0, A 8 0, B 8-0, A 9-0, B 9-0, A 10 0, B 10 0, A 11 0, B 11 0, A 12-0, B 12-0, C 0 2, D 0 439, C 1 1, D 1 472, C 2-0, D 2 37, C 3-0, D 3 7, C 4-0, D 4 2, C 5 0, D 5 0, C 6 0, D 6-0, C 7-0, D 7-0, C 8-0, D 8 0, C 9 0, D 9 0, c) Lämpötila-asteikon ITS- intepolointifunktio agonin kolmoispisteestä veden kolmoispisteeseen Vastuslämpömittai kaliboidaan agonin 83,8054 K), elohopean 234,3156 K) ja veden 273,16 K) kolmoispisteissä. Poikkeamafunktio on: WT ) W T) = awt ) 1] + bwt [ ) ]ln WT ) 4) Vakioiden a ja b avot lasketaan kiintopistekaliboinnin avoilla. d) Lämpötila-asteikon ITS- intepolointifunktiot lämpötilasta 0 C hopean jähmettymispisteeseen Vastuslämpömittai kaliboidaan veden kolmoispisteissä 0,01 C) sekä tinan 231,928 C), sinkin 419,527 C), alumiinin 660,323 C) ja hopean 961,78 C) jähmettymispisteissä.

4 Poikkeamafunktio on: 2 WT ) W T ) = awt [ ) 1] + bwt [ ) 1] + 3 cw [ T ) 1] + dw [ T ) W 660, 323 C)] 2 5) Kun lämpötila on pienempi kuin 660,323 C on d = 0, ja vakioiden a, b ja c avot lasketaan yhtälöstä 5 3 kalibointipistettä tina, sinkki ja alumiini) kolmen yhtälön yhmä). Alumiinipisteen ja hopeapisteen välisille lämpötiloille käytetään myös vakiota d, joka on laskettu hopeapisteen kalibointiavolla käyttäen edellä lasketut a, b ja c. d1) Lämpötila-asteikon ITS- intepolointifunktio lämpötilasta 0 C alumiinin jähmettymispisteeseen Vastuslämpömittai kaliboidaan veden kolmoispisteissä 0,01 C) sekä tinan 231,928 C), sinkin 419,527 C), ja alumiinin 660,323 C) jähmettymispisteissä. Poikkeamafunktiona toimii yhtälö 5), kun d = 0. d2) Lämpötila-asteikon ITS- intepolointifunktio lämpötilasta 0 C sinkin jähmettymispisteeseen Vastuslämpömittai kaliboidaan veden kolmoispisteissä 0,01 C) sekä tinan 231,928 C) ja sinkin 419,527 C jähmettymispisteissä. Poikkeamafunktiona toimii yhtälö 5), kun c = d = 0. d3) Lämpötila-asteikon ITS- intepolointifunktio lämpötilasta 0 C tinan jähmettymispisteeseen Vastuslämpömittai kaliboidaan veden kolmoispisteissä 0,01 C) sekä indiumin 156,5985 C) ja tinan 231,928 C) jähmettymispisteissä. Poikkeamafunktiona toimii yhtälö 5), kun c = d = 0. d4) Lämpötila-asteikon ITS- intepolointifunktio lämpötilasta 0 C galliumin sulamispisteeseen Vastuslämpömittai kaliboidaan veden kolmoispisteissä 0,01 C) ja galliumin sulamispisteessä 29,7646 C). Poikkeamafunktiona toimii yhtälö 5), kun b = c = d = 0.

5 d5) Lämpötila-asteikon ITS- intepolointifunktio elohopean kolmoispisteestä galliumin sulamispisteeseen Vastuslämpömittai kaliboidaan veden kolmoispisteissä 0,01 C) sekä elohopean kolmoispisteessä -38,8344 C) ja galliumin sulamispisteessä 29,7646 C). Poikkeamafunktiona toimii yhtälö 5), kun b = c = d = 0. W T )-avot lasketaan yhtälöstä 2b) kun T < 0,01 C ja yhtälöstä 3b) kun T > 0,01 C. e) Lämpötila-asteikon ITS- laskentafunktio hopean jähmettymispisteen yläpuolella: Planckin säteilylaki Lämpötila-asteikko ITS- on hopeapisteen yläpuolella määitelty seuaavasti: Lλ T) e = L [ T X)] e λ c [ λt X)] 2 c [ λt ] 2 1 6) missä T X) on joko hopean, kullan tai kupain kiintopistelämpötila. L λ T ) on mustan kappaleen säteilijän adianssi aallonpituudella λ tyhjiössä) lämpötilassa T, ja L λ T X)) on vastaava adianssi lämpötilassa T X). c 2 = 0, m K. Refeenssit: 1. H. Peston-Thomas, The Intenational Tempeatue Scale of 19 ITS-), Metologia 27 19) R. L. Rusby, R.P. Hudson and M. Duieux, Revised Values fo t - t 68 ) fom 630 C to 1064 C, Metologia )

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

JAKSOLLINEN JÄRJESTELMÄ

JAKSOLLINEN JÄRJESTELMÄ JASOLLINEN JÄRJESTELMÄ Oppitunnin tavoite: Oppitunnin tavoitteena on opettaa jaksollinen järjestelmä sekä sen historiaa alkuainepelin avulla. Tunnin tavoitteena on, että oppilaat oppivat tieteellisen tutkimuksen

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 3

KJR-C2004 materiaalitekniikka. Harjoituskierros 3 KJR-C2004 materiaalitekniikka Harjoituskierros 3 Tänään ohjelmassa 1. Tasapainopiirros 1. Tulkinta 2. Laskut 2. Faasimuutokset 3. Ryhmätyöt 1. Esitehtävän yhteenveto (palautetaan harkassa) 2. Ryhmätehtävä

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

kultaseokset hammaslaboratorioille ja -teknikoille

kultaseokset hammaslaboratorioille ja -teknikoille kultaseokset hammaslaboratorioille ja -teknikoille K.A.Rasmussen on Pohjoismaiden johtava jalometallialan yritys. Vuodesta 1872 jalometallien asiantuntemusta. 1 SISäLLySLuETTELO laatu on perinteemme 3

Lisätiedot

6*. MURTOFUNKTION INTEGROINTI

6*. MURTOFUNKTION INTEGROINTI MAA0 6*. MURTOFUNKTION INTEGROINTI Murtofunktio tarkoittaa kahden polynomin osamäärää, ja sen yleinen muoto on P() R : R(). Q() Mikäli osoittajapolynomin asteluku on nimittäjäpolynomin astelukua korkeampi

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi SISÄLTÖ Mitä metrologia on Metrisopimus, MIKES Lämpötilan yksikkö kelvin, lämpötila-asteikko ITS-90 Valovoiman yksikkö kandela,

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Jännittävät metallit

Jännittävät metallit Jännittävät metallit Tästä alkaa tutkimusmatkamme sähkön syntymiseen! Varmaan tiedätkin, että sähköä saadaan sekä pistorasioista että erilaisista paristoista. Pistorasioista saatava sähkö tuotetaan fysikaalisesti,

Lisätiedot

LÄMPÖTILAN VERTAILUMITTAUS L11, PT100-ANTURIN SOVITUSMENETELMÄN KEHITTÄMINEN

LÄMPÖTILAN VERTAILUMITTAUS L11, PT100-ANTURIN SOVITUSMENETELMÄN KEHITTÄMINEN MITTATEKNIIKAN KESKUS Julkaisu J3/2001 LÄMPÖTILAN VERTAILUMITTAUS L11, PT100-ANTURIN SOVITUSMENETELMÄN KEHITTÄMINEN Thua Weckström Helsinki 2001 SUMMARY The interlaboratory comparison on calculating coefficients

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2 I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde...2 1.2 Mikroskooppiset ja makroskooppiset teoriat...3 1.3 Terminen tasapaino ja lämpötila...5 1.4 Termodynamiikan

Lisätiedot

LIITE nnn GTKn moreeninäytteet Suhangon alueelta.! = analyysitulos epävarma

LIITE nnn GTKn moreeninäytteet Suhangon alueelta.! = analyysitulos epävarma LIITE nnn GTKn moreeninäytteet Suhangon alueelta Havnro Vuosi X Y Aines Pvm_511p Al_511p Ba_511p Ca_511p Co_511p Cr_511p Cu_511p Fe_511p K_511p La_511p Li_511p Mg_511p 30759 89 7333802 3461760 MR 19910128

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on: Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

LIITE 4A 4A LÄMPÖTILAN T LISÄRAKENTEITA

LIITE 4A 4A LÄMPÖTILAN T LISÄRAKENTEITA LIIE 4A 4A LÄMPÖILAN LISÄRAKENEIA ämä kohta 4A perustuu siihen, mitä kohdassa 4 on esitetty. ässä kuitenkin koetetaan mennä vielä syvemmälle lämpötilarakenteeseen ja löytää toisenlaisia rakenteita, joita

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

(l) B. A(l) + B(l) (s) B. B(s)

(l) B. A(l) + B(l) (s) B. B(s) FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN

Lisätiedot

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3 S-4.5.vk. 6..000 Tehtävä Ideaalikaasun aine on 00kPa, lämötila 00K ja tilavuus,0 litraa. Kaasu uristetaan adiabaattisesti 5-kertaiseen aineeseen. Kaasumolekyylit ovat -atomisia. Laske uristamiseen tarvittava

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

GEOLOGAN TUTKIMUSKESKUS giiy-93/2/1 0 KI U Jarmo Nikande r 6.10.199 3

GEOLOGAN TUTKIMUSKESKUS giiy-93/2/1 0 KI U Jarmo Nikande r 6.10.199 3 GEOLOGAN TUTKIMUSKESKUS giiy-93/2/1 0 KI U Jarmo Nikande r 6.10.199 3 SINKKI- JA KULTAMALMITUTKIMUKSISTA KIURUVEDEN HANHISUOLLA, JOUTOKANKAALLA JA KULTAVUORELLA, KTL 3323 03, SEKÄ PYLHY- LÄNAHOLLA, KTL

Lisätiedot

TUTKIMUSTODISTUS 2012E

TUTKIMUSTODISTUS 2012E TUTKIMUSTODISTUS 2012E- 21512-1 Tarkkailu: Talvivaara kipsisakka-altaan vuoto 2012 Tarkkailukierros: vko 51 Tilaaja: Pöyry Finland Oy Otto pvm. Tulo pvm. Tutkimuksen lopetus pvm. Havaintopaikka Tunnus

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

Liite 1 (1/2) ISO/DIS µg/l

Liite 1 (1/2) ISO/DIS µg/l Liite 1 (1/2) Mittausmenetelmät ja määritysrajat (1/2) Määritys Mittausmenetelmä Määritysraja Yksikkö ph, titraattori SFS 3021:1979 Kokonaistyppi vesistövedestä SFS-EN ISO 11905-1:1998 50 µg/l Kokonaisfosfori

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

KOKOEKO-seminaari Jätteen syntypaikkalajittelun merkitys leijupetipoltossa Timo Anttikoski, Myyntipäällikkö, Andritz Oy

KOKOEKO-seminaari Jätteen syntypaikkalajittelun merkitys leijupetipoltossa Timo Anttikoski, Myyntipäällikkö, Andritz Oy KOKOEKO-seminaari 14.2.2013 Jätteen syntypaikkalajittelun merkitys leijupetipoltossa Timo Anttikoski, Myyntipäällikkö, Andritz Oy The ANDRITZ GROUP Overview Company ANDRITZ AG, Graz, Austria (Group headquarters)

Lisätiedot

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

Eksponentti- ja logaritmifunktiot

Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2 FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää

Lisätiedot

Kuusakoski Oy:n rengasrouheen kaatopaikkakelpoisuus.

Kuusakoski Oy:n rengasrouheen kaatopaikkakelpoisuus. Kuusakoski Oy:n rengasrouheen kaatopaikkakelpoisuus. 2012 Envitop Oy Riihitie 5, 90240 Oulu Tel: 08375046 etunimi.sukunimi@envitop.com www.envitop.com 2/5 KUUSAKOSKI OY Janne Huovinen Oulu 1 Tausta Valtioneuvoston

Lisätiedot

Kemia 7. luokka. Nimi

Kemia 7. luokka. Nimi Kemia 7. luokka Nimi 1. Turvallinen työskentely Varoitusmerkit Kaasupolttimen käyttö Turvallinen työskentely Turvallinen työskentely Kaasupolttimen käyttö 1. Varmista että ilma-aukot ovat kiinni. 2. Sytytä

Lisätiedot

mm porausrasteri 2 napaa 8 A. 1 napa 16 A. Piirilevylle tai piirilevykantaan A = Näkymä juotospuolelta

mm porausrasteri 2 napaa 8 A. 1 napa 16 A. Piirilevylle tai piirilevykantaan A = Näkymä juotospuolelta .3 =.7.3 =.7.3 =.7 4-sarja - Matalat piirilevyreleet 8 - - 6 A Ominaisuudet - ja -napaiset - matalat, korkeus 5,7 mm 4.3 - napa A, rasteri 3,5 mm 4.5 - napaa 8 A, rasteri 5 mm 4.6 - napa 6 A, rasteri 5

Lisätiedot

SISÄISESTÄ SÄTEILYSTÄ AIHEUTUVAN ANNOKSEN LASKEMINEN

SISÄISESTÄ SÄTEILYSTÄ AIHEUTUVAN ANNOKSEN LASKEMINEN OHJE ST 7.3 / 13.6.2014 SISÄISESTÄ SÄTEILYSTÄ AIHEUTUVAN ANNOKSEN LASKEMINEN 1 Yleistä 3 2 Miten efektiivisen annoksen kertymä lasketaan 3 3 Mitä annosmuuntokertoimia efektiivisen annoksen kertymän laskemisessa

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

Metallien kierrätys on RAUTAA!

Metallien kierrätys on RAUTAA! Metallien kierrätys on RAUTAA! METALLEJA VOI KIERRÄTTÄÄ L O P U T T O M A S T I M E T A L L I N E L I N K A A R I Metallituotteen valmistus Metallituotteen käyttö Metallien valmistuksessa raaka-aineiden,

Lisätiedot

Jaksollinen järjestelmä

Jaksollinen järjestelmä Mistä kaikki alkoi? Jaksollinen järjestelmä 1800-luvun alkupuoli: Alkuaineita yritettiin 1800-luvulla järjestää atomipainon mukaan monella eri tavalla. Vuonna 1826 Saksalainen Johann Wolfgang Döbereiner

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

L7 Kaasun adsorptio kiinteän aineen pinnalle

L7 Kaasun adsorptio kiinteän aineen pinnalle CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin

Lisätiedot

Kiinteiden'materiaalien'magnee-set'ominaisuudet'

Kiinteiden'materiaalien'magnee-set'ominaisuudet' Kiinteiden'materiaalien'magnee-set'ominaisuudet' Peruskäsite:' Yhdisteessäelektronien orbtaaliliike ja spinvaiku7avatmagnee:siin ominaisuuksiin(spininvaikutuson merki7ävämpi) ' Diamagne6smi' Kaikkiorbitaalittäysinmiehite7yjätai

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Tulosten analysointi. Liite 1. Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma

Tulosten analysointi. Liite 1. Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Liite 1 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Tulosten analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys 1.Tutkimustulosten

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Polvikankaan entisen jäteöljyn polttopaikan pilaantuneisuustutkimus. Oulun kaupunki. Oulu

Polvikankaan entisen jäteöljyn polttopaikan pilaantuneisuustutkimus. Oulun kaupunki. Oulu Oulun kaupunki Työ n:o 10934 Tekninen keskus 16.12.2010 PL 32 90 015 OULUN KAUPUNKI Oulun kaupunki Polvikankaan entisen jäteöljyn polttopaikan pilaantuneisuustutkimus Oulu GEOBOTNIA OY Koulukatu 28 p.

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

c) Missä ajassa kappale selvittää reitin b-kohdan tapauksessa? [3p]

c) Missä ajassa kappale selvittää reitin b-kohdan tapauksessa? [3p] Fysiikan valintakoe 11.5.2016 klo 9-12 1. Kappale lähtee levosta liikkeelle pisteessä A (0,3) ja liukuu kitkattomasti, ensin kaltevaa tasoa pitkin pisteeseen B (x,0) ja siitä edelleen vaakaatasoa pitkin

Lisätiedot

5. OSITTAISINTEGROINTI

5. OSITTAISINTEGROINTI 5 OSITTAISINTEGROINTI Kahden funktion f ja g tulo derivoidaan kuten muistetaan seuraavasti: D (fg) f g + f Kun tämä yhtälö integroidaan puolittain, niin saadaan fg f ()g()d + f ()()d Yhtälö saattaa erota

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

Apollo 026074 96mm kromi 5,00 No.17 02675 96mm matta kromi 6,10 026078 128mm matta kromi 5,50 No.44

Apollo 026074 96mm kromi 5,00 No.17 02675 96mm matta kromi 6,10 026078 128mm matta kromi 5,50 No.44 HTF Vetimet 2013 Gamma 140300 64mm matta kromi 2,80 026000 96mm matta kromi 2,80 No.26 026002 128mm matta kromi 2,80 026003 96mm kulta 3,30 025993 96mm harjattu nikkeli 2,80 No.30 025994 128mm harjattu

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

PÄÄTÖS. Annettu julkipanon jälkeen Dnro PPO 2004 Y ASIA

PÄÄTÖS. Annettu julkipanon jälkeen Dnro PPO 2004 Y ASIA PÄÄTÖS Annettu julkipanon jälkeen 4.5.2005 Dnro PPO 2004 Y 379 111 ASIA Päätös ympäristönsuojelulain 35 :n mukaisesta hakemuksesta, joka koskee Mecapinta Oy:n metallien kemiallista ja elektrolyyttistä

Lisätiedot

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA8 Juuri- ja logaritmifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Juuri- ja logaritmifunktiot (MAA8) Pikatesti ja kertauskokeet

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Kasvuohjelmaseminaari

Kasvuohjelmaseminaari Kasvuohjelmaseminaari Hämeenlinna Pekka Lipsanen Kevätvehnän typpilannoitusoptimit Rapsin lannoitusoptimi Pelkkä typpi ei riitä hyvään satoon Tasapainoisesti lannoitettu rapsi : Tuotti 800 kg suuremman

Lisätiedot

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Ruiskuvalumuotin jäähdytys, simulointiesimerkki Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän

Lisätiedot

Sotkamo Silver Oy:n kaivoshankkeen tilannekatsaus. Ilkka Tuokko

Sotkamo Silver Oy:n kaivoshankkeen tilannekatsaus. Ilkka Tuokko Sotkamo Silver Oy:n kaivoshankkeen tilannekatsaus Ilkka Tuokko 20.11.2013 Location Distance to: - Kuhmo 40 km - Sotkamo 40 km - Valtimo 45 km - Nurmes 60 km - Kajaani 80 km - Oulu 240 km - Helsinki 480

Lisätiedot

TERMINEN ELEKTRONIEMISSIO

TERMINEN ELEKTRONIEMISSIO FYSA242/K1 TERMINEN ELEKTRONIEMISSIO Työssä tutkitaan termistä elektroniemissiota volramista, todetaan Steanin Boltzmannin lain paikkansapitävyys ja Richardsonin Dushmanin yhtälön avulla määritetään elektronien

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

LK OptiFlow EVO II. Rakenne. Asennus

LK OptiFlow EVO II. Rakenne. Asennus LK OptiFlow EVO II Rakenne LK OptiFlow EVO II on säätöventtiili virtauksen säätöä varten esim. lattialämmitysjärjestelmissä, perinteisissä lämmitysjärjestelmissä sekä jäähdytysjärjestelmissä. Venttiiliä

Lisätiedot

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5? Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.

Lisätiedot

YMPA 13.05.2008, 130, YMPÄRISTÖLUPAHAKEMUS/ELOKSOINTI OY. LUVAN HAKIJA Eloksointi Oy Vanha Raumantie 292 28600 Pori

YMPA 13.05.2008, 130, YMPÄRISTÖLUPAHAKEMUS/ELOKSOINTI OY. LUVAN HAKIJA Eloksointi Oy Vanha Raumantie 292 28600 Pori YMPA 13.05.2008, 130, YMPÄRISTÖLUPAHAKEMUS/ELOKSOINTI OY (RJ) ASIA Päätös ympäristönsuojelulain 35 :n mukaisesta ympäristölupahakemuksesta, joka koskee Eloksointi Oy:n toimintaa. Kyseessä on olemassa oleva

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin. MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä

Lisätiedot

Metso Minerals. Lyhyt kuvaus projektista: Oppilaat työskentelevät neljän henkilön ryhmissä, joissa jokaisessa on

Metso Minerals. Lyhyt kuvaus projektista: Oppilaat työskentelevät neljän henkilön ryhmissä, joissa jokaisessa on Koostanut: Elina Viro, Kaisa Poikela, Metso Minerals Opettajalle Metso Minerals Kohderyhmä: 9. luokka Esitiedot: Prosenttilaskenta, taulukon tulkinta, koordinaatisto, trigonometria, ensimmäisen asteen

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Analyysi Menetelmä Yksikkö Kaivovesi Tehdasalue P1. 148,4 Alkaliniteetti Sis. men. O-Y-003 mmol/l < 0,02 Väriluku. lämpötilakompensaatio

Analyysi Menetelmä Yksikkö Kaivovesi Tehdasalue P1. 148,4 Alkaliniteetti Sis. men. O-Y-003 mmol/l < 0,02 Väriluku. lämpötilakompensaatio Tutkimustodistus 2012-8409 1(3) 06.08.2012 Pöyry Finland Oy PL 40774 LASKUTUS Näytetiedot Näyte Kaivovesi Näyte otettu 12.06.2012 Näytteen ottaja Esa-Pekka Kukkonen Saapunut 13.06.2012 Näytteenoton syy

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

Haitallisten aineiden vaikutuksista kaloihin

Haitallisten aineiden vaikutuksista kaloihin Haitallisten aineiden vaikutuksista kaloihin Pekka J. Vuorinen Kalan altistumiseen vaikuttavia tekijöitä... Kalan fysiologia ja anatomia Vaihtolämpöisyys, poikilotermia Kidushengitys hengitys, ionisäätely

Lisätiedot