= ( 1) 2 u tt (x, t) = u tt (x, t)

Samankaltaiset tiedostot
MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

Osittaisdifferentiaaliyhtälöt

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

Luento 9: Yhtälörajoitukset optimoinnissa

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

6. Toisen ja korkeamman kertaluvun lineaariset

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Matematiikan tukikurssi

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Matematiikan tukikurssi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

1 Sisätulo- ja normiavaruudet

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

(d) f (x,y,z) = x2 y. (d)

802320A LINEAARIALGEBRA OSA II

y + 4y = 0 (1) λ = 0

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Matemaattinen Analyysi

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

f(x) f(y) x y f f(x) f(y) (x) = lim

JAKSO 2 KANTA JA KOORDINAATIT

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Toispuoleiset raja-arvot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

Harjoitus 1, tehtävä 1

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Matematiikan peruskurssi 2

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

Matematiikan tukikurssi

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Matematiikan tukikurssi

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Lebesguen mitta ja integraali

Kompleksianalyysi viikko 3

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

Kuvaus. Määritelmä. LM2, Kesä /160

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

Insinöörimatematiikka D

Miten osoitetaan joukot samoiksi?

Reaalilukuvälit, leikkaus ja unioni (1/2)

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

12. Derivointioperaattoreista geometrisissa avaruuksissa

H7 Malliratkaisut - Tehtävä 1

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Matematiikan tukikurssi

Algebra I, harjoitus 5,

sin(x2 + y 2 ) x 2 + y 2

Johdatus reaalifunktioihin P, 5op

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Matematiikka B3 - Avoin yliopisto

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Matematiikan tukikurssi

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

Matematiikan tukikurssi

1.7 Gradientti ja suunnatut derivaatat

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Luento 2: Liikkeen kuvausta

MATP153 Approbatur 1B Harjoitus 5 Maanantai

Shrödingerin yhtälön johto

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Transkriptio:

Harjoitukset 6, syksy 017 1. Osoita, ettei ajan suunnalla ole merkitystä aaltoyhtälössä: Jos u on ratkaisu, niin U(x, t) = u(x, t) on myös ratkaisu (toisin kuin lämpöyhtälön tapauksessa). Todistus. Funktion u (standardimuotoinen) aaltoyhtälö on muotoa (x, t) u(x, t) = 0, t (x, t) Rn (, ). Derivoinnin ketjusäännön perusteella funktion U aikaderivaatalle pätee U (x, t) = t t u(x, t) = t (( 1)u t(x, t)) = ( 1) u tt (x, t) = u tt (x, t) Vastaavasti paikkaderivaatoille saadaan Näin ollen U x (x, t) = u xjx j (x, t), j = 1,..., n. j U t (x, t) U(x, t) = u tt(x, t) u(x, t) = 0, eli myös U on aaltoyhtälön ratkaisu.. Miten yleinen aaltoyhtälö t c u = 0, missä c 0 on reaalinen vakio, saadaan standardimuotoon u = 0? t Miltä d Alembertin kaava näyttää yleiselle yhtälölle yksiulotteisessa tilanteessa? Oletetaan, että aaltoyhtälö t (x, t) c u(x, t) = 0 pätee. Merkitään U(x, t) = u(cx, t), jolloin paikkaderivaatoille saadaan ketjusäännöllä U x (x, t) = j x u(cx, t) = ( cuxj (cx, t) ) j x j = c u xjx j (cx, t), j = 1,..., n. 1

Harjoitukset 6, syksy 017 Aikaderivaatalle puolestaan saadaan Näin ollen U t (x, t) = u tt(cx, t). U t (x, t) U(x, t) = u tt(cx, t) c u(cx, t) = 0, eli U toteuttaa standardimuotoisen aaltoyhtälön. Yleinen aaltoyhtälö saadaan tässä siis standardoitua skaalaamalla paikkamuuttujaa. Skaalauksen voisi tietysti tehdä vaihtoehtoisesti aikamuuttujalle muodossa U(x, t) = u(x, t/c). d Alembertin kaava standardimuotoiselle aaltoyhtälölle on yksiulotteisessa tilanteessa G(x + t) + G(x t) U(x, t) = + 1 x+t H(y) dy, x t jossa G on U:n alkupoikkeama ja H on U:n alkunopeus. Olkoot g ja h vastaavasti u:n alkupoikkeama sekä alkunopeus, jolloin ja H(x) = U t Siten funktiolle u saadaan u(x, t) = U(x/c, t) = G(x) = U(x, 0) = u(cx, 0) = g(cx) = = u (x, 0) = (cx, 0) = h(cx). t G(x/c + t) + G(x/c t) g(x + ct) + g(x ct) g(x + ct) + g(x ct) + 1 + 1 c + 1 x/c+t x/c t x/c+t x/c t x+ct x ct H(y) dy h(cy) dy h(z) dz, jossa tehtiin muuttujanvaihto z = cy. Näin ollen yleisen yhtälön d Alembertin kaava on g(x + ct) + g(x ct) u(x, t) = + 1 x+ct h(y) dy. c x ct 3. Oletetaan, että F, G C (R). (i) Näytä, että on yksiulotteisen aaltoyhtälön ratkaisu. u(x, t) = F (x + t) + G(x t) (ii) Osoita, että kaikki d Alembertin kaavan antamat ratkaisut u C (R (0, )) alkuarvoilla g C(R) ja h C(R) ovat tätä muotoa joillekin sopiville funktioille F ja G.

Harjoitukset 6, syksy 017 (i) Todistus. Ketjusäännöllä saadaan ja x (x, t) = F (x + t) + G (x t) t (x, t) = F (x + t) + ( 1) G (x t) = F (x + t) + G (x t). Näin ollen t (x, t) u (x, t) = 0, x joten u on yksiulotteisen aaltoyhtälön ratkaisu. (ii) Todistus. Jokainen d Alembertin kaavan antama ratkaisu on muotoa u(x, t) = g(x + t) + g(x t) + 1 x+t x t h(y) dy, missä g C (R) ja h C 1 (R). Koska h on C 1 -funktio, integraalifunktio H(x) := x 0 h(y) dy on C -funktio. d Alembertin kaavaa muokkaamalla saadaan g(x + t) + g(x t) H(x + t) H(x t) u(x, t) = + g(x + t) + H(x + t) g(x t) H(x t) = + = F (x + t) + G(x t), jossa siis F = (g + H)/ ja G = (g H)/ ovat C -funktioita koska sekä g että H ovat C -funktioita. 4. Osoita, että kolmiulotteisen radiaalisen aaltoyhtälön ratkaisulle u(r, t) pätee ja päättele ratkaisun yleinen muoto u tt 1 r r (r u r ) = 0, (ru) tt = (ru) rr u(r, t) = 1 (F (r + t) + G(r t)). r 3

Harjoitukset 6, syksy 017 Todistus. Derivoinnin tulosäännön avulla lasketaan (ru) rr = r (u + ru r ) = u r + u r + ru rr = u r + ru rr = 1 r (ru r + r u rr ) = 1 r r(r u r ) = r 1 r r(r u r ) = ru tt = (ru) tt. Toiseksi viimeinen yhtälö seuraa tiedosta että u on radiaalisen aaltoyhtälön ratkaisu. Lasketun perusteella funktio ru toteuttaa yksiulotteisen aaltoyhtälön joukossa [0, ] (0, ). Halutaan käyttää edellisen tehtävän esityskaavaa yksiulotteisen aaltoyhtälön ratkaisulle. Tämä ei suoraan onnistu koska ru ei ole aluksi määritelty kun r < 0. Peilataan funktio ru origon suhteen kuten luentomonisteessa. Näin määritelty funktio on C ja aaltoyhtälön ratkaisu koko joukossa R (0, ) koska (ru) rr (0, t) = (ru) tt (0, t) = 0. Näin ollen ru:n pariton laajennus joukkoon R (0, ), ja erityisesti ru itse voidaan esittää muodossa ru(r, t) = F (r + t) + G(r t), josta saadaan u(r, t) = 1 (F (r + t) + G(r t)). r 5. Ratkaise edellisen tehtävän avulla alkuarvo-ongelma (x, t) u(x, t) = 0, t (x, t) R3 (0, ), u(x, 0) = 1/(1 + x ), x R 3, u t (x, 0) = 0, x R3. Etsitään yhtälölle radiaalista ratkaisua edellisen tehtävän avulla. Funktion ru alkupoikkeama on g(r) = r/(1+r ) ja alkunopeus h(r) = r 0 = 0. Tehtävän 3 (ii) perusteella on tässä tilanteessa H = 0 ja F = G = g/, joten tehtävän 4 perusteella ratkaisu saadaan muodossa u(r, t) = 1 r (F (r + t) + G(r t)) = 1 (g(r + t) + g(r t)) r = 1 ( ) r + t r 1 + (r + t) + r t 1 + (r t). 4

Harjoitukset 6, syksy 017 Sieventämällä saadaan u(r, t) = 1 ( (r + t) + (r + t)(r t) + (r t) + (r t)(r + t) ) r (1 + (r + t) )(1 + (r t) = 1 ( ) r + (r + t + r t)(r + t)(r t) r (1 + r + t + rt)(1 + r + t rt) = 1 + r t (1 + r + t ) 4r t. Kirjoitetaan ratkaisu vielä x:n avulla muodossa u(x, t) = 1 + x t (1 + x + t ) 4 x t, (x, t) R3 [0, ). 6. Oletetaan, että F C (R) ja määritellään u : R n (0, ) R, u(x, t) = F (ω x ct), missä ω B(0, 1) ja c 0 on reaalinen vakio. Piste tarkoittaa tavallista euklidista sisätuloa. Näytä, että u on yhtälön t c u = 0 ratkaisu joukossa R n (0, ). Miksi näitä ratkaisuja voidaan kutsua tasoaalloiksi? Todistus. Lähdetäänpä taas derivoimaan. Huomioiden ω x = ω 1 x 1 + + ω n x n saadaan ketjusäännöllä kaikilla j = 1,..., n josta edelleen x j u (x, t) = (ω x ct) F (ω x ct) = ω j F (ω x ct), x j x j (x, t) = ω j F (ω x ct) = ω j (ω x ct) F (ω x ct) x j x j = ω j F (ω x ct). Muuttujan t suhteen puolestaan saadaan u t (x, t) = t (ω x ct) F (ω x ct) = cf (ω x ct), 5

Harjoitukset 6, syksy 017 josta edelleen t (x, t) = c t F (ω x ct) = c t (ω x ct) F (ω x ct) = c F (ω x ct). Laskemalla yhteen saadaan kaikilla (x, t) R n (0, ) t (x, t) c u(x, t) = c F (ω x ct) c n ωj F (ω x ct) j=1 = c (1 ω )F (ω x ct) = 0, sillä ω = 1 kun ω B(0, 1). Siispä u on yhtälön ratkaisu joukossa R n (0, ). t c u = 0 Yllä olevan muodon ratkaisuja u kutsutaan tasoaalloiksi, sillä ne etenevät n 1- ulotteisena (hyper)tasona R n :ssä. Tämän näkee huomaamalla, että funktion u(x, t) arvo on kullakin hetkellä t sama (ainakin) niissä pisteissä x, joissa ω x ct on jokin vakio, eli vektoria ω vastaan kohtisuorassa olevilla tasoilla. Tällainen tasoaalto etenee vektorin ω suuntaan nopeudella c. 6