75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä. Sähkömagneettisen säteilyn liikemäärä havaitaan ns. säteilypaineena. Irradianssi Sähkömagneettisen aallon intensiteetti eli irradianssi saadaan ns. Poyntingin vektorin S= e c 2 E B, e =tyhjiön permittiivisyys itseisarvon (siis pituuden) S = S aikakeskiarvona I = S. (4.3.1) Itse vektori S osoittaa energian virtaussuuntaan. Poyntingin vektorin "keksi" brittifyysikko John Poynting (1852-1914). Harmonisen aallon irradianssi Sovelletaan tulosta (4.3.1) positiivisen x-akselin suuntaan etenevään lineaarisesti polarisoituneeseen (E- ja B-kenttien suunnat kiinnitetty) harmoniseen aaltoon (ks. esimerkki sivulla 71): Poyntingin vektori saa muodon ì ïe( x, t) = E ˆ sin( kx-w t) j í ïîb( x, t) = B ˆ sin( kx-w t) k 2 2 2 S= ec E B= e ˆ ˆ c EBsin ( kx- wt) é ë j kù û 2 2 = e ˆ c EBsin ( kx-wt) i, jonka itseisarvoksi tulee S = e c E B kx- wt. 2 sin 2 ( )
76 Tämä on hetkellinen energiavirta pinta-alayksikköä kohti aikayksikössä (hetkellinen teho pinta-alayksikköä kohti, W/m 2 ). Koska E ja B vaihtelevat nopeasti (optisella alueella taajuudella 1 14 Hz - 1 15 Hz), Poyntingin vektorin suuruus vaihtelee nopeasti ajan funktiona ja hetkellistä arvoa ei pystytä käytännössä mittaamaan. Irradianssi onkin määritelty aikakeskiarvona (4.3.1) I = S = e c E B kx- t. 2 2 sin ( w ) 2 Trigonometristen funktioiden neliöiden, niin sin f () t :n kuin 2 cos f () t :nkin, aikakeskiarvot ovat arvoltaan 1/2 (laskuharjoitus), joten 1 2 I= e ceb. 2 joka voidaan kirjoittaa relaation B = E / c nojalla muotoon 1 2 I = ece. (4.3.2) 2 Voidaan osoittaa, että tulos (4.3.2) pätee yleisesti sähkömagneettisille aalloille, ts. ei ainoastaan harmonisille aalloille. Tulos kertoo myös, että sähkömagneettisesta aallosta tarvitsee tarkastella vain toista komponenttia, tavallisesti sähkökenttää. Magneettikenttää tarvitaan vain harvoin ja aina tarvittaessa se voidaan kirjoittaa näkyviin lähtien tunnetusta sähkökennttäkomponentista. Esimerkki: Radioaseman keskimääräinen teho on 5 kw. Oletetaan, että teho jakautuu tasaisesti maan pinnan yläpuoliseen puoliavaruuteen (ks. kuva). Laske amplitudit E ja B, jotka havaitaan 1 km:n korkeudella lentävässä satelliitissa.
77 Ratkaisu: Irradianssi (4.3.2) on keskimääräinen teho pinta-alayksikköä kohti: josta missä E I = P, AV 2 ecpr 3 P 1 AV 2 = = e 1 2 ce, 2 (4 pr ) 2 P AV = 5 1 W -12 e = 8.854 1 AsV -1 m -1 8 c = 2.998 1 m/s 3 r = 1 1 m. Sähkökentän amplitudiksi tulee E WVms = 2.449 1» 2.4 1 V/m (W=VA) m Asm -2-2 2 ja magneettikentän amplitudille saadaan B -2 E 2.449 1 V/m -11 Vs -11 = = = 8.169 1» 8.2 1 8 2 c 2.998 1 m/s m T. Kommentti: Tässä sähkökentän amplitudi E on suuruusluokaltaan sitä, mitä havaitaan tavallisissa sähkökokeissa laboratorioissa. Magneettivuon tiheys sitävastoin on hyvin heikko. Tästä johtuen monet sähkömagneettisen aallon havainnointiin tarkoitetut ilmaisimet (detektorit) toimivat mittaamalla nimenomaan sähkökentän aiheuttamaa vastetta anturissa.
78 Säteilypaine Vuonna 1619 Johannes Kepler esitti, että komeetan pyrstö kääntyy aina poispäin Auringosta, koska Auringon valo aiheuttaa siihen paineen. Sen ajan laboratoriokokeissa tällaista valopainetta ei kuitenkaan pystytty havaitsemaan, onhan kysymys erittäin heikoista voimista. Ajatus säteilypaineesta vaipui unholaan. Vuonna 1873 Maxwell pystyi osoittamaan teoreettisesti, että sähkömagneettinen aalto todellakin kohdistaa materiaaliin paineen. Kun sähkömagneettinen aalto kohtaa materiaalin pinnan, se vuorovaikuttaa materiaalissa olevien varausten kanssa. Riippumatta siitä absorboituuko vai heijastuuko aalto, se kohdistaa varauksiin voimia, ja siten voiman itse pintaan. Esimerkiksi johdemateriaaliin aallon sähkökenttä generoi virtoja, jotka kytkeytyvät aallon magneettikenttään voimien välityksellä. Voimien suuruus voidaan laskea sähkömagneettisen teorian avulla. Kun aalto tulee pintaan kohtisuorasti ja absorboituu siihen täydellisesti, säteilypaineen P rad keskimääräiseksi arvoksi saadaan I Prad =, (4.3.3) c missä I on irradianssi. Tämä sama paine kohdistuu luonnollisesti myös säteilyn lähteeseen aallon "poistuessa" siitä. Jos valaistu pinta on täysin heijastava, tuleva valo saapuu nopeudella + c ja heijastuva aalto lähtee nopeudella - c. Tämä vastaa kaksinkertaista liikemäärän muutosta verrattuna absorptioon, joten P rad = 2 I. (4.3.4) c
79 Esimerkki: Auringon valon irradianssi juuri ilmakehän ulkopuolella on noin 1.4 kw/m 2. Maata kiertävän satelliitin aurinkopaneelien kokonaispinta-ala on 4. m 2. Oletetaan, että auringon valo osuu paneeleihin kohtisuorasti ja että paneelit absorboivat valon täydellisesti. Laske millä keskimääräisellä teholla energiaa absorboituu ja säteilypaineeseen liittyvä voima. Ratkaisu: Irradianssi (teho pinta-alayksikköä kohti) on Keskimääräiseksi tehoksi laskemme P 3 I = 1.4 1 W/m 2. 3 2 2 3 = IA = (1.4 1 W / m )(4.m ) = 5.6 1 W = 5.6 kw. Säteilypaine on 3 2 I 1.4 1 W / m 6 6 rad 8 4.666 1 - Pa 4.7 1 - P = = =» Pa. c 3. 1 m/s Kokonaisvoimaksi F tulee F = P A= =» -6 2-5 -5 rad 4.666 1 Pa 4.m 1.866 1 N 1.9 1 N Energiaa absorboituu huomattavan suurella teholla. Osa muutetaan sähkösi satelliitin laitteita varten ja loput muuttuu paneleissa lämmöksi joko suoraan tai valokennojen epätäydellisyyden takia (hyötysuhde ei ole 1%). Säteilyn aiheuttama voima vastaa suolahitusen painoa maan pinnalla. Ajan mittaan näinkin pieni, mutta jatkuvasti vaikuttava voima saattaa aiheuttaa ongelmia, jos rataa ei korjata aika ajoin.
8 4.4 POLARISAATIO Edellä olemme todenneet, että sähkömagneettiseen aaltoon liittyvät kentät ovat vektorisuureita, siten että jokaisessa pisteessä sähkökenttä, magneettikenttä ja Poyntingin vektori, joka kertoo aallon etenemissuunnan, ovat kohtisuorassa toisiaan vastaan ja vielä siten, että E B osoittaa aallon etenemissuuntaan. Siten sähkömagneettinen aalto on yksikäsitteisesti määrätty, kun esimerkiksi sähkökenttä on annettu. Tarkastellaan esimerkkinä positiivisen z-akselin suuntaan etenevää sähkömagneettista aaltoa, jonka sähkökenttä värähtelee x-akselin suunnassa: E= E sin( kz-w t)ˆi. Tähän liittyvä magneettikenttä on muotoon B= 1 E ˆ sin( kz-w t) j c ja Poyntingin vektoriksi tulee S= e c E B= e ce sin ( kz -wt)ˆ k. 2 2 2 Sähkömagneettisen aallon ns. polarisaation suunta (polarisaatio) on sähkökentän suunta. Polarisaatio antaa käytännössä suunnan sille voimalle (Lorentz-voimalle), jonka sähköisesti varattu hiukkanen kokee ollessaan aallon vaikutuksen alaisena. Lorentz-voimassa F = q( E + v B), missä q on hiukkasen varaus ja v sen nopeus, magneettikentän antama osuus q v B on olematon ei-relativistisilla nopeuksilla. Monet optiset sovellukset perustuvat sähkömagneettisen aallon polarisaation luonteeseen ja sen suunnan manipuloimiseen.
81 Esimerkki: Positiivisen z-akselin suuntaan etenevällä aallolla E( z, t) = E sin( kz-wt)ˆi sähkökenttä E värähtelee x- suunnassa ja pysyy koko ajan xz-tasossa. Aalto on lineaarisesti polarisoitunut x-suuntaan. Tarkastellaan positiivisen z-akselin suuntaan etenevää aaltoa yleisemmin. Aallon sähkökentän suunta on xytasossa (ks. kuva) ja se voidaan kirjoittaa kahden komponentin summana E(,) zt = E(,) ztˆi+ E(,) ztˆj missä komponentit ovat x ìex( z, t) = Exsin( kz-wt) í îey( z, t) = E ysin( kz- wt+ e) y Tässä E x ja E y ovat amplitudit x- ja y-suunnassa ja e on komponenttien välinen mahdollinen vaihe-ero. Vaihe-ero määrää polarisaation luonteen. Lineaarinen polarisaatio Jos vaihe-ero on nolla, ts. e =, komponenttiaallot ovat samassa vaiheessa ja kokonaisaalloksi tulee E( z, t) = ( E ˆi+ E ˆj )sin( kz-wt). (4.4.1) x y Sähkökentällä on siis vakioamplitudi ( E ˆi+ E ˆj ), x y joka osoittaa aina samaan suuntaan. Amplitudin suuruudeksi tulee
82 E = E + E, 2 2 x y ja värähtelysuunnan kulmaksi x-akselista mitattuna (ks. kuva) tan a = E / E. y x Kuvassa valo tulee kohti katsojaa z-suuntaan. Jos vaihe-ero on e = p, voidaan kirjoittaa E( z, t) = ( E ˆi-E ˆj )sin( kz-wt), (4.4.2) x y koska sin( j+ p) = sinjcosp + cosjsinp =- sinj. Siis myös tällöin päädytään lineaarisesti polarisoituun aaltoon. Edelliseen verrattuna amplitudi on sama, mutta värähdyssuunta on kiertynyt. Ympyräpolarisaatio Toinen tärkeä erikoistapaus saadaan, kun komponenttiaaltojen vaihe-ero on p e =, 2 ja niillä on sama amplitudi, ts. Ex = Ey = E. Tällöin nimittäin, koska sin( j+ p / 2) = cosj, tulee E( z, t) = E [sin( kz- wt) ˆi+ cos( kz-wt) ˆj ]. (4.4.3) Tässä sähkökenttävektorin pituus säilyy 2 2 E = E sin ( kz - wt) + cos ( kz - wt) = E, mutta se pyörii, ts. on ympyräpolarisoitunut. Esimerkki: Tarkastellaan aallon (4.4.3) sähkökenttävektorin käyttäytymista kiinnitetyssä avaruuden pisteessä z =. Vektori on E = E é ˆ ˆ ë sin( - wt) i + cos( -wt) j ù û. Koska sin( - a) =- sina ja cos( - a) = cosa ja kulmataajuus voidaan kirjoittaa muodossa w = 2pn = 2 p /T, saadaan
é æ2p öˆ æ2p ö E ˆù E= ê - sin ç t i+ cosç t j è T ø è T ø ú ë û Lasketaan eri ajan hetkillä: Kun t =, E = E é ˆ ˆ ˆ ë i + 1 j ù û =+ E j Kun t = T/4, E = E é ˆ ˆ ˆ ë - 1 i + j ù û =-E i Kun t = T/2, E = E é ˆ ˆ ˆ ë i - 1 j ù û =-E j 83 Kuvassa sähkökenttävektori kiertää vastapäivään ajan kuluessa. Kun sähkökenttävektori kiertää kiinnitetyssä paikassa vastapäivään, kun valo tulee kohti katsojaa, valo on ns. vasenkätisesti ympyräpolarisoitunutta. Jos e =- p /2 ja Ex = Ey = E, aalto on oikeakätisesti ympyräpolarisoitunut (sähkökenttä kiertää kiinnitetyssä paikassa myötäpäivään, kun aalto tulee kohti katsojaa) ja E( z, t) = E [sin( kz-wt) ˆi-cos( kz-wt) ˆj ]. (4.4.4) Elliptinen polarisaatio Yleisessä tapauksessa, kun vaihe-ero on mielivaltainen ja osa-aaltojen amplitudit erisuuria, sähkökenttä pyörii ja samalla sen pituus
84 muuttu. Sähkäkenttävektorin kärki piirtää ellipsin ja puhutaan elliptisesti polarisoituneesta aallosta. Molemmat erikoistapaukset edellä (lineaarinen- ja ympyräpolarisaatio) ovat elliptisen polarisaation erikoistapauksia. Esimerkki: Kirjoita lauseke positiivisen x-akselin suuntaan etenevälle lineaarisesti polarisoituneelle aallolle, jonka amplitudi on E ja sähkökenttävektori värähtelee kulmassa 3 xy-tasoon nähden. Lisäksi sähkökentän on oltava positiivisessa maksimissaan (siis arvossa E ) paikassa x = ajan hetkellä t =. Ratkaisu: Aalto etenee x-akselin suuntaan, joten sähkökentän suunta on yztasossa. Yleinen muoto on E= ( E ˆj+ E k ˆ)sin( kx- wt+ j ), missä y z Paikassa x = ajan hetkellä t = aalto on maksimissa, ts. sin( kx- wt+ j) = sinj = 1 Þ j = p /2. Vastauseksi kirjoitamme: æ 3ˆ 1 ö E= E ˆ ç j+ k sin( kx- wt+ p / 2). è 2 2 ø
85 Esimerkki: Osoita, että sama-amplitudisten oikea- ja vasenkätisten ympyräpolarisoituneiden aaltojen summa antaa lineaarisesti polarisoituneen aallon. Ratkaisu: E ˆ ˆ R = E[sin( kz-wt) i-cos( kz-wt) j ], missä R on right (oikea) E ˆ ˆ L = E[sin( kz- wt) i+ cos( kz-wt) j ], missä L on left (vasen) ER + ΕL = (2 Eˆ i )sin( kz-w t). Tulos on lineaarisesti polarisoitunut. 4.5 SÄHKÖMAGNEETTINEN SPEKTRI Sähkömagneettiset aallot kattavat hyvin laajan taajuusalueen. Niitä 24 on havaittu ainakin taajuusvälillä : 1 : 1 Hz. Taajuuksilla ei ole varsinaista teoreettista ylärajaa. Kuvassa seuraavalla sivulla on esitetty sähkömagneettinen spektri sekä taajuus- että aallonpituusasteikolla. Muunnos asteikkojen välillä toteutetaan yhtälöllä c= l f, missä c = 299792458 m/s. Taajuudet (ja aallonpituudet) jaetaan erillisiin osa-alueisiin lähinnä sen mukaan miten aallot syntyvät ja/tai miten niitä havaitaan. Alueiden väliset rajat eivät ole tarkkoja, etenkin kun alueet jaetaan tavallisesti vielä osa-alueisiin.
86
Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa (optiikassa) olemme erityisesti kiinnostuneita sähkömagneettisen spektrin optisesta alueesta, jonka katsotaan käsittävän: - ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR) Kannattaa huomata, että näkyvä alue kattaa vain hyvin kapean kaistan spektristä, optisen alueen keskipaikkeilla. Aallonpituusrajat ovat 4 nm ja 7 nm, jotka vastaavat taajuuksia 75 THz ja 43 THz. Ihminen aistii näkyvällä alueella eri aallonpituudet eri väreinä seuraavan taulukon mukaisesti: 4 44 nm : violetti 56 59 nm : keltainen 44 48 nm : sininen 59 63 nm : oranssi 48 56 nm : vihreä 63 7 nm : punainen Tavallinen valkoinen valo sisältää kaikkia näkyvän alueen aallonpituuksia. Erilaisten spektrilamppujen ja/tai suotimien avulla voidaan tuottaa valoa, joka sisältää aaltoja vain hyvin kapealta aallonpituuskaistalta (band of wavelengths). Tällainen valo on lähes monokromaattista (yksiväristä). Absoluuttisen monokromaattinen valo, joka siis sisältäisi vain yhtä aallonpituutta, on saavuttamaton idealisaatio. Kun sanomme esimerkiksi, että kokeessa käytetään
88 monokromaattista valoa, jonka aallonpituus on l = 55 nm, tarkoitamme oikeastaan, että valo sisältää aallonpituuksia enemmän tai vähemmän kapealta aallonpituuskaistalta 55 nm:n ympäristöstä. Laser-valo on tavallisesti hyvin monokromaattista, mutta ei sekään täydellisesti. Näkyvän alueen ulkopuolinen alue on ihmiselle vähintäänkin yhtä tärkeä kuin näkyvä alue. Esimerkiksi maailmanlaajuinen viestintäjärjestelmä (radio, tv) perustuu radioaaltoihin. Mikroaaltoalueen säteilyä käytetään viestinnän (kännykät) lisäksi mm. säätutkissa. Monet kamerat lähettävät infrapunasäteilyä ja mittaavat kohteesta heijastuneen aallon kulkuajan perusteella etäisyyden ja säätävät sen tiedon nojalla fokuksen automaattisesti. Ultraviolettialueen säteilyn aallonpituus on lyhyempää kuin näkyvän valo ja sitä hyödynnetään erilaisissa tarkkuusaparaateissa (mm. silmäkirurgiassa). Röntgensäteiden energia riittää jo ihmisen pehmytkudosten läpäisyyn ja tällä ominaisuudella on paljon sovellutuksia mm. lääketieteissä. Gammasäteilyä syntyy luonnossa esimerkiksi radioaktiivisuuden seurauksena. Näitä hyvin energisiä säteitä käytetään esimerkiksi lääketieteessä tuhoamaan syöpäsoluja. Esimerkki: Hämärässä ihmisen silmän pupillin halkaisija on 6.2 mm ja silmä on herkimmillään aallonpituudella 51 nm. Silmä aistii vielä valon, jonka irradianssi on.65 pw/m 2. Kuinka monta fotonia saapuu verkkokalvolle sekunnissa? Ratkaisu: -19 Yhden fotonin energia = hn = hc / l = 3.895 1 J, arvoilla -34 8-9 h = 6.626 1 Js, c = 2.998 1 m/s ja l = 51 1 m. Silmään saapuu 12 3 2.65 1 - p (6.2 1 - / 2) W = 1.962 1-17 joulea sekunnissa. Tämä tarkoittaa -17 1.962 1 J/s = 5.37 s -1» 5 fotonia sekunnissa. -19 3.895 1 J