kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. A1. (a) Laske 3,25% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0017579038? (c) Laske tasaerälaia auiteetti, ku laia määrä o 2 000 e, laia-aika o 15 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 4,15%. A2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. A3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 25 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 700 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 8,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). A4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 1.55. Tuottee hita o yt 10,25 e/kpl ja se kysytä o 1 200 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa lasketaa 0.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?
Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö Korkokaavat d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q
kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe 1. välikoe torstaia 16.2.2017 B Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. B1. (a) Laske 2,17% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0026930832? (c) Laske tasaerälaia auiteetti, ku laia määrä o 1 000 e, laia-aika o 18 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 3,15%. B2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. B3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 30 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 700 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 5,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). B4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 2.15. Tuottee hita o yt 13,50 e/kpl ja se kysytä o 1 000 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa ostetaa 0.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?
Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö Korkokaavat d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q
kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe 1. välikoe torstaia 16.2.2017 C Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. C1. (a) Laske 4,05% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0031369734? (c) Laske tasaerälaia auiteetti, ku laia määrä o 2 400 e, laia-aika o 9 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 2,15%. C2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. C3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 20 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 500 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 4,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). C4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 1.45. Tuottee hita o yt 15,50 e/kpl ja se kysytä o 1 500 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa lasketaa 1.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?
Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö Korkokaavat d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q
kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe D1. välikoe torstaia 16.2.2017 D Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. D1. (a) Laske 5,35% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0034103014? (c) Laske tasaerälaia auiteetti, ku laia määrä o 1 800 e, laia-aika o 16 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 5,15%. D2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. D3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 23 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 600 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 6,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). D4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 1.80. Tuottee hita o yt 13,50 e/kpl ja se kysytä o 1 100 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa lasketaa 1.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?
Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a Korkokaavat yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q