Talousmatematiikan perusteet, ORMS1030

Samankaltaiset tiedostot
Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet

Talousmatematiikan perusteet, ORMS1030

Introduction to Mathematical Economics, ORMS1030

Talousmatematiikan perusteet, ORMS1030

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista

Talousmatematiikan perusteet

Talousmatematiikan perusteet

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi, L5

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).

Rajatuotto ja -kustannus, L7

diskonttaus ja summamerkintä, L6

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu Työhuone M231

LIIKE-ELÄMÄN MATEMATIIKKA 2 MAT2LH001

Tasaerälaina ja osamaksukauppa

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030

Tasaerälaina ja osamaksukauppa

Korkolasku ja diskonttaus, L6

Talousmatematiikan perusteet

Päähakemisto Tehtävien ratkaisut -hakemisto Vuosi Indeksi , ,7. a) Jakamalla 1, ,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto Vuosi Indeksi , ,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Talousmatematiikka (3 op)

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Matemaattinen Analyysi

p'ø):{. P: f (ù: 10 Thlousmatematiikan perusteet, orrvrs ro:o - 5) - O'\lq - 4x, kun g(x) :7x2l5x-3, kun ft(.r) :3x. (x2 f'(3), g'(*), h'(*),

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Talousmatematiikan perusteet, ORMS1030

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

Talousmatematiikan perusteet, ORMS1030

Liike-elämän matematiikka Opettajan aineisto

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

Talousmatematiikan perusteet

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

Matematiikan perusteet taloustieteilij oille I

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Matemaattinen Analyysi

3 Lainat ja talletukset

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b

Osamaksukauppa, vakiotulovirran diskonttaus, L8

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.

Jaksolliset suoritukset, L13

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Systemteoriförrochnu systemi en föränderlig värld Brändö, Åland maj 2013

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Talousmatematiikan perusteet

Tehtäviä neliöiden ei-negatiivisuudesta

BM20A Integraalimuunnokset Harjoitus 8

Integraalifunktio. Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA kesäkuuta / 5

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Talousmatematiikan perusteet

3 Lukujonot matemaattisena mallina

Malliratkaisut Demot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Kertausta Talousmatematiikan perusteista Toinen välikoe

10.5 Jaksolliset suoritukset

Esimerkki 1 Ratkaise differentiaaliyhtälö

Talousmatematiikan perusteet: Luento 19

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = = =

Kohdeyleisö: toisen vuoden teekkari

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Kertausta Talousmatematiikan perusteista Toinen välikoe

Talousmatematiikka (3 op)

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

j = I A = 108 A m 2. (1) u kg m m 3, (2) v =

LUKION OPPIKIRJAT KAKSOISTUTKINNOSSA OTSOLASSA LUKUVUONNA JAKSOITTAIN

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

4. www-harjoitusten mallivastaukset 2017

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Laaja matematiikka 2 Kertaustehtäviä Viikko 17/ 2005

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx

Talousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen

Transkriptio:

kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. A1. (a) Laske 3,25% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0017579038? (c) Laske tasaerälaia auiteetti, ku laia määrä o 2 000 e, laia-aika o 15 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 4,15%. A2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. A3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 25 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 700 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 8,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). A4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 1.55. Tuottee hita o yt 10,25 e/kpl ja se kysytä o 1 200 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa lasketaa 0.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?

Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö Korkokaavat d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q

kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe 1. välikoe torstaia 16.2.2017 B Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. B1. (a) Laske 2,17% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0026930832? (c) Laske tasaerälaia auiteetti, ku laia määrä o 1 000 e, laia-aika o 18 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 3,15%. B2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. B3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 30 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 700 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 5,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). B4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 2.15. Tuottee hita o yt 13,50 e/kpl ja se kysytä o 1 000 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa ostetaa 0.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?

Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö Korkokaavat d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q

kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe 1. välikoe torstaia 16.2.2017 C Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. C1. (a) Laske 4,05% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0031369734? (c) Laske tasaerälaia auiteetti, ku laia määrä o 2 400 e, laia-aika o 9 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 2,15%. C2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. C3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 20 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 500 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 4,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). C4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 1.45. Tuottee hita o yt 15,50 e/kpl ja se kysytä o 1 500 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa lasketaa 1.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?

Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö Korkokaavat d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q

kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe D1. välikoe torstaia 16.2.2017 D Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet tehtävä, ii käsittele kaikki se alakohdat. D1. (a) Laske 5,35% todellisee vuosikorkoo liittyvä kuukausikorkokata. (b) Mikä o todellie vuosikorko, ku kuukausikorkokata o 0.0034103014? (c) Laske tasaerälaia auiteetti, ku laia määrä o 1 800 e, laia-aika o 16 kuukautta, laia hoidetaa kuukausieriä, ja laiaa liittyvä todellie vuosikorko o 5,15%. D2. Yritys valmistaa eräällä tuotatolijallaa q tuotetta kuukaudessa. Valmistettava tuottee kysytäfuktio o p = 20 0.030q ja vastaava kustausfuktio o C(q) = 0.02q 2 + 5q + 100. Millä tuotao määrällä voitto o suuri mahdollie? Mikä o maksimivoitto. D3. Yrittäjä ostaa koee ja aloittaa uude tuotatolija. Koee ostohita o 23 000 e. Koee asetamie ja koekäyttö kestää kaksi kuukautta ja sitoo kaksi työtekijää, joide palkkameo aseusjaksolta o 2000e/kk/hlö. Aseusjakso jälkee alkaa tuotato, joka tuottaa yrittäjälle ettotuloa 600 e/kk. Mikä o projekti ykyarvo, ku lasketakorkoa o 6,00%(todellie vuosikorko)? Projekti koko kesto o 6 vuotta (70kk ettotuloa). D4. (a) (2p) Selitä lyhyesti saallisesti, mitä tarkoittaa ja mite lasketaa y: jousto x: suhtee. Voit ataa lausekkeeki, mutta tärkeämpää o yt ataa saallie kuvaus asiasta. b) (3p) Erää tuottee kysyä hitajousto o 1.80. Tuottee hita o yt 13,50 e/kpl ja se kysytä o 1 100 kpl/kk. Mite muuttuu tuottee kysytä, jos tuottee hitaa lasketaa 1.50 eurolla? c) (1p) Tuottee kysyä hitajousto o 2.10. Voiko tehtävässä aetuilla tiedoilla ratkaista, oliko hia muutos kaattava? Mite?

Kaavoja: Kysyä hitajousto: q p p q = jousto, MR = p ( ) 1 1 + kysyä hitajousto Iterpoloiti: Jaksolliset suoritukset f (x) f (x 0 ) + x x 0 x 1 x 0 ( f (x 1 ) f (x 0 )) prologoititekijä s,i = (1 + i) 1 i diskottaustekijä a,i = (1 + i) 1 kuoletuskerroi c,i = (1 + i) 1 Tasaerälaia ja osamaksukauppa auiteetti k = c,i K 0, osamaksuerä k = c,i (H h + m) Derivaatta ja 2. astee yhtälö d dx (ax ) = ax 1 ax 2 + bx + c = 0 x = b ± b 2 4ac 2a Korkokaavat yksikertaie korkolasku: K t = (1 + it)k 0 = (1 + p 100 t)k 0, ku 0 < t < 1 korokorkolasku: K t = (1 + i) t K 0, ku t = 1,2,3,... jatkuva korkolasku: K t = (1 + i) t K 0 = e ρt K 0, ku t > 1 ja (1 + i) = e ρ Summakaavat: (a 1 + (k 1)d) = (a 1 + a ), 2 a 1 q k 1 = a 1(1 q ) 1 q