Talousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen

Koko: px
Aloita esitys sivulta:

Download "Talousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen"

Transkriptio

1 Talousmatematiikan perusteet: Johdanto Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen

2 Kurssin tavoitteet Matematiikkaa hyödynnetään monilla kauppa- ja taloustieteen osaalueilla Esim. kassavirta-analyysi, tuotannon optimointi, optioiden hinnoittelu. Tällä kurssilla opiskelija Kehittää taitojaan matematiikan soveltamisessa taloustieteellisiin ongelmiin Saa teoreettisia perusteita myöhemmille opinnoille ja kauppa- ja taloustieteellisen kirjallisuuden lukemiseen. Saa valmiudet matemaattisten mallien rakentamiseen ja ratkaisemiseen Excel-ohjelmiston avulla. Eeva Vilkkumaa 1/2/2018 2

3 Aikataulu Luennot ( ja ) Ma salissa U1 o Huom 1! Maanantain luento siirretty perjantaille klo 9-12 o Huom 2! Maanantaina ja ei luentoja Ke salissa U1 Laskuharjoitukset ( ja ) Ke salissa U1 Harjoituksissa assistentti o Esittelee kotitehtävien ratkaisut ja o Auttaa tarvittaessa seuraavan kotitehtäväkierroksen kanssa. Osallistuminen opetustapahtumiin on vapaaehtoista Eeva Vilkkumaa 1/2/2018 3

4 Opetushenkilökunta Luennoitsija: TkT Eeva Vilkkumaa Luennot, välikokeet / tentit, suorituksiin liittyvät asiat Kurssiassistentti: TkK Teemu Seeve (teemu.seeve@aalto.fi) Laskuharjoitukset ja kotitehtävät Laitoksen nimi 1/2/2018 4

5 Viikko Aihe 1 Prosentti- ja korkolaskentaa. Lukujonot ja sarjat. 2 Funktioiden yleiset ominaisuudet. Funktiotyyppejä: lineaarinen ja paloittain lineaarinen funktio, interpolointi, polynomi-, potenssi-, eksponentti- ja logaritmifunktiot Käänteisfunktio, yhdistetty funktio, raja-arvot ja jatkuvuus. Yhden muuttujan funktioiden differentiaalilaskentaa: derivaatta ja toinen derivaatta. Lisää differentiaalilaskentaa: yhdistetyn funktion derivointi, tulon ja osamäärän derivointi, suhteellinen muutosnopeus ja jousto. Vektorit: käsitteet ja peruslaskusäännöt. Lineaarinen riippumattomuus ja vektorien virittämä avaruus. Matriisit: käsitteet ja peruslaskusäännöt. VÄLIKOE 1 Lisää matriiseista: lineaarikuvaus, determinantti, matriisin aste, käänteismatriisi. Lineaarinen optimointi: optimointitehtävän muodostaminen ja ratkaisu graafisesti / Excel Solverilla. Aktiiviset rajoitteet ja varjohinnat. Usean muuttujan funktioiden differentiaalilaskentaa: osittaisderivaatta, gradientti, osittainen suhteellinen muutosnopeus ja osittaisjousto. Rajoittamaton epälineaarinen optimointi: Hessen matriisi, ominaisarvot, matriisin definiittisyys. Rajoitettu epälineaarinen optimointi Lagrangen menetelmällä. Integraalilaskentaa: peruskäsitteet ja integrointisääntöjä tavallisille funktiotyypeille. 9 Lisää integraalilaskentaa: osittaisintegrointi ja sijoitusmenettely. 10 Lisää integraalilaskentaa: Määrätty ja epäoleellinen integraali, integroinnin sovelluksia. 11 Lisää integraalilaskentaa: Ensimmäisen kertaluvun separoituva differentiaaliyhtälö. VÄLIKOE 2 / TENTTI Laitoksen nimi

6 Kurssimateriaali Luentokalvot kattavat kurssin sisällön, mutta Etenkin itsenäisesti opiskelevat saattavat hyötyä lisälukemisesta: Knut Sydsæter and Peter Hammond (2012): Essential mathematics for economic analysis, 4th edition. Lukuvuoden luentomateriaali (MyCoursesin Materiaalisivulla) Eeva Vilkkumaa 1/2/2018 6

7 Suoritustapa Välikokeet / tentti VK 1: Ma klo 9-12 VK 2 / Kurssitentti: Pe 6.4. klo Kaksi uusintatenttiä (21.5. ja elo-syyskuu 2018) Kotitehtävät 11 palautettavaa kotitehtävää Palautus keskiviikkoisin klo mennessä MyCoursesiin Kotitehtäväpisteet ovat voimassa kaikkien v välikokeiden / tenttien yhteydessä Välikokeiden / tentin painoarvo kokonaisarvioinnissa on 70% tai 100% (parempi tulos jää voimaan). Lisäksi välikokeiden yhteenlasketun pistemäärän / tentin pistemäärän on oltava vähintään 50% maksimipistemäärästä. Eeva Vilkkumaa 1/2/2018 7

8 Arvosanajakauma v Välikokeet Tentit 45.0 % 45.0 % 40.0 % 40.0 % 35.0 % 35.0 % 30.0 % 30.0 % 25.0 % 25.0 % 20.0 % 20.0 % 15.0 % 15.0 % 10.0 % 10.0 % 5.0 % 5.0 % 0.0 % % Laitoksen nimi

9 Kotitehtäväpisteet vs. arvosana v % kotitehtäväpisteistä (47 kpl) 26-50% kotitehtäväpisteistä (15 kpl) 6 % 2 % 6 % 36 % 27 % 0 % 13 % 24 % 27 % 13 % 26 % 20 % % kotitehtäväpisteistä (20 kpl) % kotitehtäväpisteistä (155 kpl) 15 % 20 % 10 % 0 % 25 % 30 % 20 % 15 % 25 % 21 % 0 % 19 % Laitoksen nimi

10 Kotitehtäväpisteet vs. arvosana v Arvosana 0 (57 kpl) Arvosana 1 (21 kpl) Arvosana 2 (47 kpl) 30 % 0 % 24 % 23 % 56 % 3 % 11 % 19 % 57 % 62 % 6 % 9 % 0-25% 26-50% 51-75% % 0-25% 26-50% 51-75% % 0-25% 26-50% 51-75% % Arvosana 3 (47 kpl) Arvosana 4 (40 kpl) Arvosana 5 (25 kpl) 7 % 4 %6 % 7 % 10 % 5 % 4 0 % 83 % 78 % 96 % 0-25% 26-50% 51-75% % 0-25% 26-50% 51-75% % 0-25% 26-50% 51-75% % Laitoksen nimi

11 Suosituksia suorittamiseen Hyödynnä opetusta Käy luennoilla ja laskuharjoituksissa; kysy, jos et ymmärrä Käy BIZ-laskutuvassa (Y190c, ma-to 14-18, pe 14-17) Kysy ja tarjoa neuvoa MyCoursesin keskustelufoorumilla Laske kotitehtäviä itsenäisesti Matematiikka on lähtökohtaisesti soveltavaa, eikä sitä voi oppia malliratkaisuja pänttäämällä Mm. tästä syystä kotitehtävien malliratkaisuja ei jaeta, mutta jokaisen tehtävän voi ratkaista luentomateriaalin avulla Neuvon kysyminen kaverilta kannattaa, mutta kopioiminen kostautuu tentissä Satsaa välikokeisiin Pienempiä kokonaisuuksia on helpompi ottaa haltuun Laitoksen nimi

12 Kysymyksiä?

INFO / Matemaattinen Analyysi, k2016, L0

INFO / Matemaattinen Analyysi, k2016, L0 INFO / Matemaattinen Analyysi, k2016, L0 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke 14-16 Viikot 09-10 salissa F119 Ke 14-16 Viikot 11 salissa F140 Ke 14-16 Viikot 13-18

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17

Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17 Talousmatematiikan perusteet: Luento 18 Kertaus luennoista 11-17 Luennon sisältö Kertausluennolla käydään lyhyesti läpi kunkin 2. välikoealueeseen kuuluvan luennon ydinsisältö Täydellinen valmistautuminen

Lisätiedot

TUKEVA MATEMATIIKAN PERUSTEET

TUKEVA MATEMATIIKAN PERUSTEET TUKEVA MATEMATIIKAN PERUSTEET 6 OV KURSSI KTK/KTM-TUTKINTOA VARTEN YLEISESITTELY Tervetuloa Matematiikan perusteet -kurssille! Kurssin laajuus on kuusi opintoviikkoa ja sen sisällys kattaa sekä Matematiikan

Lisätiedot

Talousmatematiikan perusteet: Luento 19

Talousmatematiikan perusteet: Luento 19 Talousmatematiikan perusteet: Luento 19 Integraalin sovelluksia kassavirtaanalyysiin Differentiaaliyhtälöt Motivointi Edellisillä luennolla olemme oppineet integrointisääntöjä Tällä luennolla tarkastelemme

Lisätiedot

- Ilmoittaudu OODI:n kautta ainakin luentojen kohdalle, jotta olet mukana opintotoimiston listoilla.

- Ilmoittaudu OODI:n kautta ainakin luentojen kohdalle, jotta olet mukana opintotoimiston listoilla. Ohjeita Aikaisempaan versioon on tässä lisätty puuttuvat tiedot. - Ilmoittaudu OODI:n kautta ainakin luentojen kohdalle, jotta olet mukana opintotoimiston listoilla. - Kurssi etenee viikoittain niin, että

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2018 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto A! Yleistä Esitiedot:

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2016 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto Yleistä Esitiedot: (kurssi

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille:

Opetusperiodi:I, suunnattu hakukohteille: Kurssin nimi ja koodi Muut kommentit MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi Teknillinen fysiikka ja matematiikka käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Syksy 2015 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 27.10.2015 1 / 8 Kangaslampi Lineaarialgebra ja differentiaaliyhtälöt

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Johdatus ohjelmointiin 811122P Yleiset järjestelyt: Kurssin sivut noppa -järjestelmässä: https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu 0. Kurssin suorittaminen Tänä vuonna kurssin suorittaminen tapahtuu

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka Kurssin nimi ja koodi MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja sovelluksineen. Sisältö: vektorilaskentaa, matriisit

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu Johdatus ohjelmointiin 811122P Yleiset järjestelyt: Kurssin sivut noppa -järjestelmässä: https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu 0. Kurssin suorittaminen Tänä vuonna kurssin suorittaminen tapahtuu

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen

Lisätiedot

Tervetuloa! Matematiikka tutuksi

Tervetuloa! Matematiikka tutuksi Tervetuloa! Matematiikka tutuksi Tavoitteet Yritetään vastata seuraaviin kysymyksiin: Mitä matematiikassa tutkitaan ja mihin sitä tarvitaan? Mitä tarkoitetaan todistuksella ja mitä hyötyä on käsitteiden

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

PHYS-A0120 Termodynamiikka (TFM) Maanantai

PHYS-A0120 Termodynamiikka (TFM) Maanantai PHYS-A0120 Termodynamiikka (TFM) Maanantai 26.10.2015 Käytännönjärjestelyt Kurssin alkuosan henkilökunnasta Kurssi jakautuu kahteen osaan: ensimmäistä 3 viikkoa luennoi TkT Kati Miettunen ja jälkimmäistä

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

T Johdatus tietoliikenteeseen ja multimediatekniikkaan 5 op. Kevät 2013

T Johdatus tietoliikenteeseen ja multimediatekniikkaan 5 op. Kevät 2013 T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan 5 op Kevät 2013 Käytännön asioita Ilmoittaudu Oodissa, tarvitsemme listan palautusjärjestelmään Ajantasaisin tieto kurssin asioista aina

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Palautekysely tilastollisen signaalinkäsittelyn kurssiin

Palautekysely tilastollisen signaalinkäsittelyn kurssiin Palautekysely tilastollisen signaalinkäsittelyn kurssiin Palautteeseen ei tarvitse laittaa nimeä. Kysymyksiä on molemmilla puolilla paperia 1. Muihin kursseihin verrattuna tämä kurssi oli mielestäni Vaikein

Lisätiedot

TN-IIa (MAT22001), syksy 2017

TN-IIa (MAT22001), syksy 2017 TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa.

Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa. Ohjeita Lukuvuoden 2015-2016 talousmatematiikan perusteiden kurssi koostuu kahdesta osasta, joiden avulla tavoitellaan joinain aikaisempina vuosina toteutettua jakoa hitaammin etenevään andante-kurssiin

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

KJR-C2004 Materiaalitekniikka. Käytännön järjestelyt, kevät 2017

KJR-C2004 Materiaalitekniikka. Käytännön järjestelyt, kevät 2017 KJR-C2004 Materiaalitekniikka Käytännön järjestelyt, kevät 2017 Osaamistavoitteet Kurssin jälkeen opiskelija osaa: erotella ja selittää materiaalitekniikan alan käsitteet ja terminologian yhdistää materiaaliominaisuudet

Lisätiedot

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Matemaattiset menetelmät, syksy 2012 Lassi Korhonen, Oulun yliopisto, Matematiikan jaos 4.12.2012 1 Lähtökohta, opiskelijan näkökulma

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

Analyysi 1, kevät 2010

Analyysi 1, kevät 2010 Analyysi 1, kevät 2010 Peter Hästö 27. tammikuuta 2010 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa määritellä alkeistopologian käsitteet

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion

Lisätiedot

5 Usean muuttujan differentiaalilaskentaa

5 Usean muuttujan differentiaalilaskentaa 5 Usean muuttujan differentiaalilaskentaa Edellä on jo käsitelty monia funktioita, joissa lähtö- (ja/tai) maalijoukko on useampi- kuin 1-ulotteinen: Esim. A-, B- ja C-raaka-ainemäärien yhdistelmien x =

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Kon Hydrauliikka ja pneumatiikka Tutkimustehtävät - info

Kon Hydrauliikka ja pneumatiikka Tutkimustehtävät - info Kon-41.3023 Hydrauliikka ja pneumatiikka Tutkimustehtävät - info 1. Yleistä - Hydrauliikan ja Pneumatiikan tutkimustehtävät ja niihin sisältyvät laboratorioharjoitukset tehdään neljän (4) hengen ryhmissä,

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet orms.1030 Vaasan yliopisto / kevät 2011 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 12-13 huone D211/Tervahovi Sähköposti: matti.laaksonen@uwasa.fi

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2003 Aleksi Penttinen & Eeva Nyberg Tietoverkkolaboratorio Teknillinen korkeakoulu http://www.netlab.hut.fi/opetus/s38145/

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Tuloslaskenta (22C00400, 6 op)

Tuloslaskenta (22C00400, 6 op) Tuloslaskenta (22C00400, 6 op) OPETUSSUUNNITELMA 29.9.2017 Opettajanyhteystiedot Kurssin tiedot Luennot ja harjoitukset Kurssin asema KTK, erikoistumisopinnot Nimi Kari Toiviainen (TS2013) S-posti kari.toiviainen@aalto.fi

Lisätiedot

Tuloslaskenta (22C00400, 6 op)

Tuloslaskenta (22C00400, 6 op) Tuloslaskenta (22C00400, 6 op) OPETUSSUUNNITELMA 3.10.2016 Opettajanyhteystiedot Kurssin tiedot Luennot ja harjoitukset Kurssin asema KTK, erikoistumisopinnot Nimi Kari Toiviainen (TS2013) S-posti kari.toiviainen@aalto.fi

Lisätiedot

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä Talousmatematiikan perusteet: Luento 16 Integraalin käsite Integraalifunktio Integrointisääntöjä Integraalin käsite Tarkastellaan auton nopeusmittarilukemaa v(t) ajan t funktiona aikavälillä klo 12.00-17.00

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat Prof. Anouar Belahcen Anouar.belahcen@aalto.fi Opetushenkilökunta Luennoitsijat: Anouar Belahcen (anouar.belahcen@aalto.fi),

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Tietoturva. 0. Tietoa kurssista P 5 op. Oulun yliopisto Tietojenkäsittelytieteiden laitos Periodi / 2015

Tietoturva. 0. Tietoa kurssista P 5 op. Oulun yliopisto Tietojenkäsittelytieteiden laitos Periodi / 2015 811168P 5 op 0. Oulun yliopisto Tietojenkäsittelytieteiden laitos 811168P 5 op : 9.3. 8.5.2015 Luennot: Juha Kortelainen e-mail: juha.kortelainen@oulu.fi puh: 0294 487934 mobile: 040 744 1368 vast. otto:

Lisätiedot

CHEM-A1250 KEMIAN PERUSTEET kevät 2016

CHEM-A1250 KEMIAN PERUSTEET kevät 2016 CHEM-A1250 KEMIAN PERUSTEET kevät 2016 Luennoitsijat Tuula Leskelä (huone B 201c, p. 0503439120) sähköposti: tuula.leskela@aalto.fi Gunilla Fabricius (huone C219, p. 0504095801) sähköposti: gunilla.fabricius@aalto.fi

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2017 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

Sarjat ja integraalit, kevät 2014

Sarjat ja integraalit, kevät 2014 Sarjat ja integraalit, kevät 2014 Peter Hästö 12. maaliskuuta 2014 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen

Lisätiedot

Fysiikan opinnot Avoimen yliopiston opiskelijoille

Fysiikan opinnot Avoimen yliopiston opiskelijoille Fysiikan opinnot Avoimen yliopiston opiskelijoille 2.9.2014 1 Yliopiston lukuvuosi ja opetusperiodit 2014-2015 Yliopiston lukuvuosi 1.8. 31.7. Syyslukukausi I periodi: 1.9.-17.10. lukuvuoden avajaiset

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat Prof. Anouar Belahcen Anouar.belahcen@aalto.fi Opetushenkilökunta Luennoitsijat: Anouar Belahcen (anouar.belahcen@aalto.fi),

Lisätiedot

802120P Matriisilaskenta (5 op)

802120P Matriisilaskenta (5 op) 802120P Matriisilaskenta (5 op) Tero Vedenjuoksu Matemaattiset tieteet Syksy 2015 1 / 159 Luennoitsija: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi M321 Kurssilla käytetään Noppaa (noppa.oulu.fi) sekäoptimaa

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2019

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2019 CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2019 Vastuuopettaja Muut opettajat Kurssille ilmoittautuminen Kurssin kotisivu Yliopistonlehtori Eeva-Leena Rautama, Huone B 202a (vastaanottoajat:

Lisätiedot

MATEMATIIKKA. Perusopinnot

MATEMATIIKKA. Perusopinnot MATEMATIIKKA Perusopinnot Algebra I Algebra I Koodi: MATH1010 Laajuus: 4 op Edellytykset: Matematiikan peruskurssi ja Lineaarialgebra Osaamistavoitteet: opiskelija oppii perustiedot algebran keskeisistä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka Kurssiesite, kevät 2016

KJR-C1001 Statiikka ja dynamiikka Kurssiesite, kevät 2016 1 (9) KJR-C1001 Statiikka ja dynamiikka Kurssiesite, kevät 2016 Aalto University Postal address Visiting address Tel. +358 9 47001 aalto.fi/en School of Engineering P.O. Box 14100 Otakaari 4 firstname.lastname@aalto.fi

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

MS-A0103 / Syksy 2015 Harjoitus 1 / viikko 37

MS-A0103 / Syksy 2015 Harjoitus 1 / viikko 37 Harjoitus 1 / viikko 37 Näistä harjoituksista. Tämä tiedosto sisältää ennakkotehtävät (sekä tiistain 8.9. että torstain 10.9. luennoille) ja loppuviikon harjoitustehtävät (mukaanlukien kirjallisesti palautettavat).

Lisätiedot

T Johdatus tietoliikenteeseen 5 op. Kevät 2013

T Johdatus tietoliikenteeseen 5 op. Kevät 2013 T-110.2100 Johdatus tietoliikenteeseen 5 op Kevät 2013 Yleistä Suunnattu tietotekniikan opiskelijoille Esitietona T-106.1150 Tietokone ja käyttöjärjestelmä tai vastaavat tiedot Kurssin tavoitteet: Tietää

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA

DIFFERENTIAALI- JA INTEGRAALILASKENTA DIFFERENTIAALI- JA INTEGRAALILASKENTA Timo Mäkelä Tässä tekstissä esitellään yhden muuttujan reaaliarvoisten funktioiden differentiaalilaskentaa sekä sarjoja. Raja-arvot Raja-arvoja voidaan laskea käyttämällä

Lisätiedot

Sarjat ja integraalit, kevät 2015

Sarjat ja integraalit, kevät 2015 Sarjat ja integraalit, kevät 2015 Peter Hästö 11. maaliskuuta 2015 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen

Lisätiedot

Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa

Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa 27.-28.10.2016 Mira Tengvall Terhi Kaarakka Simo Ali-Löytty Johdanto Matemaattinen osaaminen on olennainen

Lisätiedot

Paikannuksen matematiikka MAT

Paikannuksen matematiikka MAT TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:

Lisätiedot

Matematiikan opintosuunta

Matematiikan opintosuunta Matematiikan opintosuunta Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on mahdotonta antaa. Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 Kertausta toiseen välikokeeseen Yhteenveto Kurssin sisältö 1. Algoritmin käsite 2. Lukujärjestelmät ja niiden muunnokset; lukujen esittäminen tietokoneessa 3. Logiikka

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

PITKÄ MATEMATIIKKA. Pakolliset kurssit

PITKÄ MATEMATIIKKA. Pakolliset kurssit 13 PITKÄ MATEMATIIKKA Suoritusohje: Pakolliset kurssit suoritetaan numerojärjestyksessä, poikkeuksena kurssi MAA6, jonka voi suorittaa jo kurssin MAA2 jälkeen. Syventävien kurssien suoritusjärjestys mainitaan

Lisätiedot

OPETUSSUUNNITELMALOMAKE v0.90

OPETUSSUUNNITELMALOMAKE v0.90 OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

Raja arvokäsitteen laajennuksia

Raja arvokäsitteen laajennuksia Raja arvokäsitteen laajennuksia Näitä ei ole oppikirjassa! Raja arvo äärettömyydessä: Raja arvo äärettömyydessä on luku, jota funktion arvot lähestyvät, kun muuttujan arvot kasvavat tai vähenevät rajatta.

Lisätiedot

Mallilukujärjestys Teknistieteellinen kandidaattiohjelma Tietotekniikka, 2. vuosikurssi

Mallilukujärjestys Teknistieteellinen kandidaattiohjelma Tietotekniikka, 2. vuosikurssi 8.8.2016 Mallilukujärjestys 2016 2017 Yleisiä ohjeita Opinto-oppaat ja kurssikuvaukset Teknistieteellisen kandidaattiohjelman opinto-oppaat löytyvät osoitteesta http://studyguides.aalto.fi. Kurssien tarkemmat

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matema&ikkaa kemisteille

Matema&ikkaa kemisteille Matema&ikkaa kemisteille h-p://www.helsinki.fi/kemia/fysikaalinen/opetus/ matkem2012/ Huom! Ensimmäisten laskuharjoitusten palautus tänä perjantaina 27.1 klo 16 mennessä Kevät 2012 Kurssin perus&edot Kurssikoodi

Lisätiedot

031010P MATEMATIIKAN PERUSKURSSI I 5,0 op

031010P MATEMATIIKAN PERUSKURSSI I 5,0 op 031010P MATEMATIIKAN PERUSKURSSI I 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava WebOodissa (https://weboodi.oulu.fi/oodi/etusivu.html). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötilakemia Johdanto kurssiin Ma 30.10.2017 klo 10-11 SÄ114 Vastuuopettaja kurssilla Eetu-Pekka Heikkinen Huone: TF214 - Prosessin kiltahuoneen portaikosta 2. kerrokseen ja käytävää etelää kohti

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot