Talousmatematiikan perusteet, ORMS1030
|
|
- Vilho Hiltunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS harjoitus, viikko R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske itegraalit a 3x + 4x + 7dx, b 5 4x dx a 3x + 4x + 7dx = 3 3 x3 + 4 x + 7x +C = x 3 + x + 7x +C b 5 4x dx = / 5 x x = 5 5 = 36 Tehtävä kuva: Kuva o piirretty tähä, jotta tehtävä kaikki laskut mahtuisivat samalle sivulle. Kuva selitys o seuraava sivu lopussa.
2 . Projekti perusivestoiti o H = 800e. Sytyvä jatkuva kassavirra voimakkuus o k = 00 e/kk. Kassavirta alkaa hetkellä t = 0 vuotta ja päättyy hetkellä t =,5 vuotta. Jääösarvo o JA = +500e. Lasketakorkokata o 6% p.a. eli ρ = l,06 vuosi. Jatkuva korkolasku mukaa projekti NettoNykyArvo o t NNA = H + e ρt ktdt + e ρt JA = H + k t ρ e ρt + e ρt JA. a Laske NNA, ku k = 00e/vuosi, ρ = l,06 vuosi, t = 0vuotta t =,5vuotta b Laske NNA, ku k = 00e/kk, ρ = l,06 / kk, t = 0kk t = 30kk c Mitä voit saoa sisäisestä korkokaasta? a b NNA = H + k ρ e ρt + e ρt JA = 800e + 00 vuosi e e 0 e l,06 vuosi,5vuosi +... l,06 vuosi... + e l,06 vuosi,5vuosi 500e = 800e + 00e l,06,06, e = 43,95e,06,5 NNA = H + k ρ e ρt + e ρt JA = 800e + 00 kk e l,06 / kk e 0 e l,06/ kk 30kk e l,06/ kk 30kk 500e = 800e + 00e l,06, e = 43,95e,06 30 c Koska ettoykyarvo o positiivie, ii sisäie korkokata o suurempi kui ykyarvolaskussa käytetty lasketakorko 6% per aum. Jos vuotuie lasketakorkotekija o r = + i tod, ii NNA = 800e + 00e lr r, e r,5 Ku tämä lausekkee arvoja lasketaa Exelillä, saadaa edellise sivu kuva. Kuva perusteella sisäie korkokata o oi 7,5%.
3 3. Verrataa kahta projektia. Projekti A perusivestoiti o 000e ja se tuottaa kahde vuode aja 00e/kk. Projekti B perusivestoiti o 6 000eja se tuottaa kymmee vuode aja 00e/kk. Kassavirroissa o huomioitu vai liiketoimia tuotot ja kustaukset. Rahoitusmeoja ei ole vielä laskettu mukaa. Laske projektie ettoykyarvot, ku lasketakorko o 8% todellie vuosikorko. Ovatko projektit kaattavia? NNA A = 000e 4 00e,08 / j = 000e 00e,08 / NNA B = 6000e 0 = 6000e 00e,08 /,08 / 4,08 / Kumpiki projekti o kaattava 8% lasketakorolla. = 7,9e > 0e ok 00e,08 / j,08 / 0,08 / = 686,48e > 0e ok B-projekti ettoykyarvo o suurempi kolmikertaie, mutta silti tulos tutuu B: kaalta lievältä pettymykselta, sillä B-projektissa kiiitettii kahdeksakertaie pääoma, ja tuottoja odotettii 0 vuotta! 4. Suhteellie ykyarvo määritellää kaavalla: suhteellie ykyarvo = SNA = tulovirraykyarvo kustausvirraykyarvo Laske tehtävä 3 projekteille suhteelliset ettoykyarvot. Kumpi projekteista o kaattavampi? SNA A = 7,9e 000e SNA B = 6686,48e 6000e =,086 > ok =,049 > ok Kumpiki projekti o kaattava 8% lasketakorolla. Projekti A o suhteellisesti parempi SNA A > SNA B.
4 5. Laske Exceli IRR-fuktio avulla tehtävä 3 projekteille sisäiset korkokaat per aum. Kumpi yt tutuu kaattavammalta? Exceli laskemat jaksoo kk liittyvät sisäiset korkokaat ovat IRR kk,a =,53% ja IRR kk,b = 0,74%. Vuosijakso sisäiset korkokaat ovat silloi. IRR a,a =,053 = 0,9747 i sis,a = 9,75% IRR a,b =,0074 = 0,09044 i sis,b = 9,04% Projekti A ataa tuoto opeammi ja ataa paremma koro sijoitetulle pääomalle. Se o siis kiistatta parempi. 6. a Laske pääoma tuottoasteet ROI II tehtävä 3 projekteille. Tulokset eivät välttämättä ole järkeviä, sillä ROI o hyvä kaattavuude mittari vai pitkälle projektille. Kumpi yt tutuu kaattavammalta? b Laske tehtävä 3 projekteille seuraava ROI I : tapaie tuusluku: myrate = k a b a H/ 00%, missä k a o vuodessa kertyyt ettokassakertymä A: 00e, B: 400e, b a o vuodessa hoidettavat pääoma palautukset A: 000e, B: 600e, ja H/ o keskimääri sidottu pääoma A: 000e, B: 8000e. a ROI II,A = 00e 00% = 60%, 000e ROI II,B = 400e 00% = 5%. 6000e ROI ataa yt selvästi liia isoja arvoja. Kaattavuutta ei kaat yt ratkaista äide perusteella. b myrate A = 00e 000e 000e 00% = 0%, 400e 600e myrate B = 00% = 0%. 8000e Nämä luvut ovat hyvi lijassa edellise tehtävä tuloste kassa. 7. Laske takaisimaksuajat tehtävä 3 projekteille. Kumpi yt tutuu kaattavammalta? Takaisimaksuaika o = lk/k ih. l + i A = l00e/00e,08/ 000e l,08 / B = l00e/00e,08/ 6000e l,08 / =,5kk = vuosi9,5kk =,7kk = 9vuotta4,7kk Aiaki kumpiki projekti o kaattava siiä mielessä, että e maksavat itsesä takaisi. Koska projektie kestot ovat erilaisia, iide vertailu ei ole helppoa takaisimaksuaja perusteella.
5 Joitaki vastauksia: a 43,95e 3A NNA A = 7,9e 4A SNA A =,09 5A i sis,a = 9,75% 6aA ROI IIA = 60,0% 6bA myroi A = 0,0% 7A A: takaisimaksuaika o,5kk =,8vuotta. Kaavoja: Korkolasku yksikertaie korkolasku: K t = + itk 0 = + p 00 tk 0, ku 0 < t < korokorkolasku: K t = + i t K 0, ku t =,,3,... jatkuva korkolasku: K t = + i t K 0 = e ρt K 0, ku t > ja + i = e ρ Jaksolliset suoritukset prologoititekijä, diskottaustekijä, kuoletuskerroi s,i = + i, a,i = + i i + i i i + i, c,i = + i Tasaerälaia ja osamaksukauppa k = c,i K 0, k = c,i H h + m k= a + k d = a + a, a q k = a q k= q Kassavirra ettoykyarvo NPV = k 0 + k j + i j Projekti ettoykyarvo Pääoma tuottoaste ROI I = ROI II = Takaisimaksu-aika NPV = H + k j + i j ettovuositulos keskimääri sidottu pääoma 00% ettovuositulos alussa sidottu pääoma 00% = lk/k ih l + i
Talousmatematiikan perusteet, ORMS1030
Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455
LisätiedotTalousmatematiikan perusteet, ORMS1030
kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet
LisätiedotIntroduction to Mathematical Economics, ORMS1030
Uiversity of Vaasa, sprig 04 Itroductio to Mathematical Ecoomics, ORMS030 Exercise 6, week 0 Mar 3 7, 04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0
LisätiedotTalousmatematiikan perusteet, ORMS1030
kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet
LisätiedotTalousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 5. harjoitus, viikko 7 11.02. 15.02.2019 R01 Ma 12 14 F453 R08 Ke 10 12 F453 R02 Ma 16 18 F453 L To 08 10 A202 R03 Ti 08 10 F425 R06 To 12 14 F140 R04
LisätiedotTalousmatematiikan perusteet
kevät 219 / orms.1 Talousmatematiikan perusteet 1. Laske integraalit a 6x 2 + 4x + dx, b 5. harjoitus, viikko 6 x + 1x 1dx, c xx 2 1 2 dx a termi kerrallaan kaavalla ax n dx a n+1 xn+1 +C. 6x 2 + 4x +
LisätiedotTalousmatematiikan perusteet, ORMS1030
Vaasan yliopisto, kevät 20 Talousmatematiikan perusteet, ORMS030 4. harjoitus, viikko 6 6.2. 0.2.20) R ma 2 4 F249 R5 ti 4 6 F453 R2 ma 4 6 F453 R6 to 2 4 F40 R3 ti 08 0 F425 R to 08 0 F425 R4 ti 2 4 F453
LisätiedotTalousmatematiikan perusteet, ORMS1030
Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08
LisätiedotSisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10
Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset
LisätiedotLiike-elämän matematiikka Opettajan aineisto
Liike-elämä matematiikka Opettaja aieisto Pirjo Saarae, Eliisa Kolttola, Jarmo Pösö ISBN 978-951-37-5741-0 Päivitetty 13.8.2014 Tehtävie ratkaisut - Luku 1 Verotus - Luku 2 Katelaskut ja talousfuktiot
LisätiedotNykyarvo ja investoinnit, L7
Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto
LisätiedotKertausta Talousmatematiikan perusteista
Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 p% = b
LisätiedotKertausta Talousmatematiikan perusteista
Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =
LisätiedotTalousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 1. välikoe tiistaina 29.1.2019 MALLIRATKAISUT Ratkaise 3 tehtävää. Kokeessa saa olla mukana laskin ja taulukkokirja (MAOL tai vastaava). Kun teet tehtävän,
LisätiedotKorkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat
Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100
LisätiedotBM20A Integraalimuunnokset Harjoitus 8
(b)...(d) eve + eve = eve eve eve = eve BM2A57 - Itegraalimuuokset Harjoitus 8. Vastaa jokaisessa kohdassa seuraavii kysymyksii: Oko fuktio parillie? Oko fuktio parito? Huomaatko polyomie kohdalla hyvi
LisätiedotKorkolasku ja diskonttaus, L6
Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti
LisätiedotNykyarvo ja investoinnit, L9
Nykyarvo ja investoinnit, L9 netto netto netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n 0 1 2 3 4 5
LisätiedotTalousmatematiikan perusteet
vä9 / orms.3 Talousmatmatiian prustt 6. harjoitus, viio 9 45...3.9 L Ma A R5 Ti 4 6 F453 R Ma 4 F453 L To 8 A R Ma 6 8 F453 R6 To 4 F4 R3 Ti 8 F45 R7 P 8 F453 R4 Ti 4 F453 R8 P F453. Las intgraalit a 6x
LisätiedotTalousmatematiikan perusteet
kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7
LisätiedotEpäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
LisätiedotTalousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
LisätiedotNykyarvo ja investoinnit, L14
Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...
LisätiedotLIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
LisätiedotPäähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802
Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha
LisätiedotPäähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin
Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha
LisätiedotTYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998.
TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Kokooma 23.1.2008. Viimeisi perustemuutos o vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Sisällysluettelo
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
LisätiedotLasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:
Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie
LisätiedotSelvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)
Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään
Lisätiedot10 Liiketaloudellisia algoritmeja
218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden
LisätiedotHuom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).
Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka
LisätiedotLIIKE-ELÄMÄN MATEMATIIKKA 2 MAT2LH001
HAAGA-HELIA ammattikorkeakoulu Liiketalous, Pasila LIIKE-ELÄMÄN MATEMATIIKKA 2 MAT2LH001 Katri Währ Kevät 2012 ESIPUHE Tämä luetoruko o tarkoitettu oppikirja tueksi eikä suikaa korvaamaa sitä. Kaikki viittaukset
LisätiedotSeuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi
Laaja matematiikka 5 Kevät 200 2. Itegraali omiaisuuksia Seuraavat peruslauseet -8 voidaa helposti todistaa itegraali määritelmästä. Itegroimisjoukko oletetaa rajoitetuksi Jordamitalliseksi joukoksi. Lause
LisätiedotTalousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231
Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/
LisätiedotMATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
LisätiedotEX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
LisätiedotEpäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie 1999 Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a 1,a,...,a ja b 1,b,...,b pätee Cauchy epäyhtälö (a 1 b 1 + a
LisätiedotKertausta Talousmatematiikan perusteista Toinen välikoe
Kertausta Talousmatematiikan perusteista Toinen välikoe 1 päätösmuuttujat (x 1,x 2,...) tavoitefunktio (z = c 1 x 1 + c 2 x 2 +...) rajoitteet (a i1 x 1 + a i2 x 2 + b i ) Mallin Formaatti käypä alue Optimipisteen
Lisätiedotdiskonttaus ja summamerkintä, L6
diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson
LisätiedotKertausta Talousmatematiikan perusteista Toinen välikoe
Kertausta Talousmatematiikan perusteista Toinen välikoe 1 Parametrit D Kysyntä (kpl/vuosi) h Yksikköylläpito-kustannus (euro/kpl/vuosi) K Tilauskustannus (euro) Tarkista aina yksiköiden yhteensopiminen
Lisätiedot( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
Lisätiedot8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
LisätiedotTehtäviä neliöiden ei-negatiivisuudesta
Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:
LisätiedotUsko, toivo ja rakkaus
Makku Lulli-Seppälä sko toivo a akkaus 1. Ko. 1 baitoille viululle alttoviululle a uuille op. kummityttöi Päivi vihkiäisii 9.8.1986 iulu a alttoviulu osuude voi soittaa sama soittaa. Tavittaessa alttoviulu
LisätiedotRATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan
RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa
LisätiedotOsamaksukauppa, vakiotulovirran diskonttaus, L8
Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin
LisätiedotMat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut
Projektien valintapäätöksiä voidaan pyrkiä tekemään esimerkiksi hyöty-kustannus-suhteen (so. tuottojen nykyarvo per kustannusten nykyarvo) tai nettonykyarvon (so. tuottojen nykyarvo - kustannusten nykyarvo)
Lisätiedotdx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
Lisätiedot10.5 Jaksolliset suoritukset
4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e
LisätiedotLASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000
LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 Laskuharjoitus Detaljibalassi Osoita, että siirtymätodeäköisyydet π m α m ; ρ, m ρ α m ----- ; ρ < ρ, m m π m, m m ja π m ρ α m ------------------ ρ +, m π
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
Lisätiedotj = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
LisätiedotYHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA
YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S
LisätiedotTalousmatematiikan perusteet, ORMS1030
Tampereen kesäyliopisto, syksy 2016 Talousmatematiikan perusteet, ORMS1030 1. harjoitus, (la 29.10.2016) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin kynää ja paperia käyttäen. Anna vastaukset
LisätiedotMatematiikkaa kauppatieteilijöille
Matematiikkaa kauppatieteilijöille Harjoitus 9, syksy 2018 1. 1. Ratkaisutapa (Yksinkertainen korkolaskenta) Olkoon alkupääoma K 0 ja korkokanta i = 10% pa. Koska korkokanta on 10 % pa., niin pääoma kasvaa
Lisätiedot1.3 Toispuoleiset ja epäoleelliset raja-arvot
. Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts
LisätiedotDiskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä
Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson
LisätiedotTasaerälaina ja osamaksukauppa
Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan
Lisätiedot1. Kaikki kaatuu, sortuu August Forsman (Koskimies)
olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti
LisätiedotInvestointipäätöksenteko
Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista
LisätiedotMat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
LisätiedotTyö 55, Säteilysuojelu
Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
LisätiedotTalousmatematiikan perusteet, ORMS1030
Tamprn ksäyliopisto, 2015-2016 Talousmatmatiikan prustt, ORMS1030 1. väliko, (ti 15.12.2015) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai
LisätiedotDiskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =
Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,
LisätiedotTalousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 7. harjoitus, viikko 7 1. Oheisessa taulukossa on erään tuotteen hintaindeksejä. Laske hinnan keskimääräinen kasvuvauhti vuosina 2000-2005 vuosi indeksi
Lisätiedot(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA
Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi
LisätiedotTilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
LisätiedotTEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen
---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma
Lisätiedotxe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)
BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset
Lisätiedott P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
LisätiedotK Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A
K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E
Lisätiedot5.3 Matriisin kääntäminen adjungaatilla
Vaasa yliopisto julkaisuja 08 Sec:MatIvAdj 53 Matriisi käätämie adjugaatilla Määritelmä 3 -matriisi A adjugaatti o -matriisi adj(a) (α i j ), missä α i j ( ) i+ j det(a ji ) (, joka o siis alkioo a ji
Lisätiedot****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
LisätiedotTalousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
LisätiedotTehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa
LisätiedotMatematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa
Lisätiedot2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0.
0. Maksimiperiaate Laplace-yhtälölle 0.. Maksimiperiaate. Alueessa Ω R määritelty kaksi kertaa erivoituva fuktio u o harmoie, jos u = j= = 0. 2 u x 2 j Lause 0.. Olkoot Ω R rajoitettu alue ja u C(Ω) C
Lisätiedot4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on
4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.
LisätiedotTasaerälaina ja osamaksukauppa
Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä
LisätiedotKirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
LisätiedotMarkov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
Lisätiedot4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
Lisätiedot3.6. Geometrisen summan sovelluksia
Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa
LisätiedotTehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.
POHDIN rojekti Jatkuva korko ja e Eksoettifuktioille voidaa johtaa omiaisuus f ( x) f (0) f( x). Riittää ku oletetaa, että f (0) o olemassa. Nyt eksoettifuktioide f( x) 2 x ja gx ( ) 3 x välistä yritää
LisätiedotKertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
Lisätiedot10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.
10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).
LisätiedotInvest for Excel 3.4 Uudet ominaisuudet
Invest for Excel 3.4 Uudet ominaisuudet Lisää/poista erittelyrivejä... 2 Jatka vanhaa poistosuunnitelmaa / siirrä kirjanpitoarvo... 3 Valuuttamuunnos... 3 Arvonalentumistestivaihtoehdot... 5 Ostetun yhtiön
LisätiedotRatkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy
Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika
LisätiedotÄärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims
75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva
Lisätiedot9.7 Matriisinormit. Vaasan yliopiston julkaisuja 225. Ei siis lainkaan ongelmia defektiivisyydestä.
Vaasa yliopisto julkaisuja 225 U = 0.1213-0.9359-0.3307-0.1005-0.3430 0.9339 0.9875 0.0801 0.1357 S = V = >> 4.5221 0 0 0 2.2793 0 0 0 1.1642 0.0537-0.8212-0.5681 0.4414-0.4908 0.7512 0.8957 0.2911-0.3361
LisätiedotMarkov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
LisätiedotT Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen
T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide
LisätiedotBetonimatematiikkaa
Betonimatematiikkaa.11.017 Kiviaineksen rakeisuusesimerkki Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo % g % Pohja 60 9,0-0,15 30 4,5
Lisätiedot