8000203: Johdatus signaalinkäsittelyyn 1



Samankaltaiset tiedostot
Signaalinkäsittelyn menetelmät

Heikki Huttunen Signaalinkäsittelyn perusteet

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Säätötekniikan ja signaalinkäsittelyn työkurssi

T SKJ - TERMEJÄ

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

Digitaalinen signaalinkäsittely Kuvankäsittely

Kompleksianalyysi, viikko 7

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Numeeriset menetelmät

Matematiikan tukikurssi

SIGNAALITEORIAN KERTAUSTA OSA 2

Matematiikan tukikurssi, kurssikerta 3

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.

1 Vastaa seuraaviin. b) Taajuusvasteen

Kompleksianalyysi, viikko 5

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia

Signaalit ja järjestelmät aika- ja taajuusalueissa

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

SIGNAALITEORIAN KERTAUSTA 1

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Alipäästösuotimen muuntaminen muiksi perussuotimiksi

Alias-ilmiö eli taajuuden laskostuminen

Virheen kasautumislaki

Tenttiin valmentavia harjoituksia

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Cantorin joukon suoristuvuus tasossa

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen Signaalinkäsittely T0125 Luento

802118P Lineaarialgebra I (4 op)

1. Esitä rekursiivinen määritelmä lukujonolle

MS-C1420 Fourier-analyysi osa II

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Spektri- ja signaalianalysaattorit

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Vektoreiden virittämä aliavaruus

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Oppimistavoitematriisi

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

ELEC-C5070 Elektroniikkapaja (5 op)

Oppimistavoitematriisi

Lineaarinen yhtälöryhmä

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Zeon PDF Driver Trial

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

Tuntematon järjestelmä. Adaptiivinen suodatin

1 sup- ja inf-esimerkkejä

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

Signaalien datamuunnokset

Matematiikan tukikurssi

Dynaamisten systeemien identifiointi 1/2

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

1 sup- ja inf-esimerkkejä

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

ELEC-C Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

1.4 Funktion jatkuvuus

1 Olkoon suodattimen vaatimusmäärittely seuraava:

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Signaalien datamuunnokset. Digitaalitekniikan edut

9 Matriisit. 9.1 Matriisien laskutoimituksia

Tietoliikennesignaalit & spektri

1 Lineaariavaruus eli Vektoriavaruus

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

JAKSO 2 KANTA JA KOORDINAATIT

Matematiikan peruskurssi 2

1 Aritmeettiset ja geometriset jonot

Transkriptio:

TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste -23 Heikki Huttunen 823: Johdatus signaalinkäsittelyyn Tampere 23 ISSN 459-469 ISBN 952-5-38-2

Opetusmoniste -23 823: Johdatus signaalinkäsittelyyn Heikki Huttunen Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos PL 553 33 Tampere e-mail: heikki.huttunen@tut.fi ISSN 459-469 ISBN 952-5-38-2 Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos PL 553 33 Tampere Tampere 23

Esipuhe Käsillä oleva moniste on tarkoitettu opetusmateriaaliksi Tampereen teknillisen yliopiston signaalinkäsittelyn laitoksen kurssille "823: Johdatus signaalinkäsittelyyn ". Materiaali on kehittynyt nykyiseen muotoonsa luennoidessani aiheesta Jyväskylän yliopistossa lukuvuonna 995 996, Tampereen yliopistossa lukuvuonna 999 2 sekä Tampereen teknillisessä yliopistossa lukuvuosina 999 23. TTY:ssa luennoimani kurssi "823: Johdatus signaalinkäsittelyyn " koostuu kahdesta osasta. Lineaariset järjestelmät: diskreetit signaalit, niiden ominaisuudet ja generointi Matlabilla, lineaariset järjestelmät, diskreetti Fourier-muunnos, FFT, z-muunnos. (7 9 luentoa) Sovellutukset: tavallisimpia signaalinkäsittelyn sovelluksia, esimerkiksi puheenkäsittely, kuvankäsittely ja -koodaus, digitaalinen video (MPEG-standardit), lääketieteellinen signaalinkäsittely, hermoverkot ja tutkasignaalit (sonar/radar). (3 5 luentoa) Vierailevat luennoitsijat laitokselta ja teollisuudesta hoitavat osan sovellutusten esittelystä. Koska vierailijat vaihtuvat vuosittain, ei vierailuluentojen materiaalia voida liittää mukaan. Poikkeuksen tähän muodostavat aina luennoitavat kappaleet 8 ja 9. Kurssin tavoitteena on selvittää lineaaristen järjestelmien ja digitaalisen signaalinkäsittelyn peruskäsitteet sekä luoda kuva sovelluskohteista. Kurssin käytyään opiskelijan tulisi ymmärtää millaista signaalinkäsittelyn parissa työskentely on ja minkä tyyppisiin ongelmiin sitä voidaan soveltaa. Keväisin luennoidaan kurssi 8253: Johdatus signaalinkäsittelyyn 2, joka jatkaa siitä, mihin tällä kurssilla jäädään. Kesällä 2 monisteen laatimisessa oli apuna filosofian ylioppilas Jari Niemi Tampereen yliopistosta. Kiitän häntä hyvin tehdystä työstä. Lisäinformaatiota löytyy kurssin kotisivulta, jonka osoite on http://www.cs.tut.fi/kurssit/823/ Monistetta on käytetty opetusmateriaalina vastaavilla kursseilla TAMK:issa, Kuopion yliopistossa sekä TTY:n koordinoimassa DI-muuntokoulutuksessa Kuopiossa. Pyynnöstä materiaalin käytölle voidaan myöntää lupa myös muualla. Tällöin voin tarvittaessa toimittaa myös luentokalvot sekä harjoituksissa käytettäviä Matlab-skriptejä. Tampereella, 9. toukokuuta 23, Heikki Huttunen heikki.huttunen@tut.fi

ii 823 JOHDATUS SIGNAALINKÄSITTELYYN

Sisältö Esipuhe i Digitaalinen signaalinkäsittely. Mitä signaalinkäsittelyllä tarkoitetaan.......................2 Näytteenottoteoreema............................... 2.3 Digitaalisen signaalinkäsittelyn etuja jatkuva-aikaisiin suodattimiin nähden 3.4 Digitaalisten menetelmien haittoja jatkuva-aikaisiin suodattimiin nähden. 4.5 Sovelluskohteita................................... 4 2 Diskreettiaikaiset digitaaliset signaalit 9 2. Usein tarvittavia signaaleita............................ 3 Diskreettien järjestelmien ominaisuuksia 5 4 Lineaariset siirtoinvariantit (LTI) järjestelmät 2 4. Konvoluutio..................................... 2 4.2 Konvoluution ominaisuuksia........................... 23 5 Fourier-muunnos 3 5. Fourier-muunnos (ei-jaksollinen jatkuva-aikainen signaali).......... 32 5.2 Fourier-sarja (jaksollinen jatkuva-aikainen signaali).............. 33 5.3 Diskreettiaikainen Fourier-muunnos (diskreettiaikainen ei-jaksollinen signaali)......................................... 35 5.4 Diskreetti Fourier-muunnos (diskreettiaikainen jaksollinen signaali)..... 37 5.5 Diskreetin Fourier-muunnoksen ominaisuuksia................ 4 5.6 Nopea Fourier-muunnos (FFT).......................... 43 6 Z-muunnos 49 6. Z-muunnoksen määritelmä............................ 49 6.2 Tavallisimpien jonojen z-muunnokset...................... 5 6.3 Käänteinen z-muunnos............................... 52 6.4 Z-muunnoksen ominaisuuksia.......................... 54 6.5 Siirtofunktio..................................... 55 6.6 Siirtofunktion laskeminen............................. 6 6.7 Siirtofunktio ja stabiilisuus............................. 63

iv 823 JOHDATUS SIGNAALINKÄSITTELYYN 7 Suotimen suunnittelu taajuustasossa 69 7. FIR-suodinten suunnittelu: suunnittelukriteerit................. 7 7.2 Suunnittelu ikkunamenetelmällä......................... 73 7.3 Yhteenveto ikkunamenetelmän käytöstä..................... 78 8 Kuvan ja videon pakkaaminen 89 8. Televisiokuvan pakkaus.............................. 89 8.2 Pakkausmenetelmien kaksi tyyppiä....................... 9 8.3 Informaatioteoriaa................................. 9 8.4 Huffman-koodaus.................................. 9 8.5 Virheetön kuvakoodaus.............................. 92 8.6 Häviöllinen koodaus................................ 92 8.7 Videokuvan koodaus................................ 94 9 Digitaalinen kuvankäsittely 99 9. Kaksiulotteiset järjestelmät............................. 9.2 Dekonvoluutio................................... 3 9.3 Piste-ehostus..................................... 6 9.3. Gammakorjaus............................... 6 9.3.2 Histogrammin ekvalisointi........................ 8 9.3.3 Histogrammin paikallinen ekvalisointi................. 9

Luku Digitaalinen signaalinkäsittely Digitaalisesta signaalinkäsittelystä on tullut yksi nykytekniikan avainaloista, ja se tukee läheisesti ainakin tietoliikennetekniikkaa, mittaustekniikkaa ja tietotekniikkaa. Digitaalisen signaalinkäsittelyn (Digital signal processing, DSP) voidaan katsoa syntyneen 96 97 luvuilla, jolloin tietokoneet alkoivat olla riittävän yleisesti käytettävissä. Tämän jälkeen sitä on menestyksekkäästi sovellettu lukuisilla alueilla; lääketieteellisestä PET-kuvantamisesta CD-soittimeen ja GSM-puhelimeen. Sovellukset ovat varsin lukuisat, joten kaikkea DSP:stä on mahdotonta hallita (eikä niitä ole mielekästä opettaa korkeakoulussa). Tärkeimmät perusmenetelmät ovat kuitenkin pysyneet vuosien varrella samoina. Tällä kurssilla on tarkoitus käsitellä tärkeimmät peruskäsitteet, osa tärkeimmistä menetelmistä, esimerkkisovelluksia. Kun lineaaristen järjestelmien perusasiat on käsitelty, perehdytään tyypilliseen signaalinkäsittelyn ongelmaan: kuinka poistaa tietyt taajuudet annetusta signaalista. Tulevilla kursseilla perehdytään tarkemmin signaalinkäsittelyn menetelmiin sekä tarkastellaan sovelluskohteita lähemmin.. Mitä signaalinkäsittelyllä tarkoitetaan Tyypillinen DSP-sovellus sisältää seuraavat vaiheet:. Niin sanottu A/D-muunnin (analog/digital) muuntaa vastaanotetun (jatkuva-aikaisen) analogisen signaalin digitaaliseksi ja diskreettiaikaiseksi. 2. Tämän jälkeen diskreettiaikaista digitaalista signaalia muokataan jollain järjestelmällä (esim. tietokoneella). Tätä vaihetta kutsutaan suodattamiseksi. Suodatuksen tavoite on muuntaa järjestelmään saapuva signaali sovellutuksen kannalta hyödyllisempään muotoon. Tämä saattaa tarkoittaa esimerkiksi: Signaalissa olevan kohinan poistamista siten, että varsinainen signaali säilyy mahdollisimman hyvin.

2 823 JOHDATUS SIGNAALINKÄSITTELYYN Signaalissa olevien mielenkiintoisten piirteiden erottelua muun signaalin joukosta. Perinteisesti suotimet ovat olleet lineaarisia niiden helpomman toteuttamisen ja analysoinnin vuoksi, mutta myös epälineaarisia suotimia on tutkittu. x(n) Digitaalinen suodatin y(n) 3. Suodatuksen jälkeen signaali muunnetaan takaisin analogiseksi D/A-muuntimella. Tyypillisesti signaalinkäsittelyn kursseilla keskitytään vaiheeseen 2, suotimen suunnitteluun..2 Näytteenottoteoreema Näytteenottotaajuuden yläraja on nykyisin MHz, joten hyvin suuria taajuuksia sisältäviä signaaleja ei voida käsitellä diskreetin systeemin avulla. Radioiden ja televisioiden suurtaajuusosat toteutetaan jatkuva-aikaisten suodattimien avulla. Mistä siis tiedetään, milloin saapuvan signaalin taajuus on liian suuri diskreettiaikaiselle järjestelmälle ja mitä näytteenottotaajuutta on syytä käyttää (suurempi taajuus vaatii tehokkaammat ja kalliimmat komponentit)? Jatkuva-aikaista signaalia näytteistettäessä siitä otetaan näytteitä ajanhetkillä, T, 2T, 3T,... ja vain signaalin näillä hetkillä saamat arvot talletetaan (mustat ympyrät alla olevassa kuvassa). Jos siis jatkuvasta signaalista käytetään merkintää x c (t), missä t R, niin näytteistyksen tuloksena saadaan lukujono x(n), jolle on voimassa ehto x(n) = x c (nt) (n =,,2,...)..5.5 T 2T 3T 4T 5T 6T Vakio T ilmoittaa siis kuinka monta sekuntia on kahden peräkkäisen näytteen väli. Useimmiten sama asia ilmaistaan sanomalla montako kertaa sekunnissa näytteitä otetaan. Tämän suureen nimi on näytteenottotaajuus (sampling frequency) ja se on vakion T käänteisluku, F s =. Jos näytteenottotaajuus on liian pieni (ja siis näytteiden väli T liian suuri), T tapahtuu laskostumista eli alinäytteistymistä (aliasing). Esimerkki: Kuvan kahdella sinisignaalilla on samat näytearvot, koska näytteitä otetaan liian harvoin. Alkuperäisellä signaalilla (katkoviiva) on siis suurempi taajuus f + F s. Järjestelmä tulkitsee saapuvan signaalin kuitenkin sinisignaaliksi, jonka taajuus on vain f (yhtenäinen viiva).

. DIGITAALINEN SIGNAALINKÄSITTELY 3.5.5 T 2T 3T 4T 5T 6T Lause: Jatkuva-aikainen signaali voidaan muodostaa uudelleen näytearvoistaan, jos näytteenottotaajuus F s on vähintään kaksi kertaa niin suuri kuin signaalin sisältämä suurin taajuuskomponentti. Jos edellinen ehto ei ole voimassa, täytyy taajuutta F s /2 suuremmat taajuudet leikata pois jollain analogisella järjestelmällä laskostumisen estämiseksi. Taajuudesta F s /2 käytetään nimitystä Nyquistin taajuus (Nyquist frequency, Nyquist rate) ja yo. lause on nimeltään näytteenottoteoreema (Nyquist 928, Shannon 949). Näin ollen enintään 5 khz taajuuksia sisältävä signaali vaatii järjestelmän, jonka näytteenottotaajuus on vähintään khz. Jos näin ei ole käy kuten alla olevassa kuvassa. Kuvat esittävät eräiden signaalien spektrejä, jotka kertovat, kuinka paljon kutakin taajuutta on mukana signaalissa. Kuvan alkuperäisessä jatkuvassa signaalissa on taajuuksia 3 khz asti (vasemmalla), jolloin khz taajuudella näytteistettäessä yli 5 khz taajuudet summautuvat alemmille taajuuksille laskostuneen x-akselin mukaisesti (oikealla). 5 5 2 25 3 2 3 5 5 25.3 Digitaalisen signaalinkäsittelyn etuja jatkuva-aikaisiin suodattimiin nähden Analogisia suotimia on elektroniikan alalla tutkittu jo kauan. Nämä kootaan elektronisista komponenteista ja ne poimivat tyypillisesti tietyt taajuudet signaalista ja poistavat muut. Mitä hyötyä on tehdä sama digitaalisesti? Suodattimen kertoimien arvot pysyvät vakiona. Suodattimen toiminta ei muutu ajan mukana tai esimerkiksi lämpötilan vaihdellessa. Tarkkuus on parempi. Voidaan helposti toteuttaa monimutkaisiakin suodattimia, mm. HIFI-suodattimia.

4 823 JOHDATUS SIGNAALINKÄSITTELYYN Samaa suodatinta voidaan käyttää samanaikaisesti useiden signaalien käsittelyyn (multipleksointi). Voidaan toteuttaa pienellä sirupinta-alalla, helppo monistettavuus. Samaa DSP-prosessoria voidaan käyttää moniin tehtäviin suuret tuotantoerät halpa hinta. On mahdollista toteuttaa täysin lineaarivaiheisia suodattimia, jolloin signaaliin ei synny vaihevirhettä. Voidaan toteuttaa hyvin monimutkaisia algoritmeja, joita ei voida toteuttaa järkevästi analogisilla suodattimilla. Rajana on vain prosessoreiden teho ja mahdolliset aikavaatimukset..4 Digitaalisten menetelmien haittoja jatkuva-aikaisiin suodattimiin nähden Kuten aiemmin mainittiin, näytteenottotaajuuden yläraja on nykyisin MHz, joten hyvin suuria taajuuksia sisältäviä signaaleja ei voida käsitellä diskreetin systeemin avulla. Radioiden ja televisioiden suurtaajuusosat toteutetaan jatkuva-aikaisten suodattimien avulla. Nopea DSP on kallista. Lisäksi A/D ja D/A-muuntimia tarvitaan yksinkertaisissakin sovelluksissa..5 Sovelluskohteita Seuraavaksi tarkastellaan muutamia tyypillisiä sovelluskohteita melko pintapuolisesti. Telekommunikaatio: multipleksaus (multiplexing): Maailmassa arvioidaan olevan miljardi lankapuhelinta. 96-luvulle saakka yhtä puhelinyhteyttä kohti tarvittiin yksi puhelinjohto. Digitaalisen signaalinkäsittelyn avulla johtojen määrää voidaan vähentää lähettämällä useita signaaleja yhdessä johdossa. Niin sanottu T-carrier-järjestelmä välittää 24 signaalia yhdessä johdossa. Jokainen signaali muunnetaan digitaaliseksi (8 näytettä/s) käyttäen 8-bittistä esitystä. Kukin linja kuluttaa siis 64 bittiä sekunnissa, ja kaikki 24 kanavaa kuluttavat.536 megabittiä sekunnissa. Tämä määrä voidaan helposti välittää puhelinkeskusten välisillä linjoilla. Kompressio: Edellisen esimerkin bittimäärää voidaan edelleen vähentää käyttämällä pakkausta (kompressiota). Kompressioalgoritmit pyrkivät poistamaan näytteiden välillä olevaa redundanssia, ja saamaan näin tarvittavien bittien määrää vähennetyksi. Erilaisia pakkausmenetelmiä on lukuisia. Menetelmä saattaa olla suunniteltu pakkaamaan tehokkaasti esimerkiksi äänisignaalia, digitaalista kuvaa tai videota tai vaikkapa lääketieteessä tavattavia kolmiulotteisia tomografiakuvia. Menetelmät käyttävät hyväkseen kunkin sovelluksen ominaispiirteitä. Esimerkiksi standardisointijärjestö ISO:n pakkausstandardit MPEG-, MPEG-2, MPEG-4 ja MPEG-7 ovat olleet runsaan huomion kohteena viime aikoina.

. DIGITAALINEN SIGNAALINKÄSITTELY 5 Kaiunkumous: Koska puhelinliikenteen signaalit kulkevat kahteen suuntaan, ongelmaksi saattaa muodostua käyttäjälle ärsyttävä kaiku. Jokainen puhuttu sana palaa pienellä viiveellä linjaa pitkin takaisin ja saa aikaan kaikua vastaavan efektin. Erityisenä ongelmana tämä on kaiutinpuhelinta käytettäessä, mutta myös tavallisissa puhelimissa. Ongelma voidaan poistaa riittävän tehokkaasti adaptiivisen signaalinkäsittelyn menetelmin. CD-soitin: Viime aikoina musiikkiteollisuus on siirtynyt käyttämään digitaalista CD-levyä perinteisten vinyylilevyjen asemesta. Alla oleva yksinkertaistettu kaavio tyypillisestä CD-soittimesta sisältää lukuisia kohteita, joissa käytetään DSP:tä. Laser Demodulaatio Virheenkorjaus 4-kertainen ylinäytteistys 4-bittinen D/A-muunnin 4-bittinen D/A-muunnin Alipäästösuodatus Alipäästösuodatus Puheentunnistus: Puheentunnistukselle voidaan helposti keksiä lukuisia sovelluksia, mutta valitettavasti nykyinen teknologia ei kykene tehtävään täysin aukottomasti. Yleisimmät lähestymistavat jakavat ongelman kahteen osaan: piirteiden erotteluun (feature extraction) ja piirteiden vertailuun (feature matching). Erotteluvaiheessa puhe jaetaan erillisiin sanoihin (tai vaikkapa äänteisiin) ja verrataan näitä aiemmin kuultuihin sanoihin. Vertailuvaiheessa saattaa tulla ongelmia jos puhuja ei ole sama kuin opetusvaiheessa. Tietokonetomografia: Röntgenkuvissa tavallinen ongelma on, että kaksiulotteisesta kuvista ei voida tunnistaa päällekkäisiä elimiä. Lisäksi röntgenkuvista käy ilmi potilaan anatomia, ei fysiologia. Toisin sanoen, ainoastaan kehon rakenne on nähtävissä, ei sen toimintaa. Näin ollen kuolleen ihmisen röntgenkuva vastaa miltei täysin elävän ihmisen röntgenkuvaa. Näitä ongelmia on ratkaistu 97-luvulta alkaen tietokonetomografian keinoin. Perinteisessä tietokonetomografiassa otetaan röntgenkuvia useista suunnista ja saadaan kolmiulotteinen malli. Röntgensäteiden vaarallisuudesta johtuen myöhemmin on kehitelty muita menetelmiä, kuten PET (positron emission tomography) sekä MRI (magnetic resonance imaging). Näistä edellinen käyttää positronisädettä kuvan muodostamiseen ja jälkimmäinen muodostaa kuvan voimakkaiden sähkömagneettien avulla. Signaalinkäsittelyä käytetään pääasiassa kuvan kokoamisessa yksittäisten säteiden muodostamasta datasta. Harjoitustehtäviä.. (Matlab) Käy läpi Matlabin aloittelijoille tarkoitettu demo, joka käynnistyy Matlabin komennolla intro.

6 823 JOHDATUS SIGNAALINKÄSITTELYYN.2. (Matlab) (a) Luo vektori t, joka sisältää arvot.,.,.2,.3,...,.98,.99,2.. Vihje: help colon (b) Luo vektori x, joka sisältää funktion x(t) =cos(2πt) +2 sin(4πt) evaluoituna vektorin t määräämissä pisteissä. (c) Tulosta edellisen kohdan funktion mukainen käyrä välillä [, 2]. Vihje: help plot (d) Tulosta edellisen kohdan funktion itseisarvon mukainen käyrä välillä [, 2]. Vihje: help abs (e) Tulosta molemmat käyrät samaan kuvaan. Vihje: help subplot. Nimeä kuva. Vihje: help title..3. (Matlab) (a) Luo matriisi: 2 2 2 A =...... 9 92 Vihje: help reshape, help transpose (b) Korota matriisin A jokainen alkio kolmanteen potenssiin Vihje: help power (c) Laske matriisin A kolmas potenssi A 3 Vihje: help mpower (d) Laske kohdan (b) matriisin käänteismatriisi. Vihje: help inv.4. (Matlab) (a) Luo 5-alkioinen normaalisti jakautunut satunnaisvektori (help randn) ja tulosta sen itseisarvojen (help abs) kuvaaja diskreetisti komennolla stem. (b) Luo funktio nimeltä summaus (tiedostoon nimeltä summaus.m), joka saa syötteenä vektorin x ja palauttaa x:n alkioiden summan ja niiden neliösumman Vihje: help function, help sum. (c) Testaa funktiota (a)-kohdan vektorilla..5. Analoginen signaali koostuu yksittäisestä siniaallosta, jonka taajuus on Hz. Signaalista otetaan näytteitä.6 sekunnin välein. (a) Tapahtuuko laskostumista? (b) Jos vastauksesi on myönteinen, miksi taajuudeksi em. sinisignaali tulkitaan, ts. mille taajuudelle se laskostuu? (c) Mikä olisi riittävä näytteenottotaajuus laskostumisen estämiseksi?

. DIGITAALINEN SIGNAALINKÄSITTELY 7.6. Analoginen (jatkuva-aikainen) signaali on muotoa x(t) =2 cos(2πt).7sin(3πt)+ cos(2πt) +cos(8πt), missä t on aikaa kuvaava muuttuja (sekunteina). Kuinka usein signaalista pitää ottaa näytteitä, ettei laskostumista tapahdu? Vihje: tutki kuinka monta kertaa kukin signaalin termi värähtää ylös-alas sekunnin aikana. Näistä saat signaalin suurimman taajuuden ja edelleen näytteenottotaajuuden..7. Tarkkaan ottaen Nyquistin rajataajuus ei riitä aivan kaikissa tapauksissa. Tarkastellaan tällaista poikkeusta tässä tehtävässä. (a) Signaalista x(t) =sin(2πt) otetaan näytteitä.5:n sekunnin välein alkaen hetkestä t = s. Määritä viiden ensimmäisen näytteen arvo. Voidaanko alkuperäinen signaali rekonstruoida näistä näytearvoista? (b) Millaiset näytteet saadaan jos näytteenotto aloitetaan hetkellä t =.25 s? Voidaanko alkuperäinen signaali rekonstruoida näistä näytearvoista?.8. (Matlab) Kopioi itsellesi http://www.cs.tut.fi/~hehu/seiska.mat. Lataa se Matlabin editorissa (help load). Editori käynnistyy komennolla edit. Tallenna ja aja ohjelma. Kuuntele signaali (,joka on muuttujassa x (help whos),) käskyllä soundsc(x). Pudota sitten näytteenottotaajuus puoleen (Aseta editorissa uudeksi signaaliksi y=x(:2:length(x));). Tallenna taas, aja ohjelma ja kuuntele signaali y. Tee alipäästösuodin b, jonka aste on 2 ja rajataajuus /2 (help fir). Suodata signaali x käskyllä z=filter(b,,x). Pudota näytteenottotaajuus jälleen puoleen ja kuuntele. Mikä kuuntelemistasi signaaleista kuulostaa virheettömimmältä? Mistä erot johtuvat? Huom: Suodinsuunnitteluun liittyvää teoriaa käsitellään täsmällisemmin luvussa 7..9. (Matlab) Sun-työasemien äänikortit ovat yksinkertaisia ja toimivat vain näytteenottotaajuudella 892 Hz. Generoi yhden sekunnin mittainen signaali, jonka taajuus on Hz. Yleisesti signaali saadaan kaavasta ( ) 2πnf x(n) =sin, missä f on haluttu taajuus Hertseinä ja F s on näytteenottotaajuus Hertseinä. Muuttuja n on Matlabissa vektori, joka sisältää halutut pisteet ajassa, t.s., (,2,3,...,892). Generoi myös signaalit, joiden taajuudet ovat 2 Hz ja 3 Hz, ja kuuntele kaikki tulokset. Mitä tapahtuu, kun ylität Nyquistin rajan, eli generoit signaaleja, joiden taajuudet ovat 6, 7 ja 8 Hz? (Volume-säätö onnistuu komennolla audiocontrol Sunin konsolilla.).. (Matlab) Simuloidaan Matlabilla laskostumista. SUNin äänikortti aiheuttaa hieman ylimääräisiä hankaluuksia, koska se tukee ainoastaan 892 Hz:n näytteenottotaajuutta ulostulossa. Kopioi itsellesi tiedosto http://www.cs.tut.fi/~hehu/seiska.mat (tai Lintulassa tiedosto ~hehu/public_html/seiska.mat) ja lataa se Matlabiin komennolla load. Signaalin näytteenottotaajuus on 6384 Hz. Pudota näytteenottotaajuus ensin puoleen alkuperäisestä komennolla x=y(:2:length(y)); Tällöin jäljelle F s

8 823 JOHDATUS SIGNAALINKÄSITTELYYN jää vain joka toinen näyte, eli sama tulos oltaisiin saatu otettaessa alun perin näytteitä taajuudella 892 Hz. Nyt korkeat taajuudet laskostuvat matalien päälle. Kuuntele tulos komennolla soundsc. Vertaa kuulemaasi tulokseen, joka saadaan poistamalla liian suuret taajuudet ennen näytteenottotaajuuden pienentämistä (komento decimate)... (Matlab) Edellisessä tehtävässä laskostuminen ei ollut vielä kovin merkittävää, koska miesääni ei sisällä korkeita taajuuksia juurikaan muualla kuin joidenkin konsonanttien kohdalla (erityisesti s-kirjaimen). Tee edellisen tehtävän testi signaalilla http://www.cs.tut.fi/~hehu/lintu.mat (Lintulassa voit käyttää myös tiedostoa ~hehu/public_html/lintu.mat). Näytteenottotaajuus on nyt 892 Hz. Kuuntele alkuperäinen näyte, joka on muuttujassa y. Pudota näytteenottotaajuus sitten puoleen alkuperäisestä komennolla z=y(:2:length(y)) ja kuuntele tulos komennolla soundsc(interp(z),2)). Kiinnitä huomiota loppuosaan: alkuperäisessä näytteessä on laskeva ääni, laskostuneessa nouseva. Tulosta ruudulle molempien signaalien spektrogrammit (komento specgram). Komento interp nostaa näytteenottotaajuuden takaisin 892:n Hertsiin, jotta äänikortti osaa soittaa sen.

Luku 2 Diskreettiaikaiset digitaaliset signaalit Analoginen signaali on määritelty jokaisella ajanhetkellä ja se voi saada äärettömän määrän eri arvoja (esim. väliltä [, ], kuten alla). Jatkuva aikainen signaali.8.6.4.2.5.5 2 2.5 3 Digitaalinen signaali saa vain äärellisen määrän eri arvoja. Jatkuva aikainen digitaalinen signaali.8.6.4.2.5.5 2 2.5 3 Diskreettiaikainen signaali saa arvoja vain tietyillä ajanhetkillä. Diskreettiaikainen digitaalinen signaali.8.6.4.2.5.5 2 2.5 3

823 JOHDATUS SIGNAALINKÄSITTELYYN Jos esim. näytteitä otetaan taajuudella Hz, signaali on määritelty ajanhetkillä s, 2 s, 3 s,... Esimerkiksi CD-soittimen signaali on 6-bittinen, eli se voi saada 26 erilaista arvoa. Näytteenottotaajuus on 44 Hz, jolloin T = s 2.27 44 5 s. Matemaattisen käsittelyn helpottamiseksi lukujonoja käytetään usein diskreettiaikaisen signaalin mallina. Toisin kuin reaalimaailman signaali, lukujono on äärettömän pitkä, mutta tämä ei ole mallinnuksen kannalta ongelma. 2. Usein tarvittavia signaaleita Yksikkönäyte (unit sample) eli impulssi δ(n) määritellään seuraavasti: δ(n) = {, kun n =,, kun n..2 Yksikkönäyte.8.6.4.2.2 8 6 4 2 2 4 6 8 Matlab: delta = [zeros(,7),,zeros(,7)]; Yksikköaskel (unit step) u(n) määritellään seuraavasti: u(n) = {, kun n,, kun n<..2 Yksikköaskel.8.6.4.2.2 8 6 4 2 2 4 6 8 Matlab: u = [zeros(,7),ones(,8)]; Nämä jonot voidaan esittää toistensa avulla seuraavasti: δ(n) = u(n) u(n )

2. DISKREETTIAIKAISET DIGITAALISET SIGNAALIT ja u(n) = n k= δ(k). Mikä tahansa jono voidaan esittää siirrettyjen ja painotettujen yksikkönäytteiden avulla seuraavasti: x(n) = x(k)δ(n k). k= Kyseisen muodon nimi on konvoluutio ja siitä käytetään merkintää x(n) δ(n). Ramppisignaali (ramp signal) määritellään seuraavasti: { n, kun n, r(n) =nu(n) =, kun n<. 8 Ramppisignaali 6 4 2 6 4 2 2 4 6 8 Matlab: r = [zeros(,7),:7]; Eksponenttijono määritellään seuraavasti: x(n) =Aα n. 8 Eksponenttijono 6 4 2 8 6 4 2 2 4 6 Matlab: x = -7:7; e =.5.^x; Erikoistapaus eksponenttijonosta saadaan kun α on ei-reaalinen. Silloin x(n) voidaan esittää muodossa (yksinkertaisuuden vuoksi A = ) x(n) =α n = α n e iωn = α n cos(ωn) + α n i sin(ωn).

2 823 JOHDATUS SIGNAALINKÄSITTELYYN Viimeisimmästä muodosta nähdään, että eksponenttijono on näin ollen kosinijonon ja sinijonon summa. Tällä on merkitystä jatkossa, koska eksponenttijonojen algebralliset operaatiot (esim. kertolasku) ovat yksinkertaisia, mutta sini- ja kosinijonojen operaatiot ovat usein hankalia. Diskreettiaikainen signaali on jaksollinen, jos on olemassa sellainen N N, että x(n) =x(n + N), kaikilla indeksin n arvoilla. Lukua N sanotaan jakson pituudeksi. Esimerkiksi kompleksinen eksponenttijono on jaksollinen, jos α =. Samoin sinijono x(n) =sin(ωn) on jaksollinen. Molempien jakson pituus on N = 2π ω. Jonot ovat tosin määritelmän tiukassa mielessä jaksollisia vain jos näin saatu N on kokonaisluku. Jos S on kaikkien signaalien joukko, niin kuvausta F : S S sanotaan diskreetiksi järjestelmäksi tai suotimeksi. Kuvauksen F argumenttia kutsutaan sisäänmenojonoksi tai herätteeksi ja sen palauttamaa jonoa kutsutaan ulostulojonoksi tai vasteeksi. Esimerkiksi yhtälö y(n) = x(n ) määrittelee suotimen, joka viivästää signaalia askelta. Toinen esimerkki laskee keskiarvon: tai yleisemmin: y(n) = (x(n)+x(n )+x(n 2)+x(n 3)+x(n 4)) 5 y(n) = x(n k). 2K + k= Perusoperaatiot lukujonoille (signaaleille) on esitetty seuraavassa. Mukana ovat myös operaatioille lohkokaavioissa käytettävät symbolit. Yhteenlasku: z(n) =x(n)+y(n) 2K x(n) z(n) y(n) Kertolasku: z(n) =x(n) y(n) x(n) z(n) y(n)

2. DISKREETTIAIKAISET DIGITAALISET SIGNAALIT 3 Vakiolla kertominen: z(n) =ax(n) x(n) a z(n) Viive: z(n) =x(n d) x(n) z d z(n) Edellä olleita operaatioita voidaan yhdistellä ja muodostaa näin monimutkaisempia järjestelmiä. Yksi esimerkki on järjestelmä jonka lohkokaavio on alla. y(n) = 3 h(k)x(n k), k= x(n) z z z h() h() h(2) h(3) y(n) Harjoitustehtäviä 2.. (a) Mikä differenssiyhtälö on herätteen x(n) ja vasteen y(n) välillä kun järjestelmän lohkokaavio on alla olevan kuvan mukainen? x(n) z z z z.2427.2.7794.2.2427 (b) (Matlab) Lataa Matlabin äänitiedosto gong.mat muuttujaan y komennolla load gong. Tutustu konvoluution toteuttavaan komentoon (help conv) ja laske signaalin y ja (a)-kohdan kertoimista muodostetun vektorin konvoluutio. Sijoita tulos muuttujaan z. Kuuntele alkuperäinen signaali ja vertaa sitä suodatustulokseen. Kertoimet oli valittu siten, että konvoluutiossa osa taajuuksista poistuu. Arvioi mitkä taajuudet poistettiin? y(n)

4 823 JOHDATUS SIGNAALINKÄSITTELYYN

Luku 3 Diskreettien järjestelmien ominaisuuksia Edellä olleen määritelmän mukaan kaikki operaatiot signaalien joukolla ovat suotimia. Suotimia on siis erittäin paljon, ja suurin osa niistä on käytännön kannalta tarpeettomia. Seuraavassa käydään läpi ominaisuuksia, joita suotimilla voi olla. Näin suotimia voidaan luokitella käyttötarpeen mukaan. Muistittomuus: Järjestelmä on muistiton, jos sen ulostulo y(n) riippuu vain samanaikaisesti sisääntulevasta näytteestä x(n). Esimerkiksi y(n) =e x(n) ja y(n) =x(n) 2 ovat muistittomia, mutta y(n) =x(n ) ei ole. Lineaarisuus: Järjestelmä F( ) on lineaarinen, jos F[ax (n)+bx 2 (n)] = af[x (n)] + bf[x 2 (n)], kaikilla signaaleilla x (n),x 2 (n) ja kaikilla kertoimilla a, b. Sanallisesti sama asia voidaan ilmaista esimerkiksi seuraavasti: Vasteiden summa on summan vaste. Vaste herätteellä ax(n) saadaan kertomalla herätteen x(n) vaste F[x(n)] skalaarilla a. Toisaalta ehto tarkoittaa myös, että: Skalaarilla kertominen voidaan suorittaa ennen tai jälkeen suodatuksen. Yhteenlasku voidaan suorittaa ennen tai jälkeen suodatuksen. Tarkastellaan järjestelmää F[x(n)] = 2K + 2K k= x(n k).

6 823 JOHDATUS SIGNAALINKÄSITTELYYN Olkoot nyt a ja b mitkä tahansa reaaliluvut (yleisemmin: skalaarit) ja x (n) sekä x 2 (n) mitkä tahansa kaksi lukujonoa. Tällöin = F[ax (n)+bx 2 (n)] 2K + 2K k= 2K (ax (n k)+bx 2 (n k)) = a x (n k)+b 2K + 2K + k= = af[x (n)] + bf[x 2 (n)]. Näin ollen järjestelmä on lineaarinen. Toisaalta esimerkiksi järjestelmä F[x(n)] = x(n) 2 2K k= x 2 (n k) ei ole lineaarinen. Tämä nähdään esimerkiksi seuraavasti: olkoon x (n) yksikköaskel (eli x (n) =u(n) =, kun n ja nolla muulloin) ja x 2 (n) nollasignaali. Asetetaan a = 2 sekä b =. Valitaan vielä n =, jolloin F[ax (n)+bx 2 (n)] = F[2 ] =2 2 = 4, ja af[x (n)] + bf[x 2 (n)] = 2 2 = 2. Koska nämä kaksi lauseketta saavat erisuuret arvot, järjestelmä ei ole lineaarinen. Siirtoinvarianssi: Merkitään y(n) =F[x(n)]. Järjestelmä F( ) on tällöin siirtoinvariantti (shift-invariant) eli aikainvariantti (time-invariant), jos y(n k) =F[x(n k)] aina, kun k Z. Tämä tarkoittaa toisin sanoen sitä, ettei järjestelmä ole riippuvainen ajasta, vaan siirto voidaan tehdä suodatusta ennen tai sen jälkeen. Esimerkki: Tarkastellaan järjestelmää F[x(n)] = nx(n). Olkoon x(n) yksikkönäyte (eli x(n) =δ(n) =, kun n =, ja nolla muulloin). Määritellään x (n) =x(n ). Olkoon sitten y(n) järjestelmän vaste herätteellä x(n), eli y(n) = F[x(n)] = nx(n). Nyt siis y(n ) =(n )x(n ). Toisaalta F[x(n )] = F[x (n)] = nx (n) =nx(n ). Selvästikään jokaisella indeksillä n ei päde y(n ) =F[x(n )], sillä jos n =, niin y(n ) =(n )x(n ) = = = = nx(n ) =F[x(n )]. Siten järjestelmä F ei ole siirtoinvariantti. Toisena esimerkkinä olkoon järjestelmä F[x(n)] = e x(n). Osoitetaan, että F on siirtoinvariantti. Olkoon y(n) =F[x(n)] jokaisella indeksillä n Z ja olkoon k Z mielivaltainen. Määritellään lisäksi x (n) =x(n k). Tällöin y(n k) =e x(n k), joka on sama kuin F[x(n k)] = F[x (n)] = e x(n) = e x(n k). Näin ollen F siis on siirtoinvariantti. Siirtoinvarianssia voidaan tarkastella myös seuraavan kaavion avulla:

3. DISKREETTIEN JÄRJESTELMIEN OMINAISUUKSIA 7 x(n) siirto x(n k) suodatus suodatus F[x(n)] siirto? Jos signaali y(n) on sama molempia kaavion reittejä pitkin, on kyseinen järjestelmä siirtoinvariantti. Jos sen sijaan saadaan eri signaalit, niin järjestelmä ei ole siirtoinvariantti. Kausaalisuus: Järjestelmän F( ) sanotaan olevan kausaalinen, jos vaste y(n) riippuu pelkästään herätteen arvoista x(n),x(n ),x(n 2),... eikä arvoista x(n + ),x(n + 2),x(n + 3),...Kausaalisuus siis tarkoittaa sitä, ettei järjestelmän tarvitse tietää etukäteen, mitä arvoja heräte tulee jatkossa saamaan. Esimerkki: F[x(n)] = (x(n)+x(n )+x(n 2)+x(n 3)+x(n 4)). 5 Vasteen laskemiseen kohdassa n tarvitaan selvästi ainoastaan herätteen arvoja x(n), x(n ),x(n 2),x(n 3) ja x(n 4), joten järjestelmä on kausaalinen. Jos sen sijaan tarkasteltavana on järjestelmä F[x(n)] = (x(n + 2)+x(n + )+x(n)+x(n )+x(n 2)), 5 niin vasteen laskemiseen kohdassa n tarvitaan herätteen arvoja x(n + 2) ja x(n + ), joten järjestelmä ei ole kausaalinen. Stabiilisuus: Lukujonon x(n) sanotaan olevan rajoitettu, jos on olemassa sellainen yläraja M R, että x(n) M, jokaisella indeksillä n. Diskreetti järjestelmä F( ) on stabiili, jos jokainen rajoitettu heräte aiheuttaa rajoitetun ulostulon. Toisin sanoen missä y(n) =F[x(n)]. Esimerkki: Tarkastellaan järjestelmää ( M R : n Z : x(n) M ) ( M 2 R : n Z : y(n) M 2 ), y(n) =F[x(n)] = (x(n)+x(n )+x(n 2)+x(n 3)+x(n 4)), 5

8 823 JOHDATUS SIGNAALINKÄSITTELYYN ja osoitetaan sen olevan stabiili. Oletetaan, että x(n) on rajoitettu. Silloin on olemassa sellainen reaaliluku M, että x(n) M jokaisella indeksillä n. Stabiilisuuden osoittamiseksi on näytettävä, että on olemassa sellainen M 2 R, että y(n) M 2 aina, kun n Z. Voidaan helposti todistaa, että viiden sisäänmenonäytteen keskiarvo on aina näytteistä suurimman ja pienimmän välillä. Siis M min x(k) y(n) max x(k) M. n 4 k n n 4 k n Näin ollen vaste y(n) on rajoitettu aina, kun n Z, joten systeemi F on stabiili. Sen sijaan järjestelmä y(n) =F[x(n)] = nx(n) on epästabiili, sillä esimerkiksi yksikköaskeljonolla u(n) (joka on rajoitettu) saadaan vasteeksi jono y(n) = joka ei selvästikään ole rajoitettu. {, kun n<, n, kun n, Myöskään järjestelmä y(n) =.y(n )+x(n) ei ole stabiili, sillä syötteellä u(n) vaste kasvaa rajatta. Seuraavissa kappaleissa nähdään, että tämän tyyppisten järjestelmien stabiilisuustarkastelu voidaan tehdä yksinkertaisesti tarkastelemalla järjestelmästä laskettavaa ns. napa-nollakuviota. Harjoitustehtäviä 3.. Osoita, ettei järjestelmä F[x(n)] = e x(n) ole lineaarinen. 3.2. Onko järjestelmä F[x(n)] = toiseksi suurin luvuista x(n),x(n ) ja x(n 2) lineaarinen? Miksi / miksi ei? 3.3. Osoita, että järjestelmä F[x(n)] = x(n)+ 2 x(n )+ x(n 2) 4 on siirtoinvariantti. 3.4. Osoita, että järjestelmä F[x(n)] = n 2 x(n) ei ole siirtoinvariantti.

3. DISKREETTIEN JÄRJESTELMIEN OMINAISUUKSIA 9 3.5. Osoita, että järjestelmä ei ole stabiili. 3.6. Osoita, että järjestelmä on stabiili. 3.7. Osoita, että järjestelmä on stabiili. F[x(n)] = x(n) F[x(n)] = sin(x(n)) y(n) = x(n).9y(n ) 3.8. Tekstissä mainitaan, ettei järjestelmä y(n) =.y(n ) + x(n) ole stabiili koska syötteellä u(n) vaste kasvaa rajatta. Kokeile tätä Matlabilla seuraavasti. Luo ensin pätkä signaalista u(n) kappaleen 2. esimerkin mukaisesti (tee kuitenkin ykkösten osuudesta hieman pidempi). Tutustu komentoon filter ja suodata u(n) mainitulla järjestelmällä. Tulosta vaste ruudulle komennolla stem.

2 823 JOHDATUS SIGNAALINKÄSITTELYYN

Luku 4 Lineaariset siirtoinvariantit (LTI) järjestelmät 4. Konvoluutio Tämä kurssi keskittyy lineaarisiin siirtoinvariantteihin (Linear Time-Invariant; LTI) järjestelmiin. Tarkastellaan tärkeimpiä ominaisuuksia näille järjestelmille, jotka ovat siis lineaarisia sekä siirtoinvariantteja. Lineaarisuusominaisuus tarkoitti, että ) kertolasku voidaan suorittaa ennen suodatusta tai sen jälkeen. 2) yhteenlasku voidaan suorittaa ennen suodatusta tai sen jälkeen. Siirtoinvarianssi puolestaan tarkoitti, että 3) siirto ajassa voidaan tehdä ennen suodatusta tai sen jälkeen. Siispä LTI-järjestelmän tapauksessa on yhdentekevää, suoritetaanko kertolasku, yhteenlasku tai siirto ajassa ennen suodatusta vai sen jälkeen. Olkoon F( ) lineaarinen siirtoinvariantti järjestelmä. Silloin sen impulssivaste (eli järjestelmän vaste impulssille) on F[δ(n)] ja siitä käytetään merkintää h(n) =F[δ(n)]. Jos järjestelmä F( ) on lineaarinen ja aikainvariantti, niin silloin sen vaste herätteellä x(n) = k= x(k)δ(n k) voidaan esittää muodossa y(n) = F[ x(k)δ(n k)] = = = k= k= k= k= F[x(k)δ(n k)] x(k)f[δ(n k)] x(k)h(n k) (Lineaarisuus) (Lineaarisuus) (Siirtoinvarianssi)

22 823 JOHDATUS SIGNAALINKÄSITTELYYN Tällaisen järjestelmän vaste mille tahansa herätteelle voidaan siis esittää yksikäsitteisesti siirrettyjen yksikkönäytteiden δ(n k) vasteiden h(n k) =F[δ(n k)] avulla. Kyseistä esitysmuotoa kutsutaan jonojen x(n) ja h(n) konvoluutioksi tai konvoluutiosummaksi, ja konvoluution käsitteeseen tutustutaan seuraavassa tarkemmin. Tarkastellaan kahta lukujonoa x(n) ja h(n). Lukujonojen x(n) ja h(n) konvoluutiosta käytetään merkintää x(n) h(n) ja se määritellään seuraavasti: y(n) =x(n) h(n) = x(k)h(n k). k= Seuraavassa kappaleessa osoitetaan, että konvoluutio on kommutatiivinen. Näin ollen yllä olevan määritelmän sijasta voidaan käyttää seuraavaa yhtäpitävää muotoa: y(n) =h(n) x(n) = h(k)x(n k). k= Jälkimmäinen muoto on useimmissa tapauksissa havainnollisempi. Esimerkki: Olkoon lineaarisen systeemin F( ) impulssivaste 2, kun n =, h(n) =, kun n =, 2, muulloin. Määritetään vaste y(n) =F[x(n)], kun {, kun n =,, 2, x(n) =. muulloin. Nyt y(n) =h(n) x(n) = k= h(k)x(n k). Koska h(k) vain, kun k =,, 2, niin y(n) saa muodon Siis y(n) = 2 h(k)x(n k) k= = h()x(n)+ h()x(n )+ h(2)x(n 2) = x(n)+2x(n )+x(n 2). y() = x() =, y() = x()+2x() = + 2 = 3, y(2) = x(2)+2x()+x() = + 2 + = 4, y(3) = 2x(2)+x() =2 + = 3 ja y(4) = x(2) =.

4. LINEAARISET SIIRTOINVARIANTIT (LTI) JÄRJESTELMÄT 23 Muulloin y(n) =. Alla ensimmäisessä kuvassa on signaali x(n), toisessa signaali h(n) ja kolmannessa signaali y(n). 5 4 3 x(n) 2 5 4 2 2 4 6 8 4 3 h(n) 2 5 4 2 2 4 6 8 4 3 y(n) 2 4 2 2 4 6 8 4.2 Konvoluution ominaisuuksia Seuraavassa esitetään lyhyesti tärkeimpiä konvoluution ja siten myös LTI-järjestelmien ominaisuuksia. Kommutatiivisuus (vaihdantalaki): x(n) h(n) =h(n) x(n). Distributiivisuus (osittelulaki): x(n) (h (n)+h 2 (n)) = x(n) h (n)+x(n) h 2 (n). Kaskadi: Jos sellaiset järjestelmät F ( ) ja F 2 ( ), joiden impulssivasteet ovat h (n) ja h 2 (n), kytketään sarjaan, niin kokonaisuuden eli järjestelmän F (F 2 ( )) impulssivaste on h (n) h 2 (n). Kausaalisuus: Järjestelmä on kausaalinen tarkalleen silloin, kun sen impulssivaste h(n) toteuttaa ehdon: n< h(n) =. Stabiilisuus: Järjestelmä on stabiili tarkalleen silloin, kun sen impulssivaste h(n) toteuttaa ehdon h(k) <, k= eli jonon h(k) kaikkien alkioiden itseisarvojen summa on äärellinen.

24 823 JOHDATUS SIGNAALINKÄSITTELYYN Järjestelmää F (F 2 ( )) sanotaan siis järjestelmien F ( ) ja F 2 ( ) kaskadiksi (cascade) ja siitä käytetään merkintää F F 2 ( ) =F (F 2 ( )). Osoitetaan seuraavassa muutamia edellisistä kohdista. Vaihdantalaki (x(n) h(n) =h(n) x(n)): x(n) h(n) = k=n t = = k= t= t= x(k)h(n k) x(n t)h(t) h(t)x(n t) = h(n) x(n). Stabiilisuusehto: Oletetaan, että järjestelmä, jonka impulssivaste on h(n), on stabiili. Silloin esimerkiksi rajoitetulla herätteellä {, kun h( n) < x(n) =sgn[h( n)] =, kun h( n) saadaan rajoitettu vaste, joten erityisesti F[x(n)] on äärellinen. Tarkastellaan nyt n= kyseistä lauseketta lähemmin. F[x(n)] = h(k)x( k) n= = = = = k= k= k= k= k= h(k)x( k) h(k)sgn[h( ( k))] h(k)sgn[h(k)] h(k). Näin ollen viimeinen summa on äärellinen. Oletetaan seuraavaksi, että h(k) = M <, k=

4. LINEAARISET SIIRTOINVARIANTIT (LTI) JÄRJESTELMÄT 25 ja olkoon x(n) mielivaltaisesti valittu rajoitettu lukujono (merkitään x(n) M 2 ). Silloin järjestelmän vasteen itseisarvo herätteellä x(n) on h(n) x(n) = h(k)x(n k) k= h(k)x(n k) ey = k= k= k= = M 2 h(k) x(n k) h(k) M 2 k= = M 2 M. h(k) Näin ollen jokainen rajoitettu heräte tuottaa kyseisellä järjestelmällä rajoitetun vasteen, ja järjestelmä on stabiili. Konvoluution avulla on tapana esittää lineaarisia järjestelmiä. Konvoluutio käsittelee sisääntulevan signaalin x(n) lukujonon h(n) kertoimien määrittämällä tavalla. Lineaariset järjestelmät jaetaan kahteen luokkaan impulssivasteen mukaan. FIR-suodin: Niin sanotun FIR-suotimen (finite impulse response) impulssivaste on äärellisen mittainen (eli tietyn rajan jälkeen impulssivaste on aina nolla). Alla oleva kuva esittää Matlabilla suunnitellun FIR-suotimen impulssivastetta. Konvoluutio kyseisen impulssivasteen kanssa poistaa signaalista tiettyä rajataajuutta suuremmat taajuudet. Impulssivasteen pituus on nyt 3. Kaikki muut impulssivasteen arvot ajatellaan nolliksi..2.5..5.5 5 5 2 25 3 Kun lasketaan vastetta hetkellä n, kerrotaan herätteen x uusin näyte x(n) impulssivasteen nollannella termillä h(), toiseksi uusin näyte x(n ) ensimmäisellä termillä h(), näyte x(n 2) termillä h(2), jne. Lopuksi näin saadut tulot lasketaan yhteen. Kaavana tämä ilmaistaan muodossa 3 y(n) = h(k)x(n k). k= Tentissä tyypillinen vastaus on, että impulssivaste on äärellinen. Tämä ei riitä, vaan pitää sanoa sen olevan äärellisen mittainen.

26 823 JOHDATUS SIGNAALINKÄSITTELYYN IIR-suodin: Niin sanotun IIR-suotimen (infinite impulse response) impulssivaste on äärettömän pitkä (eli ei ole rajaa, jonka jälkeen impulssivaste olisi aina nolla). Esimerkiksi impulssivaste: h(n) =u(n)(.9) n. Kuvassa on vasteen 32 ensimmäistä termiä. Impulssivasteessa on kuitenkin äärettömän paljon nollasta poikkeavia arvoja..5.5 5 5 2 25 3 IIR-suotimia saadaan yleensä differenssiyhtälöiden avulla. IIR-suodatin on operaatio, joka toteuttaa seuraavan differenssiyhtälön ulostulojonon y(n) ja sisäänmenojonon x(n) välillä: K M y(n) = a k x(n k)+ b m y(n m). k= Suodin määritellään kertoimien a k,k =,,...,K ja b m,m =,2,...,M avulla. Seuraavassa on tämä differenssiyhtälö vielä kaaviomuodossa. m= x(n) y(n) a z z x(n ) z a b z y(n ) x(n 2) a 2 b 2 y(n 2) z z x(n K+) z a K b M z y(n M+) x(n K) a K b M y(n M) Esimerkiksi aiemmin ollut impulssivaste h(n) =u(n)(.9) n saadaan differenssiyhtälöstä y(n) =.9y(n )+x(n),

4. LINEAARISET SIIRTOINVARIANTIT (LTI) JÄRJESTELMÄT 27 kun herätteenä on impulssi δ(n). Kuva järjestelmästä on alla. x(n) y(n) z.9 y(n ) Esimerkki: Lasketaan differenssiyhtälön y(n) =.9y(n )+x(n) määräämän systeemin impulssivaste. Olkoon siis heräte x(n) yksikkönäyte. Tällaisessa tehtävässä oletetaan, että y(n) =, kun n<eli että vaste on kausaalinen. Aletaan laskea vastetta indeksistä n = alkaen: y() =.9 y( ) + x() =. } {{ } }{{} = = Seuraavaksi asetetaan indeksiksi n =, sitten n = 2 ja niin edelleen: y() =.9 y( ) } {{ } = y(2) =.9 y(2 ) } {{ } =.9 + x() =.9 }{{} = + x(2) }{{} = =(.9) 2 y(3) =.9 y(3 ) + x(3) =(.9) 3 } {{ } }{{} =(.9) 2 = y(4) =.9 y(4 ) + x(4) =(.9) 4 } {{ } }{{} =(.9) 3 = Tässä vaiheessa havaitaan 2, että vasteen yleinen muoto on eli. y(n) =(.9) n, kun n y(n) =u(n)(.9) n, joka on tietenkin sama kuin edellisen esimerkin h(n). 2 Haluttaessa perustella täsmällisesti lausekkeen y(n) yleinen muoto on käytettävä matemaattista induktiota luvun n suhteen: väitteenä on y(n) =(.9) n. Induktion perusaskel (y() =.9) on voimassa. Olkoon n. Tehdään induktio-oletus: y(n) =(.9) n. Induktioväite y(n + ) =(.9) n+ nähdään seuraavasti: y(n + ) =(.9)y(n) +x(n) =(.9) (.9) n + =(.9) n+. Induktioperiaatteen nojalla on y(n) =(.9) n aina, kun n. Lisäksi tapaus n = on jo käsitelty, joten n N : y(n) =(.9) n.

28 823 JOHDATUS SIGNAALINKÄSITTELYYN Harjoitustehtäviä 4.. Määritellään signaali x(n) ja impulssivaste h(n) seuraavasti: x(n) = δ(n)+2δ(n ) δ(n 3) h(n) = 2δ(n + )+2δ(n ) Piirrä signaalit x(n) ja h(n). Laske signaali h(n) x(n) ja piirrä myös se (kynällä ja paperilla). 4.2. (Matlab) Olkoot jonot x(n) ja h(n) kuten edellä. Laske konvoluutiot h(n) x(n) sekä h(n) h(n) x(n) Matlabilla ja tulosta ne ruudulle (komentoja: conv, stem). 4.3. (a) Laske konvoluutio h(n) x(n), missä h(n) = ( ) n u(n), 3 x(n) = u(n ). Vihje: tarvitset geometrisen sarjan summakaavaa. (b) Onko impulssivasteen h(n) määräämä järjestelmä kausaalinen? Entä stabiili? 4.4. (a) Mitä differenssiyhtälöä alla oleva järjestelmä kuvaa? x(n) y(n) z.2 z z.5.6 z.8 (b) Piirrä lohkokaavio järjestelmästä.3 y(n) =x(n)+ 2 x(n ) 4 x(n 2)+ 6 y(n )+ y(n 2). 8 4.5. LTI-järjestelmän F[x(n)] impulssivaste on 2, kun n =, h(n) =, kun n =, 2, muulloin. Mikä on kaskadin F Fimpulssivaste? 4.6. LTI-järjestelmän herätteen x(n) ja vasteen y(n) välillä on voimassa yhtälö Määritä järjestelmän impulssivaste. y(n) =.75y(n )+.5x(n)+.5x(n ).

4. LINEAARISET SIIRTOINVARIANTIT (LTI) JÄRJESTELMÄT 29 4.7. Merkitään LTI-järjestelmän vastetta yksikköaskeleelle seuraavasti: z(n) =F[u(n)]. Määritä impulssivaste h(n), kun askelvaste (step response) z(n) tiedetään. 3 4.8. (Matlab) Matlab suodattaa vektorissa x olevan signaalin komennolla y=filter(a,b,x); missä vektori a sisältää herätteen kertoimet (a,a,...,a K ) ja vektori b sisältää vasteen aikaisemmin laskettujen termien kertoimet (, b,b 2,...,b M ). Huomaa, että ensimmäisen kertoimen tulee olla. Yllä olevilla kertoimilla tuleva differenssiyhtälö on K M y(n) = a k x(n k) b m y(n m). k= (Huomaa miinusmerkki jälkimmäisen summan edessä. Matlabissa signaalin y kertoimet ovat monisteessa olevien kertoimien vastalukuja.) (a) Muodosta impulssisignaali δ(n) seuraavasti: delta=[,zeros(,27)]; Suodata tämä suotimella, jonka differenssiyhtälö on m= y(n) =.9y(n )+x(n) ja tulosta tulossignaali ruudulle. (b) Suodata impulssi myös tehtävän 4.4 a-kohdan järjestelmällä ja tulosta tulossignaali ruudulle. (c) Suodata impulssi järjestelmällä y(n) =x(n)+.5x(n )+.25x(n 2)+.5y(n )+.6y(n 2) ja tulosta tulossignaali ruudulle. Yksi edellämainituista järjestelmistä ei ole stabiili. Osaatko sanoa impulssivasteiden perusteella mikä? 4.9. (Matlab) Yritä saada edellisessä tehtävässä saamasi impulssivasteet Matlabin valmiilla impz-komennolla. Parametreina annetaan vektorit a ja b. 3 Näennäisestä esoteerisuudestaan huolimatta tällä lauseella on joskus käyttöä. Generoimalla herätteeksi yksikköaskel saadaan vastetta tarkastelemalla selville myös impulssivaste. Yksikköaskel on lisäksi usein helpompi generoida kuin impulssi.

3 823 JOHDATUS SIGNAALINKÄSITTELYYN

Luku 5 Fourier-muunnos Fourier-muunnosta käytetään yleisesti signaalin sisältämien taajuuksien analysointiin. Fourier-muunnos voidaan tehdä jatkuvalle tai diskreetille signaalille. Riippuen signaalin jaksollisuudesta tuloksena on äärellinen, numeroituvasti ääretön tai ylinumeroituvasti ääretön määrä muunnoskertoimia, jotka kuvaavat signaalin sisältämiä taajuuksia. Alla oleva taulukko esittää neljää eri muunnostyyppiä. Muunnettavan signaalin tyyppi Ei-jaksollinen Jaksollinen Jatkuva-aikainen Tuloksena on ei-jaksollinen jatkuva-aikainen signaali. Käytetään nimitystä Fourier-muunnos. (jatkuva jatkuva) Tuloksena on ei-jaksollinen diskreettiaikainen signaali. Käytetään nimitystä Fourier-sarja. (jatkuva diskreetti) Diskreettiaikainen Tuloksena on jaksollinen jatkuva-aikainen signaali. Käytetään nimitystä diskreettiaikainen Fourier-muunnos (DTFT). (diskreetti jatkuva) Tuloksena on jaksollinen diskreettiaikainen signaali. Käytetään nimitystä diskreetti Fourier-muunnos (DFT). (diskreetti diskreetti) Seuraavassa tullaan tarvitsemaan Fourier-analyysin perinteisesti käyttämää eksponenttifunktioiden joukkoa, ja signaalien esitystä niiden avulla. Kompleksinen eksponenttifunktio on muotoa f(t) =e ikt, missä k on kokonaislukukerroin ja i =. Eulerin kaavan mukaan e ikt = cos(kt)+i sin(kt). Näin ollen kompleksinen eksponenttifunktio koostuu sinin ja kosinin värähtelyistä, missä k määrää taajuuden. Kumpi tahansa muoto on käyttökelpoinen, mutta käytännössä eksponettifunktion kanssa on paljon helpompi työskennellä (esim. kahden kompleksisen eksponettifunktion tulo: e ikt e imt on helpompi sieventää kuin (cos(kt)+i sin(kt))(cos(mt)+ i sin(mt))). Fourier-analyysin ideana on selvittää voidaanko tietty signaali (funktio, lukujono) esittää kompleksisten eksponenttifunktioiden painotettuna summana (eli lineaarikombinaationa). Jos tämä on mahdollista, täytyy vielä ratkaista kunkin eksponenttifunktion painokerroin. Tästä painokertoimesta voidaan sitten päätellä kuinka paljon signaalissa on kyseistä taajuutta. Lisäksi siitä käy ilmi missä vaiheessa kyseinen taajuuskomponentti on.

32 823 JOHDATUS SIGNAALINKÄSITTELYYN Digitaalisen signaalinkäsittelyn sovelluksissa käytetään pääasiassa diskreettiä Fouriermuunnosta signaalin taajuussisältöä analysoitaessa. Syynä on se, että laskenta on tällöin puettavissa matriisikertolaskun muotoon ja laskut ovat näin ollen äärellisiä. Muut muunnostyypit ovat teoreettisia työkaluja joita käytetään esimerkiksi suodinsuunnittelussa. Näiden laskukaavat sisältävät äärettömiä summia sekä integraaleja, jotka ovat tietokoneella laskettaessa hankalia käsiteltäviä. Näin ollen ne soveltuvat huonommin taajuuksien automaattiseen analyysiin. Sen sijaan ne ovat korvaamaton työkalu suunnitteluvaiheessa. Tämän kurssin tentin kannalta opeteltavaa asiaa on vain diskreetti Fourier-muunnos ja sen toteuttava nopea algoritmi FFT. Muun muassa ikkunamenetelmän yhteydessä tarvitaan kuitenkin diskreettiaikaista Fourier-muunnosta, joten siihenkin on syytä tutustua lyhyesti. Täydellisyyden vuoksi mainitaan myös jatkuva-aikaisten signaalien muunnokset, vaikka niitä tarvitaankin varsinaisesti vasta myöhemmillä kursseilla (jatkuvia signaaleja käsiteltäessä, esimerkiksi tietoliikennetekniikassa). 5. Fourier-muunnos (ei-jaksollinen jatkuva-aikainen signaali) Ensimmäinen muunnostyyppi muuntaa jatkuva-aikaisen signaalin jatkuva-aikaiseksi signaaliksi. Jos muunnettavana on ei-jaksollinen jatkuva-aikainen signaali x(t) (t R), määritellään sen Fourier-muunnos integraalina X(e iω )= x(t)e iωt dt. Tuloksena saadaan muuttujan ω R funktio. Fourier-muunnoksesta päästään takaisin alkuperäiseen signaaliin käänteisellä Fourier-muunnoksella: x(t) = 2π X(e iω )e iωt dω. Merkintä X(e iω ) saattaa näyttää hankalalta, mutta kuvastaa myöhemmin tarkasteltavaa Fourier-muunnoksen ja z-muunnoksen yhteyttä. Funktio X(e iω ) on nyt siis reaalimuuttujan ω funktio. Periaatteessa voitaisiin siis käyttää merkintää X(ω), mutta se saattaisi aiheuttaa sekaannuksia jatkossa. Esimerkiksi signaalin {, kun t x(t) =, muulloin Fourier-muunnos on X(e iω )= { 2sin(ω) ω kun ω 2, kun ω =. Yleisesti Fourier-muunnos on kompleksiarvoinen funktio, mutta tässä esimerkissä tulosfunktio oli reaalinen. Kuvaajat ovat alla olevissa kuvissa; ylemmässä on x(t) ja alemmassa Taajuusmuuttujasta on tapana käyttää kreikkalaista omega-kirjainta ω. Jos kreikkalaiset aakkoset hämäävät, tilalle voi ajatella vaikkapa muuttujan u tai w. Muuttujasta ω käytetään nimeä kulmataajuus.

5. FOURIER-MUUNNOS 33 X(e iω ). Sattumoisin Fourier-muunnos on reaalinen signaali. Näin käy aina kun muunnettava signaali on symmetrinen y-akselin suhteen. Useimmiten lopputuloksessa on myös kompleksiosa..5.5.5 8 6 4 2 2 4 6 8 3 2 8π 5π 2π 9π 6π 3π 3π 6π 9π 2π 5π 8π 5.2 Fourier-sarja (jaksollinen jatkuva-aikainen signaali) Toinen muunnostyyppi muuntaa jatkuva-aikaisen signaalin diskreettiaikaiseksi. Jaksollisen signaalin tapauksessahan ei voida käyttää edellisen kappaleen Fourier-muunnosta, koska jaksollisen signaalin tapauksessa Fourier-muunnoksen määräävä integraali ei suppene 2. Jaksollisen signaalin tapauksessa informaation määrä on siinä mielessä pienempi, että yksi jakso signaalista määrää sen käyttäytymisen täysin. Osoittautuukin, että jaksollisen signaalin esittämiseen riittää diskreetti määrä taajuuksia. Tuloksena on siis kokonaislukuarvoilla määritelty lukujono. Olkoon x(t) 2π-jaksollinen jatkuva-aikainen signaali (siis x(t) =x(t+2π)). Sen Fouriersarja on diskreettiaikainen signaali X(n) = 2π π π x(t)e int dt, missä n Z. Jos tiedetään Fourier-sarja X(n), päästään takaisin alkuperäiseen signaaliin kaavalla x(t) = n= X(n)e int. Tarkastellaan esimerkkiä jatkuvan jaksollisen signaalin Fourier-sarjaesityksestä. Määritellään funktio x(t) seuraavasti: {, kun π 4 x(t) = t π, 4, muissa välin [ π, π] pisteissä. 2 Ainoa poikkeus on nollasignaali x(t).

34 823 JOHDATUS SIGNAALINKÄSITTELYYN Funktio x(t) on nimeltään kanttiaalto. Välin [ π, π] ulkopuolella f on periodinen: x(t) = x(t + 2π). Tämän funktion Fourier-sarjaesitys on sin(nπ/4), kun n, 4 nπ/4 X(n) ={, kun n =. 4 Kuvaajat ovat alla; ensin on signaalin x(t) ja sitten sen Fourier-sarjakehitelmän kertoimien kuvaaja. Tässäkin tapauksessa tulos on reaalinen, koska muunnettava signaali on symmetrinen y-akselin suhteen..5.5.5 4π 3π 2π π π 2π 3π 4π.25.2.5..5.5. 3 2 2 3 Kukin kerroin ilmoittaa nyt kuinka paljon alkuperäisessä signaalissa on kutakin taajuutta: termi X(n) ilmaisee millä kertoimella signaali e int on mukana muodostamassa signaalia x(t). Toisin sanoen, kuinka alkuperäinen signaali voidaan esittää eritaajuisten sinien ja kosinien summana. Funktion jako eri taajuuksiin onkin Fourier-analyysin tärkeimpiä käyttökohteita. Fourier-sarjaa voidaan käyttää hyväksi mm. generoitaessa sinien ja kosinien avulla monimutkaisempia aaltomuotoja. Sähköteknisissä laitteissa eritaajuuksiset siniaallot ovat generoitavissa melko luontevasti, mutta esimerkiksi edellämainittu jaksollinen kanttiaalto täytyy muodostaa sinien ja kosinien avulla. Tämä onnistuu käyttäen pientä osaa edellä lasketun Fourier-sarjan kertoimista. Seuraavassa vasemmalla ylhäällä oleva kuva esittää funktiota x(t) ja sen Fourier-sarjaa, jossa on käytetty kertoimia X( 5),X( 4),...,X(5) (kaikkiaan kpl). Näin saadaan approksimaatio kanttiaallolle: ^x(t) =X( 5)e 5it + X( 4)e 4it + X( 3)e 3it + + X(4)e 4it + X(5)e 5it. Valitsemalla kertoimet symmetrisesti nollan molemmin puolin, supistuvat kaikki lausekkeessa olevat imaginaariosat pois, ja lopputulos on reaalinen funktio. Yhdentoista kertoimen avulla saatava approksimaatio ei ole vielä kovin tarkka, mutta kertoimia lisäämällä saadaan funktio lähemmäs todellista kanttiaaltoa. Yläoikealla on käytetty 2 kerrointa, alhaalla vasemmalla 4 kerrointa ja vihdoin alaoikealla kerrointa. Kuvista havaitaan, että approksimaatio muuttuu tarkemmaksi kun kertoimien määrää lisätään. Pystyakselille jää kuitenkin aina noin kymmenen prosentin heitto reunan molemmille puolille. On havaittu, ettei tätä maksimipoikkeamaa voida pienentää kertoimien