RATKAISUT: 16. Peilit ja linssit



Samankaltaiset tiedostot
eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

34. Geometrista optiikkaa

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Valo, valonsäde, väri

6 GEOMETRISTA OPTIIKKAA

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.

7.4 PERUSPISTEIDEN SIJAINTI

Työ 2324B 4h. VALON KULKU AINEESSA

Teoreettisia perusteita I

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

6 GEOMETRISTA OPTIIKKAA

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V

Tekijä Pitkä matematiikka

2 Pistejoukko koordinaatistossa

ELEC-A4130 Sähkö ja magnetismi (5 op)

y=-3x+2 y=2x-3 y=3x+2 x = = 6

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

3 TOISEN ASTEEN POLYNOMIFUNKTIO

MAB3 - Harjoitustehtävien ratkaisut:

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

Paraabeli suuntaisia suoria.

SIMULAATIOIDEN KÄYTÖSTÄ LUKION FYSIKAALISESSA JA GEOMETRISESSA OPTIIKASSA

5.3 FERMAT'N PERIAATE

34 GEOMETRINEN OPTIIKKA (Geometric Optics)

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

yleisessä muodossa x y ax by c 0. 6p

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

MAB3 - Harjoitustehtävien ratkaisut:

Ympyrän yhtälö

Tekijä Pitkä matematiikka

Mitataan yleismittarilla langan resistanssi, metrimitalla pituus, mikrometrillä langan halkaisija. 1p

Sädeoptiikka Taittuminen ja kuvanmuodostus

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

4. Kertausosa. 1. a) 12

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

ELEC-A4130 Sähkö ja magnetismi (5 op)

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

FY9 Fysiikan kokonaiskuva

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

4 Yleinen potenssifunktio ja polynomifunktio

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

2 Raja-arvo ja jatkuvuus

Kestomagneetit. Sähköä ja magneetteja. Lasten fysiikan viikko Erilaiset navat vetävät toisiaan puoleensa, samanlaiset navat hylkivät toisiaan.

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

Henkilötunnus Sukunimi Etunimet

2 Yhtälöitä ja funktioita

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys

Derivaatan sovellukset (ääriarvotehtävät ym.)

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty


a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa.

Funktion derivoituvuus pisteessä

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

25 INTERFEROMETRI 25.1 Johdanto

origo III neljännes D

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

MATEMATIIKKA JA TAIDE I

LUKION FYSIIKKAKILPAILU PERUSSARJA

Ratkaisuja, Tehtävät

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö

11 MATEMAATTINEN ANALYYSI

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

Transkriptio:

Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste, jonka kautta kuperan linssin läpi kulkeneet tai koverasta peilistä heijastuneet pääakselin suuntaiset valonsäteet kulkevat d) Todellinen kuva on linssin tai peilin muodostama kuva, jonka voi saada näkymään varjostimella e) Valekuva on kuva, joka muodostuu piirrossäteiden jatkeiden leikkauspisteeseen, eikä sitä voi saada näkymään varjostimella ) Linssin taittovoimakkuus on suure, jonka arvo on linssin polttovälin käänteisarvo 16 Hehkulampun etäisyys linssistä on a = 6,5 cm ja linssin polttoväli on = 10,0 cm Linssin muodostaman kuvan paikan voi määrittää kuvausyhtälön 1 + 1 = 1 avulla Kun tästä ratkaistaan kuvan paikka b, saadaan 1 1 1 a = =, ja edelleen b a a a 6,5 cm 10,0 cm b = = = 18,5714 cm 18,6 cm a 6,5 cm 10,0 cm Kuva on valekuva, koska kuvan paikan arvo on negatiivinen Kuvaa ei siten voida saada varjostimelle Kuva on samalla puolella linssiä kuin hehkulamppu Vastaus: Kuva on valekuva, joka muodostuu 18,6 cm linssin etupuolelle, eikä sitä voi saada näkymään varjostimella 163 a) Äärimmäiset valonsäteet tulevat peilin kautta silmiin kuvan mukaisesti Peilin alareunasta ja yläreunasta tulevien valonsäteiden lähtöpisteiden etäisyys on siten kaksi kertaa peilin korkeus, ja siksi peilistä voi nähdä itsestään enintään 56 cm = 11 cm korkuisen osan b) Katsoja näkee kohteen peilissä, jos kohteesta lähtevä valonsäde heijastuu peilin kautta katsojan silmiin heijastumislain mukaisesti i Oppilas näkee opettajan peilistä, koska opettajasta lähtenyt valonsäde voi heijastua peilin kautta oppilaan silmiin

Physica 9 1 painos (6) ii Oppilaasta kulkee opettajan silmiin peilin kautta valonsäde samaa reittiä vastakkaiseen suuntaan kuin kohdan i valonsäde, joten myös opettaja voi nähdä oppilaan iii Lampusta lähtenyt valonsäde voi heijastua oppilaan silmiin peilin kautta, joten oppilas voi nähdä lampun peilissä iv Lampusta lähtevät valonsäteet eivät voi tulla opettajan silmiin peilin kautta, joten opettaja ei näe lamppua c) Kun Aurinko laskee, Auringon kuva liikkuu lasiseinällä alaspäin 164 Esineen etäisyys peilistä on 6,0 cm ja linssin polttoväli on 1,5 cm Piirretään kuva, jossa esinettä edustaa pystyssä oleva nuoli Etsitään esineen (nuolen) yläkärjen kuvan paikka piirtämällä kaksi valonsädettä: tässä tapauksessa pääakselin suuntainen säde, joka taittuu kulkemaan linssin takana olevan polttopisteen läpi, ja linssin keskipisteen kautta kulkeva säde, joka kulkee linssin läpi suoraan Säteet eivät kohtaa linssin takana, vaan taittuneiden säteiden jatkeet leikkaavat linssin edessä Kuvapiste muodostuu säteiden jatkeiden leikkauspisteeseen

Physica 9 1 painos 3(6) Vastaus: Kuvauksessa syntyy oikeinpäin oleva suurennettu valekuva, joka sijaitsee samalla puolella linssiä kuin esine 165 Pallopeilin kaarevuussäde on r = 0,60 m ja hehkulampun etäisyys peilistä on a = 0,45 m Pallopeilin polttoväli on puolet peilin kaarevuussäde, ja koska peili on kupera, polttoväli on negatiivinen 0,60 m = = 0,30 m Ratkaistaan kuvausyhtälöstä 1 + 1 = 1 kuvan paikka, 1 1 1 a a = = = b a a a a Siten kuvan paikka on a 0,45 m ( 0,30 m) b = = = 0,18 m a 0,45 0,30 m Koska b < 0, kuva on valekuva, joten se on oikeinpäin Kuvan viivasuurennos on b 0,18 m m = = = 0, 40 a 0,45 m Vastaus: Kuva muodostuu 18 cm:n etäisyydelle peilistä, ja se on oikeinpäin oleva valekuva Kuvan suurennos on 0,40 166 a) Objektiivi muodostaa ilmille tai kennolle todellisen kuvan Kovera linssi muodostaa aina valekuvan, joten linssin olisi oltava kupera b) Tarkastellaan tilannetta, jossa esine on koko ajan yhtä kaukana kuvaajasta Kun 1 1 1 a kuvausyhtälöstä + = ratkaistaan kuvan paikka b = a Kun lauseke ratkaistaan muotoon b = a a, siitä nähdään, että polttovälin kasvaessa kuvan etäisyys 1 linssistä (eli tässä objektiivin keskipisteestä) on sitä suurempi, mitä suurempi polttoväli on Siksi objektiivin keskipisteen pitää olla sitä kauempana ilmistä tai kennosta, mitä suurempi polttoväli on c) Koska objektiivi muodostaa todellisen kuvan, kuvan etäisyys linssistä on positiivinen, ja viivasuurennoksen yhtälö voidaan kirjoittaa b = k b)-kohdan perusteella kuvan a e

Physica 9 1 painos 4(6) etäisyys b on sitä suurempi, mitä suurempi on polttoväli Jos kuvattava kohde pidetään samana, kuvan korkeus k on suoraan verrannollinen kuvan etäisyyteen b Siksi teleobjektiivi muodostaa suuremman kuvan kuin laajakulmaobjektiivi b k 167 a) Koska kuva ja esine ovat yhtä suuret, saadaan viivasuuurennoksen yhtälöstä = = 1, a e joten b= a Koska a + b = 36 cm, niin b = a = 18 cm Kuvausyhtälöstä saadaan silloin 1 = 1 + 1 = 1 + 1 = Objektiivin polttoväli on a b a a a a 18 cm siis = = = 9,0 cm = 90 mm b) Kun objektiivia siirretään 50 mm lähemmäs ilmitasoa, kuvan etäisyys muuttuu arvoon b = 18 cm 5 cm = 13 cm Esineen etäisyys objektiivista on silloin kuvausyhtälön 1 + 1 = 1 perusteella b 13 cm 9 cm a = = = 9,5 cm b 13 cm 9 cm Viivasuurennos on täten b 13 cm m = = = 0,4444 0,44 a 9,5 cm Vastaus: a) Objektiivin polttoväli on 90 mm b) Kuvauksen viivasuurennos on 0,44 168 Kuvan ja esineen välinen etäisyys on d = a+ b Kun kuvausyhtälöstä 1 + 1 = 1 ab ratkaistaan polttoväli, saadaan = a + b Sijoittamalla tähän b= d asaadaan edelleen a( d a) ad a = =, d d joka on esineen etäisyyden suhteen toisen asteen yhtälö a ad d + = 0 Tällä yhtälöllä on esineen etäisyydelle linssistä kaksi ratkaisua (kun d ja ovat vakioita), joten linssin voi sijoittaa kahteen kohtaan niin, että kuvan ja esineen välinen etäisyys on sama

Physica 9 1 painos 5(6) Molemmissa tapauksissa kuva on todellinen ja ylösalaisin Kun polttoväli lasketaan eri mittaustulosten perusteella lausekkeella saadaan kuusi arvoa 398,317 399,7577 399,6454 399,48 397,9749 398,16 ( a) a d =, d joiden keskiarvo on = 398,846 mm 399 mm Vastaus: Linssin polttoväli on 399 mm 169 Linssin polttoväli on = 0,15 m Merkitään kuvan ja esineen välistä etäisyyttä tunnuksella s, jolloin s = a + b Kun kuvausyhtälöstä 1 + 1 = 1 ratkaistaan kuvan paikka a b = a, ja sijoitetaan se kuvan ja esineen välisen etäisyyden yhtälöön, saadaan ( ) + + a a a a a a a a s = a+ = = = a a a a Kuvan ja esineen välisen etäisyyden pienin arvo saadaan derivoimalla yllä saatu lauseke a:n suhteen, ja etsimällä derivaattaunktion nollakohta: a a 1 a a a da da a a a a ds d a a a a = = = = Derivaattaunktio saa arvon nolla, kun a = 0 a = Kuvan etäisyys linssistä on silloin a b= = = a Kuvan ja esineen välinen pienin etäisyys on smin = 4 = 4 0,15 m= 0,60 m Vastaus: Kuvan ja esineen välisen etäisyyden pienin arvo 0,60 m 1610 a) Kuperan linssin polttovälin voi määrittää ainakin kahdella tavalla: 1 Muodostetaan kuperan linssin avulla todellinen kuva varjostimelle Mitataan esineen ja kuvan etäisyydet linssistä, a ja b Ratkaistaan kuvausyhtälöstä 1 + 1 = 1 polttovälin lauseke ab = a + b, ja sijoitetaan siihen mitatut esineen ja kuvan etäisyydet linssistä

Physica 9 1 painos 6(6) Muodostetaan kuperalla linssillä varjostimelle kuva Auringosta Kuvausyhtälöstä nähdään, että kun esineen etäisyys on hyvin suuri, kuva muodostuu oleellisesti polttopisteeseen Linssin ja varjostimen välinen etäisyys on siis tässä tilanteessa linssin polttoväli b) Kovera linssi muodostaa aina valekuvan, joten sitä ei voida saada näkyviin varjostimelle Koveran linssin hajottamat valonsäteet voidaan kuitenkin koota kuperalla linssillä, jonka taittovoimakkuus on suurempi kuin koveran linssin taittovoimakkuus Näiden kahden linssin yhdistelmällä saadaan varjostimelle aikaan todellinen kuva Koveran linssin polttoväli voidaan nyt määrittää seuraavasti Muodostetaan esineestä kuva K 1 varjostimelle kuperalla linssillä Sijoitetaan tutkittava kovera linssi kuperan linssin ja varjostimen väliin Mitataan koveran linssin ja varjostimen välinen etäisyys a Kuperan linssin muodostama kuva toimii koveran linssin vale-esineenä, joten etäisyys a on koveran linssin ja esineen välinen etäisyys, ja a < 0 Siirretään varjostinta poispäin linsseistä, kunnes siihen saadaan terävä kuva K Mitataan koveran linssin ja varjostimen välinen etäisyys b Sijoitetaan mitatut etäisyydet kuvausyhtälöön, ja ratkaistaan koveran linssin polttoväli