8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen tarvittavan teknologian teknologia on tietoa siitä, miten tuotannontekijöistä saadaan kuluttajien tarvitsemia tuotteita Panokset: - työ - pääoma - energia - välituotteet Yritys: - teknologia Tuotos: - tavarat - palvelut 1
Esimerkki: paperitehdas Raaka-aineet, välituotteet ja palvelut Teknologia - tieto, ideat, osaaminen Tuotteet - tavarat ja palvelut 2
Opimme seuraavaksi, miten yrityksen teoriasta saadaan tuotteiden markkinatarjontakäyrä tuotannontekijöiden (esimerkiksi työvoiman) markkinakysyntäkäyrä Yrityksen oletetaan maksimoivan voittoa Voitto = myyntitulot tuotantokustannukset myyntitulot syntyvät tuotteen myynnistä kun P on hinta ja Q myyty määrä, tulot R ovat R = PQ tuotantokustannukset syntyvät tuotannontekijäpalvelujen ostoista kun W on palkka työyksiköltä ja L on työn määrä, työvoimakustannukset ovat WL kun V on pääoman hinta ja K pääoman määrä, pääomakustannukset ovat VK voitto = PQ WL VK 3
1. Voiton maksimointi Taloustieteessä kustannuksia ja yrityksen kannattavuutta tarkastellaan päätöksenteon näkökulmasta. Mietitään, kuinka paljon pitäisi tuottaa, jotta voitto olisi mahdollisimman suuri. Kustannuksiin lasketaan muutkin kulut kuin välituotteiden ja tuotantopanosten ostamisesta syntyvät eksplisiittiset kustannukset. Tällaisia implisiittisiä kustannuksia ovat mm. yrittäjän oman työpanoksen vaihtoehtoiskustannukset eli se tulo, jonka yrittäjä ansaitsisi jos olisi muualla töissä. Taloustieteessä voitolla tarkoitetaan taloudellista voittoa (economic profit) eli puhdasta voittoa (pure profit) kustannuksiin luetaan sekä eksplisiittiset että implisiittiset kustannukset Laskentatoimessa voitolla tarkoitetaan laskennallista voittoa (accounting profit) kustannuksiin luetaan vain eksplisiittiset kustannukset 4
Kuvio 1. Taloustiede vs laskentatoimi Ekonomistin näkemys yrityksestä Kirjanpitäjän näkemys yrityksestä Tulot Taloudellinen voitto Implisiittiset kustannukset Eksplisiittiset kustannukset Kaikki vaihtoehtoiskustannukset Laskennallinen voitto Eksplisiittiset kustannukset Tulot 5
Voitto = PQ WL VK Maksimoidaan, mutta minkä suhteen? Tuotannon määrän ja tuotannontekijöiden määrien suhteen! Kuinka paljon tuotan, kuinka paljon käytän työvoimaa ja pääomaa? Tuotantoa ja tuotantopanoksia ei kuitenkaan voida valita toisistaan riippumatta Niiden välillä on tekninen riippuvuus, jota tuotantofunktio kuvaa! Tuotantofunktio sitoo tuotoksen ja panosmäärät Kun panosmäärät tunnetaan, voidaan tuotos laskea Kun tuotos tiedetään, voidaan laskea tarvittavat panosmäärät 6
2. Tuotantofunktio Tuotantofunktio kuvaa yrityksen tuotantoteknologiaa Teknologia on tietoa siitä, miten tuotannontekijöistä saadaan kuluttajien haluamia tuotteita se on yleensä insinööritietoa mutta analogia löytyy ruuan valmistuksesta Teknologia = resepti Esimerkki hillon valmistuksesta: Ota kuuden marjanpoimijan (L) yhtenä aamupäivänä keräämät marjat, aseta kulhoon (K) ja keitä kunnes marjat muuttuvat hilloksi. Tuloksena on 4 yksikköä hilloa (Q). Kaksinkertaista panosmäärät niin tuotoskin kaksinkertaistuu. Tuotantofunktio on tuotteen valmistusprosessin matemaattinen kuvaus: Q = F(L,K) 7
Kuviossa 2 on esitetty numeerisesti tuotantofunktio, joka kuvaa työntekijöiden lukumäärän ja tuotoksen välisen riippuvuuden, kun pääomakanta (esimerkiksi tehtaan koko) on vakio: Q = F(L) tuotos Q kasvaa työntekijöiden lukumäärän L kasvaessa mutta vähenevällä vauhdilla Työvoiman keskimääräinen tuotos (average product of labour) APL = Q/L kuvaa tuotosta työntekijää kohti Työvoiman rajatuotos (marginal product of labour) MPL = ΔQ/ ΔL kuvaa tuotoksen kasvuvauhtia kun työpanos kasvaa vähän, esimerkiksi yhden yksikön rajatuotos on aleneva Matemaattinen esimerkki tuotantofunktiosta : Q = L a, jossa 0 < a < 1 rajatuotosta kuvaa derivaatta : dq/dl = al a-1 8
Kuvio 2. Esimerkki tuotantofunktiosta Työntekijöiden lukumäärä L Tuotos Q Keskimääräinen tuotos APL = Q/L 0 0. 1 50 50 2 90 45 3 120 40 4 140 35 5 150 30 Rajatuotos MPL = ΔQ/ΔL 50 40 30 20 10 Rajatuotos on merkitty L:n alkuperäisen ja uuden arvon puoliväliin 9
Kuvio 2. Esimerkki tuotantofunktiosta Tuotos Tiedot ovat taulukon kahdesta ensimmäisestä sarakkeesta: 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 Tuotantofunktio Työntekijöiden lukumäärä 10
Mistä tuotantofunktio löytyy käytännössä? Se voidaan estimoida tilastollisin menetelmin, kun tiedetään panos- ja tuotosmäärät Seuraava kuvio esittää erään suomalaisen kauppaketjun tuotantofunktiota vuonna 2003 Tuotoksen mittarina on tässä keskimääräinen tuotos Q/L Tuotantopanoksena on myymälän pinta-ala tehtyä työtuntia kohti Tuotosta mittaan bruttokatteella eli myynnillä, josta on vähennetty ostot Pisteet ovat havaintoja yksittäisistä myymälöistä Pistejoukon verhokäyrä eli yläpinta esittää tuotantofunktiota Muuttujat on tässä määritelty vähän eri tavalla kuin esimerkissämme, mutta periaate on sama 11
Kuvio 3. Esimerkki tuotantofunktiosta käytännössä Tuotos 60 Työn tuottavuus (bruttokate/työtunnit) 50 40 30 20 10 0 0 10 20 30 40 50 Pääomaintensiteetti (myymälän pinta-ala/työtunnit) Panos 12
3. Kustannusfunktio Voitto = PQ WL VK Edellä nähtiin, että tuotoksen Q ja panosten L ja K välillä on riippuvuus, jota kuvataan tuotantofunktiolla Q = F(L,K) Tämän tuotantofunktion avulla voidaan tuotannontekijöiden käytöstä syntyvät kustannukset WL + VK esittää tuotoksen Q suhteen Tätä tuotoksen Q ja kustannusten TC (total cost) välistä riippuvuutta kutsutaan kustannusfunktioksi: TC(Q) Nyt voitto saadaan lausuttua: voitto = PQ TC(Q) Tämä on helppo maksimoida Q:n suhteen 13
Kustannusfunktion johtaminen kuvion 2 esimerkissä Oletetaan pääomakustannus kiinteäksi: VK = 30 Olkoon työntekijälle maksettava palkka: W = 10 Työvoimakustannukset ovat siten WL= 10 L Kokonaiskustannukset TC = WL + VK Työntekijöiden luku- määrä L Tuotos Q Kiinteät kustannukset VK, Työvoimakustannukset WL, Kokonaiskustannukset TC, 0 0 30 0 30 1 50 30 10 40 2 90 30 20 50 3 120 30 30 60 4 140 30 40 70 5 150 30 50 80 Kustannusfunktio TC(Q) 14
Kuvio 4. Esimerkki kustannusfunktiosta Kokonaiskustannus 80 70 TC(Q) 60 50 40 30 20 10 0 50 90 120 150 140 Tuotos Q 15
4. Kustannuskäsitteitä Kokonaiskustannukset TC määriteltiin edellä Ne voidaan jakaa kiinteisiin kustannuksiin FC (fixed costs), jotka eivät muutu tuotoksen muuttuessa muuttuviin kustannuksiin VC (variable costs), jotka muuttuvat tuotoksen muuttuessa Keskimääräiset kustannukset eli yksikkökustannukset (average costs) ovat kustannukset tuotoksen määrää kohti keskimääräiset kokonaiskustannukset (average total costs) ATC = TC/Q keskimääräiset kiinteät kustannukset (average fixed costs) AFC = FC/Q 16
keskimääräiset muuttuvat kustannukset (average variable costs) AVC = VC/Q määritelmän mukaan: ATC = AFC + AVC Rajakustannukset (marginal costs) MC kuvaavat kokonaiskustannusten muutosvauhtia tuotoksen määrän muuttuessa vähän : MC = ΔTC/ΔQ kun kustannusfunktion matemaattinen muoto tunnetaan, saadaan rajakustannukset derivoimalla: MC = dtc/dq 17
Kuvio 5. Esimerkki kustannuksista Q TC FC VC = TC-FC AFC = FC/Q AVC = VC/Q ATC = AFC+AVC 0 3,00 3,00 0,00 1 3,30 3,00 0,30 3,00 0,30 3,30 0,30 2 3,80 3,00 0.80 1,50 0,40 1,90 0,50 3 4,50 3,00 1,50 1,00 0,50 1,50 0,70 4 5,40 3,00 2,40 0,75 0,60 1,35 0,90 5 6,50 3,00 3,50 0,60 0,70 1,30 1,10 6 7,80 3,00 4,80 0,50 0,80 1,30 1,30 7 9,30 3,00 6,30 0,43 0,90 1,33 1,50 8 11,00 3,00 8,00 0,38 1,00 1,38 1,70 9 12,90 3,00 9,90 0,33 1,10 1,43 1,90 10 15,00 3,00 12,00 0,30 1,20 1,50 2,10 MC Kaikki muut tiedot lasketaan taulukon kolmesta ensimmäisestä sarakkeesta 18
Kuvio 5. Kustannuskäyriä edellisestä taulukosta Kustannukset, 3,50 3,00 2,50 2,00 MC Huom: Tässä rajakustannukset on piirretty Q:n alkuperäisen ja uuden arvon puoliväliin, vaikka taulukossa ne ovat uuden arvon kohdalla 1,50 1,00 ATC AVC 0,50 AFC 0 1 2 3 4 5 6 7 8 9 10 Tuotos Q 19
Kustannuskäyrien muodosta: Nouseva rajakustannuskäyrä heijastelee alenevaa rajatuotosta Kun tuotos Q kasvaa, niin joudutaan palkkaamaan lisää työvoimaa L Jos työvoiman rajatuotos vähenee, niin rajakustannukset kasvavat, koska yhden lisäyksikön tuottamiseksi joudutaan palkkaamaan enemmän väkeä kuin ennen ATC-käyrä on U:n muotoinen Pienillä Q:n arvoilla suuri, koska Q on pieni Suurilla Q:n arvoilla suuri, koska TC on suuri Sitä Q:n arvoa, jolla ATC on minimissään, kutsutaan tuotannon tehokkaaksi tasoksi (efficient scale) Rajakustannusten MC kuvaaja kulkee ATC-käyrän minimipisteen kautta Kun MC < ATC, niin ATC alenee Q:n kasvaessa Kun MC > ATC, niin ATC kasvaa Q:n kasvaessa 20
5. Kustannukset pitkällä aikavälillä Edellä oletettiin, että pääomapanos K oli kiinteä tästä tulivat kiinteät kustannukset FC Riittävän pitkällä aikavälillä ovat kuitenkin kaikki kustannukset muuttuvia yritys voi lopettaa toimintansa tai investoida lisää eli kasvattaa pääomapanosta Asiaan palataan voiton maksimoinnin yhteydessä 21
6. Esimerkki: Sähkömarkkinat Sähkön tuotannon teoreettiset rajakustannukset Pohjoismaissa (lähde: Matti Liski, Kauppakorkeakoulu) rajakustannus Gas turbine Condensing, oil Combined heat and power Condensing, coal Pumped storage Nuclear Hydro 100 200 300 400 TWh 22
Mitattu viikkokohtainen tarjontakäyrä: tuotantolaitokset järjestetty rajakustannusten mukaan (lähde: Matti Liski) Marginal cost ( /MWh) in week 1 250 200 150 100 50 0 0 2 3 5 6 8 9 11 12 14 15 17 19 20 22 23 25 26 28 29 31 32 34 GW 23