MIKROTEORIA, HARJOITUS 5 YRITYKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI
|
|
- Helmi Härkönen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MIKROTEORIA, HARJOITUS 5 RITKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI Olkoon ritksen kustannusfunktio c ( F a ritksen rajakustannukset kertovat, paljonko ritksen kustannukset muuttuvan kun tuotantoa muutetaan vähän Tarkemmin sanottuna rajakustannusfunktio on kustannusfunktion ensimmäinen derivaatta, jolle saadaan seuraava muoto: c' ( Keskimääräinen kustannusfunktio puolestaan kertoo, paljonko kullakin tuotannon tasolla hden tuotteen tuottaminen keskimäärin maksaa Jos kokonaiskustannukset tuotannon tasolla ovat c(, niin luonnollisesti hden tuotteen osuudeksi F c( F tästä tulee kustannukset jaettuna tuotetulla määrällä eli AC ( b Koska tehtävässä ei ole muuta mainittu, voimme varmasti olettaa ritksen toimivan tädellisen kilpailun markkinoilla ja ottavan näin ollen markkinahinnan p annettuna rits saa jokaisesta mmästään tuotteesta tämän hinnan, joten sen tulot ovat tuotettu määrä kertaa hinta eli R ( p Toisaalta ritksen kokonaiskustannukset :n tuottamisesta ovat c( ritksen voitot ovat tulojen ja kustannusten erotus: ( R( c( p F Etsitään tämän voittfunktion maksimi: ' ( p 0 ( p p Tämä todella on maksimi sillä ' '( < 0 Samaan tulokseen päädtään jos ratkaistaan, millä tuotannon taasolla rajakustannukset ovat htä suuret kuin markkinahinta Jos lisäksi oletetaan, että rits toimii niin lhellä aikavälillä, että vaikka se lopettaisi toimintansa, joutuu se silti maksamaan kiinteät kustannukset F, niin ritksen kannatta tuottaa jotain, jos ja vain jos ( > F eli jos tuottamalla jotain saadaan parempi tulos kuin tuotannon lopettamisesta (tällöin siis maksetaan pelkkä kiinteä kustannus Tämä pätee llä lasketun nojalla, jos ja vain jos ( p p F > F p > 0 p > 0 Eli tarjonta on positiivnen kaikilla positiivisilla hinnoilla Edellisissä laskuissa voidaan nähdä htäläiss luennoilla esitettn lausekkeeseen, jonka mukaan lhellä aikavälillä tarjonta on nollaa suurempi, jos ja vain jos p MC > AVC > > 0 > 0 p > 0
2 EUR 0 MC AC AVC c Nt edellisestä saadaan ( Tuotannontaso 0 maksimoi siis voitot Tuotot ovat 0 nt R( , kustannukset c (0 5 5 ja voitot ( 0 R (0 c( d Jos rits jää markkinoille, sen kannattaa b-kohdan nojalla tuottaa määrä ( p p Tällöin pienimmät mahdolliset tappiot, jotka se voi saavuttaa, saadaan voittofunktiosta ( p ( p R( p c( p p p F p F (tämä oletettiin negatiiviseksi Toisaalta toiminnan lopettamisesta seuraa vuokrasopimuksen irtisanomiskustannus k euroa Nt toiminnan lopettaminen kannattaa, jos ja vain jos markkinoille jääminen tuottaa enemmän tappioita kuin toiminnan lopettaminen eli p F k k F p
3 a Olkoon tädellisessä kilpailussa toimivan ritksen tuotantofunktio muotoa (, 6 / / ja hinnat olkoon p, w ja w Ratkaise ritksen voiton maksimoiva tuotos, kun molemmat panokset ovat muuttuvia (long run Suuriko on voitto ja suuriko tuotos? b Edellisessä ritksessä panos on kiinteä ja sen määrä on 6 Hinnat ovat kuten edellä Minkä suuruinen on panoksen ksntä? Mikä on tuotos ja mikä voitto? a Voittofunktio pitkällä aikavälillä, kun rits voi valita kummankin panoksen määrän, on ritksen tuotteiden mnnistä saamat tulot miinus tuotannon kustannukset: 6, (, ( w w p Etsitään voittofunktion maksimit kertaluvun ehdot: Sij ehdosta ehtoon saadaan ehdosta 6 Edelleen w w p Tarkistetaan, onko optimissa kuten teoria ennustaa rajatuotoksen arvo htä suuri kuin tuotannontekijän hinta 6 w pmp w pmp
4 b Voittofunktio lhellä aika välillä, kun panoksen määrään ( 6 ei voida vaikuttaa: SR ( p(, w 6 rits maksimoi voittojaan kertaluvun ehto: d SR 6 0 d Edelleen voiton maksimoiva tuotoksen taso on 6 ja voitot sen johdosta p w w w 6 6 SR 6 6 6
5 ritksen tuotantofunktio on k / l / ja panoshinnat ovat ja a Ratkaise duaaliongelma, kun kättäen Lagrangen menetelmää b Mitkä ovat rajatuotokset optimissa? Vertaa panoshintoihin c Onko kseisen tuotantofunktion tekninen substituutiosuhde vähenevä? Kustannusfunktio: C( k, l w k wl k l rits minimoi kustannuksiaan annettuna tuotoksen taso: min, C( k, l k l se k l k l Lagrangen funktio: L k l λ k l kertaluvun ehdot: L λ k l 0 k λ k L λ k l 0 6l λ l L k l 0 λ Jakamalla ja ehto puolittain saadaan k l Sij ehtoon saadaan (l l l l Edelleen k l 6 6l λ Ja C w k w l 6 6 b Rajatuotokset optimissa: k, l k l k k l k k k 6 Vastaavilla laskuilla saadaan smmetrian nojalla: k, l l l l Teoriasta johdettu optimiehto, jonka mukaan isokvantin eli samatuottokärän kk optimipisteessä kustannussuoran kk toteutuu: k w TRS w l c Tekninen substituutiosuhde eli isokvantin kulmakerroin mielivaltaisessa pisteessä: k k l TRS l k l
6 Kirjan määritelmän mukaan tekninen substituutiosuhde on vähenevä, jos kasvatettaessa k:ta ja pienennettäessä l:ää siten, että pstään samalla isokvantilla, tekninen substituutiosuhde eli isokvantin kulmakerroin pienenee itseisarvoisesti ˆ Kiinnitetään samatuottokärä mielivaltaiselle tuotoksen tasolle ŷ Tällöin ˆ k l l 6k Sijoitetaan tämä llä laskettuun teknisen substituutiosuhteen itseisarvon kaavaan: l( k; ˆ ˆ TRS ( k; ˆ Tämä siis kertoo meille teknisen substituutiosuhteen tuotannon k 6k d TRS( k; ˆ ˆ tasoon ŷ liittvällä isokvantilla Nt tätä derivoimalla saadaan < 0 Eli dk 6k isokvantin tangentit loivenevat k:n kasvaessa ja tekninen subsituutiosuhde on siis vähenevä Tämä tarkoittaa sitä, että jos halutaan luopua hdestä ksiköstä tuotannontekijää l ja pitää samalla tuotos entisellä tasolla, joudutaan k:ta kasvattamaan sitä enemmän mitä suurempi on k:n lähtötaso Maatalousrittäjä kasvattaa vehnää, jonka kustannusfunktio on c ( 0 a Olkoon vehnän maailmanmarkkinahinta p 5 eur/kg Kuinka paljon vehnää maatalousrittäjä tuottaa? b Kirjoita vehnän tarjontafunktio maailmanmarkkinahinnan p funktiona c Euroopan Unioni päättää maksaa tuotantoperusteista tukea määrän t( 0 Kuinka paljon tämä kasvattaa vehnän tuotantoa, jos maailmanmarkkinahinta säil entisenä? Ratkaistaan tehtävä b ensin ja kätetään siitä saatua tulosta a-kohdan ratkaisemiseen b Maatalousrittäjän voitot ovat tulojen ja kustannusten erotus eli: ( p c( p 0 rittäjä ottaa maailmanmarkkinahinnan annettuna, joten hän valitsee tuotoksen maksimoidakseen voittonsa Etsitään voittofunktion derivaatan nollakohdat ' ( p 0 0 p 0 0 Tämä todella on maksimi sillä ' '( < 0 Koska viljelijä ei voi kuitenkaan tuottaa negatiivista 0 0 p 0, kun p määrää viljaa on viljelijän tarjonta muotoa ( p 0, kun p < a Nt vastaus saadaan suoraan viljelijän tarjontakärästä: ( c Ratkaistaan viljelijän tarjontafunktio, kun viljelijä saa EU-tukea Tuki lisää suoraan viljelijän tuloja, joten voittofunktio saa seuraavan muodon: c ( p t( c( p 0 p 0 Etsitään sitten voittofunktion 0 0 derivaatan nollakohdat c '( p 0 ( p 0 p 5 Viljelijän viljan tarjonta on nt 0 0 p 5, kun p,5 siis c ( p 0, kun p <,5
7 Tästä seuraa, että c ( Eli tuki pienentää viljan tarjontaa 5 ksikköä Tämä ei ole kovin llättävää, kun huomaa tuen muodon Tuki on sitä pienempi mitä suuremman määrän viljelijä tuottaa Viljan tuotannon lisääminen toisin sanoen lisää viljan mnnistä saatuja tuloja, mutta vähentää EU:lta saatavaa tukea Tuen tät siis a-kohtaan nähden johtaa tuotannon pienenemiseen 5 Veera Villa suunnittelee avaavansa asustemmälän vastavalmistuneessa ostoskeskuksessa, missä hänen valittavanaan on 00 m :n, 00 m :n, 00 m :n ja 500 m :n ja liikehuoneistot, kussakin vuokra on euro / m Veera arvioi, että mikäli hänellä on F m liiketilaa kätössään ja mtjen vaatteiden lukumäärä on, hänen ritksensä muuttuvat kustannukset tulevat olemaan VC / F joten Veeran ritksen muuttuvat kustannukset riippuvat kiinteiden kustannusten F tasosta a Laske ja piirrä Veeran ritksen rajakustannusfunktio ja keskimääräiskustannusfunktio, mikäli Veera valitsee 00m :n, 00 m :n, 00m :n tai 500 m : n tai liikehuoneiston Piirrä rajakustannusfunktiot hteen kuvioon ja keskimääräiskustannusfunktiot toiseen kuvioon b Piirrä edellisen perusteella ritksen pitkän tähtäksen keskimääräiskustannusfunktio LAC Kokonaiskustannukset: TC(, F /F F Muuttuvat kustannukset: VC(, F /F Kiinteät kustannukset: FC(F F {00, 00, 00, 500} Keskimääräiset muuttuvat kustannukset: SAVC ( /F/ /F Keskimääräiset kiinteät kustannukset: SAFC F/ Keskimääräiset kustannukset: SAC SAVC SAFC /F F/ Rajakustannukset: SMC TC / /F F 00: SMC /50 SAC /00 00/ F 00: SMC /00 SAC /00 00/ F 00: SMC /50 SAC /00 00/ F 500: SMC /50 SAC / /
8 Rajakustannukset eri tuotannon tasoilla (pstakselilla rajakustannukset, vaaka-akselilla tuotannon määrä: T Lhen aikavälin keskimääräiset kustannukset eri tuotannon tasoilla (pstakselilla keskimääräiset kustannukset, vaaka-akselilla tuotannon määrä: T b Lhen aikavälin keskimääräisten kustannusten tät jokaisella kiinteän tuotannontekijän ja mnnin tasolla olla pitkänaikavälin keskimääräisten kustannusten läpuolella Näin siksi, että pitkällä aikavälillä voidaan aina valita lhellä aikavälillä tehdt valinnat, joten pitkän aikavälin optimaaliset kustannukset ovat korkeintaan lhenaikavälin kustannusten suuruiset Pitkällä aikavälillä voidaan lisäksi vaikutaa toimitilan kokoon, joten pitkän aikavälin kustannukset voivat olla lhen aikavälin kustannuksia pienemmät Lisäksi pitkän aikavälin keskimääräisten kustannusten kärä tangeeraa jokaisella tuotannon tasolla sitä lhen aikavälin keskimääräisten kustannusten kärää, jolla saavutetaan pienimmät kseiseen tuotannon tasoon liittvät lhen aikavälin keskimääräiset kustannukset Tämä voidaan perustella jotenkin seuraavasti: Kullakin tuotannon tasolla lhen aikavälin keskimääräiset kustannukset kertovat, kuinka paljon kseinen tuotanto keskimäärin maksaa, kun lhellä aikavälillä muutettavissa olevat
9 tuotannontekijät valitaan siten, että kustannukset minimoituvat Kiinnitetään tuotannon taso ja kädään läpi jokaiseen kiinteän tuotannontekijän tasoon liittvät lhen aikavälin kustannukset Valitaan näistä se lhen aikavälin kustannuskärä, jolla kustannukset ovat kseisellä tuotannon tasolla pienimmät Tällöin tullaan valinneeksi optimaalinen kiinteän tuotannontekijän taso, jolla alussa valittu tuotannon määrä saadaan tuotettua pienimmillä kokonaiskustannuksilla Kseinen piste on siis pitkän aikavälin keskimääräisten kustannusten kärällä ja samalla jollain lhen aikavälin keskimääräisten kustannusten käristä Koska pitkän aikavälin kärä kulkee aina lhen aikavälin kärän alapuolella nämä kaksi kärää eivät voi leikata Niiden tät siis tangeerata kseisessä pisteessä Nt sama päättel voidaan toistaa jokaiselle tuotannon tasolle Nt kuvasta voidaan päätellä, että kärä, joka jokaisella tuotannontasolla toteuttaa edellämainitut ominaisuudet on LAC Tarkistetaan: Pitkän aikavälin kustannukset ovat funktio kiinteistä kustannuksista Valitaan mielivaltainen mnnin taso Nt pitkän aikavälin kokonaiskustannukset ovat TC LR ( F; VC( F; F F Minimoidaan nämä F:n suhteen: F TC LR '( F; 0 F Pitkällä aikavälillä on siis optimaalista valita kullakin mnnin F tasolla toimitila niin, että sen koko on htä suuri kuin mtjen vaatteiden lukumäärä Nt keskimääräisille kustannuksille saadaan pitkällä aikavälillä seuraava muoto: TCLR ( F ; LAC 6 Olkoon ritksellä differentioituva tuotantofunktio f : R R ( määritellään R R R, jolle pätee: f ( t, t tf (, (, (, Väite: f (, Todistus: Nt ketjusäännön nojalla df ( t, t ( t, t t ( t, t t ( t, t ( t, t Toisaalta dt t t t t t t df ( t, t d( tf (, dt oletuksen mukaan f ( t, t tf (, f (, f (, dt dt dt Molemmat muodot lasketulle derivaatalle pätevät kaikilla t>0 Tästä seuraa, että ( t, t ( t, t f (, t > 0 Tämä pätee eritisesti t:n arvolla Tällöin t t (, (, f (,, mikä on väitteen lauseke
Luku 21 Kustannuskäyrät
Luku 2 Kustannuskärät Edellisessä luvussa johdimme ritksen kustannusfunktion minimoimalla ritksen tuotannon kokonaiskustannuksia. Kustannusfunktiota ja sen ominaisuuksia voidaan tarkastella graafisesti
ehdolla y = f(x1, X2)
3.3. Kustannusten minimointi * Voiton maksimointi: panosten määrän sopeuttaminen -----> tuotanto * Kustannusten minimointi: tiett tuotannon taso -----> etsitään optimaalisin panoskombinaatio tuottamaan
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
Taloustieteen perusteet 31A Ratkaisut 3, viikko 4
Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero
Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa
Kustannusten minimointi, kustannusfunktiot
Kustannusten minimointi, kustannusfunktiot Luvut 20 ja 21 Marita Laukkanen November 3, 2016 Marita Laukkanen Kustannusten minimointi, kustannusfunktiot November 3, 2016 1 / 17 Kustannusten minimointiongelma
Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:
1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate.
KANSANTALOUSTIETEEN PERUSTEET Yrityksen teoria (Economics luvut 13-14) 14) KTT Petri Kuosmanen Optimointiperiaate a) Yksilöt pyrkivät maksimoimaan hyötynsä. * Hyödyn maksimointi on ihmisten toimintaa ja
Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan
Luku 19 Voiton maksimointi
Kevät 00 Luku 9 Voiton maksimointi Edellisessä luvussa tarkastelimme yrityksen teknologisia rajoitteita ja niiden vaikutusta tuotantoon. Tuotannon syntymistä tuotannontekijöistä katsottiin niin samatuotoskäyrien
Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10
Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,
a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.
.. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla
7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13)
7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen tarvittavan teknologian teknologia on
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi
1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13)
8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen
Y56 Laskuharjoitukset 4 - Mallivastaukset
Y56 Kevät 00 Y56 askuharjoitukset 4 - Mallivastaukset Harjoitus. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa samatuotoskäyrien ja tuotantofunktion kautta, ja ymmärtää niiden
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18
Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa
1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä
Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Edellä rajakustannuksia MC(x) ja rajahyötyä MB(x) tarkasteltaessa käsiteltiin vain tapausta, jossa x on diskreetti suure (mahdollisia
Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi
1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen
Y56 laskuharjoitukset 5
Y56 Keät 2010 1 Y56 laskuharjoitukset 5 Palautus joko luennolle/mappiin to 8.4. tai Katjan lokerolle (Koetilantie 5, 3. krs) to 8.4. klo 16 mennessä (purku luennolla ti 13.4.) Huom. Tehtäät eiät ole aikeusjärjestyksessä,
Prof. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi
Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
Voitonmaksimointi esimerkkejä, L9
Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100
HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla
4. www-harjoitusten mallivastaukset 2017
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
Sijoitusmenetelmä. 1.2. Yhtälöpari
MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat
3 Raja-arvo ja jatkuvuus
3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla
Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.
Valtiotieteellinen tiedekunta Kansantaloustieteen valintakoe Arvosteluperusteet Kesä 010 Kirjallisuuskoe Pohjola, Matti (008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.
12 Oligopoli ja monopolistinen kilpailu
12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä
( ) < ( ) Lisätehtävät. Polynomifunktio. Epäyhtälöt 137. x < 2. d) 2 3 < 8+ < 1+ Vastaus: x < 3. Vastaus: x < 5 6. x x. x < Vastaus: x < 2
Lisätehtävät Polnomifunktio 7. Epähtälöt = + 8. a) < + < + < Vastaus: ) < < Vastaus: < 8 8 8 = 8 = + c) ( ) < + ( ) < + < + < : ( > ) < Vastaus: < d) ( )
Harjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
1 Rajoitettu optimointi I
Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause
A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6
A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.
Luento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
MIKROTEORIA, HARJOITUS 8
MIKROTEORI, HRJOITUS 8 PNOSMRKKINT, KILPILU, OLIGOPOLI, PELITEORI J VIHTOTLOUS. Jatkoa tehtävään 4 (ja 5) harjoituksessa 7. a. Laske kolluusioratkaisu. Kahden samaa tuotetta tuottavan yrityksen kustannusfunktiot
Funktion suurin ja pienin arvo DERIVAATTA,
Funktion suurin ja pienin arvo DERIVAATTA, MAA6 1. Suurin ja pienin arvo suljetulla välillä Lause, jatkuvan funktion ääriarvolause: Suljetulla välillä a, b jatkuva funktio f saa aina pienimmän ja suurimman
1 Komparatiivinen statiikka ja implisiittifunktiolause
Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla
Ratkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ
06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria
Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.
5. EPÄTÄYDELLINEN KILPAILU Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. Epätäydellinen kilpailu: markkinoilla yksi tai vain muutama
TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset
TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
Rajatuotto ja -kustannus, L7
ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )
MATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
3.1 Väliarvolause. Funktion kasvaminen ja väheneminen
Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille
lnx x 1 = = lim x = = lim lim 10 = x x0
BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4
A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 4
A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 4 1. Jukan yritys tarjoaa pikaruoka-annosten kotiinkuljetuspalvelua. Asiakkaat tekevät tilauksensa Jukan verkkosivuilla. Jukka ostaa tilatut annokset
z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)
. Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.
11 Yritys kilpailullisilla markkinoilla
11 Yritys kilpailullisilla markkinoilla (Talous3eteen oppikirja, luku 5; Mankiw & Taylor 2nd ed., ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, efä jokainen pitää markkinoilla
A31C00100 Mikrotaloustiede. Kevät Olli Kauppi HARJOITUKSET 4
A31C00100 Mikrotaloustiede Kevät 2016 Olli Kauppi HARJOITUKSET 4 1. Jukan yritys tarjoaa pikaruoka-annosten kotiinkuljetuspalvelua. Asiakkaat tekevät tilauksensa Jukan verkkosivuilla. Jukka ostaa tilatut
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.
Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
Y56 laskuharjoitukset 5 - mallivastaukset
Y56 Keät 010 1 Y56 laskuharjoitukset 5 - malliastaukset Harjoitus 1. Voiton maksimoia tuotannon taso & kiinteät kustannukset Taoitteena on ymmärtää kiinteiden kustannusten aikutus yrityksen tuotantopäätöksiin
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
Voitonmaksimointi, L5
, L5 Seuraavassa tullaan systemaattisesti käyttämään seuraavia merkintöjä q = tuotannon määrä (quantity) (kpl/kk) p = tuotteen hinta (price) (e/kpl) R(q) = tuotto (revenue) R(q) = pq MR(q) = rajatuotto
3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?
Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.
Matematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen
MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA
MIKROTEORIA, HARJOITUS BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA tilasto (600 00) 00 a. Kulmakerroin: = = =, koska 00 sivua lisää ta aiheuttaa (00 400) 00 luopumisen 00 sivusta tilastoa. Toisin
Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1
Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina
Taloustieteen mat.menetelmät syksy27 materiaali II-2 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina. Tuotanto Yritys valmistaa yhtä tuotetta n:stä tuotannontekijästä/panoksesta
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi
1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
6 Variaatiolaskennan perusteet
6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.
DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30
DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,
TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko
Talousmatematiikan perusteet, ORMS1030
Tamprn ksäyliopisto, syksy 2016 Talousmatmatiikan prustt, ORMS1030 2. harjoitus, (p 4.11.2016) 1. Yritys valmistaa kappaltavaraa kappaltta viikossa. Yhdn kappaln matriaali- ja palkkakustannus on 7, jotn
Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus
Piste ja jana koordinaatistossa
607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan
MS-C2105 Optimoinnin perusteet Malliratkaisut 5
MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien