Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
|
|
- Tapani Katajakoski
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013
2 8.2.6 Échelle-spektroskooppi Harva hila, n. 50 viivaa/mm Suuri blaze-kulma, n. 60 Havaitaan korkeita kertalukuja, m suuri dispersio ja resoluutio, R Eri kertaluvut erotetaan toisistaan ristidispersioelementillä (prisma tai grism) HARPS-spektroskoopin échelle-hila (ESO)
3 8.2.6 Échelle-spektroskooppi SOFIN Käytettiin NOT:lla R
4 8.2.6 Échelle-spektroskooppi SOFIN
5 8.2.7 Michelson-interferometri Fourier-muunnosspektrometrinä voidaan käyttää Michelsoninterferometriä Mittaus tapahtuu siirtelemällä interferometrin peilejä
6 8.3 Spektroskopian käyttö tähtitieteessä Doppler siirtymä kohteen säteisnopeus Kosmologia: esim. maailmankaikkeuden laajeneminen Galaksit: Galaksijoukkojen dynamiikka, pimeä aine Tähtipopulaatiot: tähtien liikeryhmät Taivaanmekaniikka: kaksoistähdet, eksoplaneetat Tähtien rakenne: tähtien pyöriminen ja sykkiminen, fotosfäärin turbulenssi
7 8.3 Spektroskopian käyttö tähtitieteessä Spektriviivat aineen tila ja koostumus Tähtien spektriluokitus Alkuainepitoisuudet Lämpötila Paine ja tiheys Magneettikentät
8 8.3.1 Spektroskopiset kaksoistähdet
9 8.3.1 Kaksoistähden rata Radan ellipsin yhtälö akselin Ox suhteen on r = a(1 e 2 ) 1+ecos(u ω) e on eksentrisyys, ja a isonakselin puolikas r:n projektio akselilla Oy atatasossa: projektio näköviivalla Oz: y = r sinu z = y sini = r sinusini
10 8.3.1 Kaksoistähden säteisnopeus Saadaan: dz dt z = asini(1 e2 )sini sinu 1+ecos(u ω) = asini(1 e2 )(ecosω +cosu) du (1+ecos(u ω)) 2 dt Kepler II: r 2du dt = na2 1 e 2, jossa n = 2π/P ja P on kiertokaika säteisnopeus v z = nasini (ecosω +cosu) 1 e 2
11 8.3.1 Kaksoistähden säteisnopeus Havaittuun säteisnopeuteen vaikuttaa Maan kierto- ja rataliike sekä Auringon liike tähtijärjestelmän suhteen. Kun Maan liike vähennetään, saadaan V z = V 0 +v z, missä V 0 on keskimääräinen heliosentrinen säteisnopeus.
12 8.3.2 Planettajärjestelmät Säteisnopeuksia käytetään myös eksoplaneettojen havaitsemiseen Tähti ja planeetta liikkuvat radoillaan massakeskipisteen suhteen Vain tähti havaitaan suoraan Ensimmäinen löytö: 51 Peg Menetelmällä on havaittu n. 500 planeettaa
13 8.3.2 Eksoplaneetan massa ja rata Oletetaan yksinkertaistukseksi ympyrärata Tähti: m 1, a 1 Planeetta, m 2, a 2 Havaitaan jaksollinen Doppler-siirtymä, jonka periodi on P ja amplitudi λ v r = λ λ c Tähden radan projisoiduksi insonakselin puolikkaaksi saadaan a 1 sini = v z n
14 8.3.2 Eksoplaneetan massa ja rata Merkitään a = a 1 +a 2 Kepler III: a 3 = (m 1 +m 2 )P 2, [a] = AU, [m] = M, [P] = vuosi m 3 2 m 1 a 1 = m 2 a 2 a1 3 = (m 1 +m 2 ) 2P2 m 2 << m 1 m 2 a 1 ( m1 P ) 2/3
15 8.3.2 Eksoplaneetan massa ja rata Tähden massa voidaan arvioida esim. spektriluokituksesta Havainnoista saadaan a 1 sini Saadaan alarajat massalle ja radan koolle a 2 sini, m 2 sini Joissain tapauksissa i voidaan arvioida (esim. havaitaan pimennyksiä) HUOM! Oppikirjan vanhan painoksen esimerkissä 10.1 (s. 144) on muutama virhe.
16 8.3.2 Eksoplaneetan massa ja rata Mitä johtopäätöksiä tähti-planeettajärjestelmästä voidaan tehdä tästä säteisnopeuskäyrästä?
17 8.3.3 Tähtien Spektriluokitus Harvardin spektriluokittelu: O, B, A, F, G, K, M Yerkesin spektriluokittelu: Ia, Ib, II, III, IV, V Luokittelu perustuu matalan resoluution spektreissä näkyviin lämpötila- ja paineherkkiin yksityiskohtiin.
18 8.3.4 Tähtien fotosfäärit Tähden optisen alueen absorptioviivat syntyvät fotosfäärissä Optisen spektroskopian avulla pystytään selvittämään tähden fotosfäärin: lämpötila paine ( tähden pintagravitaatio) magneettikentän komponentit kemiallinen koostumus aineen liiketila (pyöriminen, sykkiminen, turbulenssi)
19 8.3.4 Procyonin spektri
20 8.3.4 Esimerkki: Doppler-kuvaus Pilkku (matala lämpötila, voimakas magneettikenttä tai poikkeavat alkuainepitoisuudet) vaikuttaa fotosfäärin absorptioviivoihin Nopeasti pyörivä tähti Spektriviiva vastaa 1-ulotteista kuvaa tähden pinnasta Koko pyörähdysjakson kattavasta havaintosarjasta saadaan muodostettua Doppler-kuva
21 8.3.4 Esimerkki: HD :n Doppler-kuva
22 8.3.5 Asteroseismologia Tähden pinnan värähtelyt aiheuttavat Doppler-siirtymiä spektriviivoihin Seismologia: aaltojen avulla päästään tutkimaan tähden sisäistä rakennetta Esimerkiksi Auringon rotaatiokäyrä (GONG/NOAO)
23 8.4 CCD-spektrien havaitseminen ja redusointi Asetukset Tarvittavat kalibroinnit Havaintojen redusointi Spektroskopialle tyypilliset ongelmat
24 8.4.2 Spektroskopian asetukset Aallonpituusalueen valinta Resoluution valinta: Kohteen fotonikohina > lukukohina Korkeampi resoluutio pitempi valotusaikas Valotusaika tarvittava S/N Optimaalinen rako: Resoluutio Seeing suhteessa raon kokoon Raon asento taivaan suhteen
25 8.4.2 CCD-spektroskopian kalibrointikuvat Bias- ja dark-kuvat kuten tavallisissa CCD-havainnoissa Flat-kuvat tasaisen spektriviivattoman spektrin antavalla flatfield-lampulla (halogeenilamppu) Aallonpituuskalibrointi, vaihtoehdot: Vertailuspektrikuva (esim. HeNe- tai ThAr-lampuilla) Vertailuspektri suoraan kohteen spektrin päälle Ilmakehän spektriviivat Vuokalibrointi Vain matalan resoluution spektreille Verrataan havaintoon standarditähdestä
26 8.4.3 Spektrien redusointi Esimerkkinä CCD-échelle havainnot: Bias- ja flat-korjaukset Sironneen valon poistaminen Kosmisten säteiden poistaminen Spektrin kertalukujen erottaminen toisistaan: 2D-kuva sarja 1D-spektrejä Aallonpituuskalibrointi Ensimmäisenä asteena pikseliskaalan määrittäminen aallonpituusasteikko Aallonpituusasteikon korkeamman kertaluvun korjaukset Maan liikkeiden korjaus Kontinuumitason normalisointi
27 8.4.3 Échelle flat-kuva SOFIN 2. kameran flat-kuva
28 8.4.3 ThAr-lampun échelle-spektri SOFIN 2. kameran ThAr-spektri
29 8.4.3 HD :n échelle-spektri SOFIN 2. kameran redusoitu kuva
30 8.4.3 HD :nredusoidut spektrit SOFIN 2. kameran redusoituja spektrejä samalta aallonpituuskaistaleelta
31 8.4.4 Erityisongelmia Taustataivaan spektriviivat Kohde on himmeä Havainnot on tehty lähellä aurongonnousua tai laskua Aallonpituuskalibrointi voi muuttua jopa valotuksen aikana, erityisen ongelmallista kun Resoluutio on korkea Valotusaika on pitkä Spektroskooppi liikkuu (asennettu Cassegrain-fokukseen) Interferenssikuviot CCD-kuvassa Vuokalibrointi epätarkka
32 8.5 Spektropolarimetria Spektroskopia + polarimetria = spektropolarimetria Tyypillisesti havaitaan 2-4 Stokesin parametrin aallonpituusriippuvuus Stokesin parametrien I, Q, U, V avulla saadaan tietoa ohteen magneettikentästä
33 8.5.1 Magneettikentän vaikutus spektriviivaan (a): Zeeman-komponentit pitkittäisessä (vasen) ja poikittaisessa (oikea) kentässä (b): Havaittu spektriviivaprofiili ilman magneettikenttää (katkoviiva) ja magneettikentän kanssa (yhtenäinen viiva) (c): Polarisaatiokomponentit, ympyräpolarisaatio (vasen) ja lineaaripolarisaatio (oikea) (d): Havaitut Stokesin parametrit, V (vasen) ja Q, U (oikea)
34 8.5.2 Spektropolarimetriset havainnot Polarisaattori on sijoitettava ennen rakoa, koska spektroskoopin optiikka muuttaa polarisaatiota Lineaarinen polarisaatio: käytetään λ/2-levyä Ympyräpolarisaatio: käytetään λ/4-levyä Käyttämällä pitempää rakoa voidaan kaksi polarisaatiokomponenttia saada samaan CCD-kuvaan
35 8.5.3 Esimerkki: aktiivinen tähti Voimakas magneettinen aktiivisuus saa aikaan suuria tähdenpilkkuja Pilkuissa magneettikenttä tunkeutuu innan läpi Tähden pyöriessä Stokesin parametrit muuttuvat riippuen pilkkujen näkyvyydestä Magneettikentän viakutus Stokesin V-parametriin
10. Spektrometria. Havaitsevan tähtitieteen luennot & Thomas Hackman. HTTPK I kevät
10. Spektrometria Havaitsevan tähtitieteen luennot 30.3. & 6.4.2017 Thomas Hackman HTTPK I kevät 2017 1 10. Spektrometria Sisältö: Peruskäsitteet Spektrometrin rakenne Spektrometrian käyttö Havainnot ja
Lisätiedot9. Spektrometria. Havaitsevan tähtitieteen luennot 25.3. ja 8.4. 2010 Thomas Hackman. HTTPK I kevät 2010, Luennot 9-10 1
9. Spektrometria Havaitsevan tähtitieteen luennot 25.3. ja 8.4. 2010 Thomas Hackman HTTPK I kevät 2010, Luennot 9-10 1 9. Spektrometria - yleistä Mitataan kohteen vuontiheyden aallonpituusjakauma F l Valo
LisätiedotHavaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta
Lisätiedot10. Spektrometria. Havaitsevan tähtitieteen luennot 27.3. & 3.4.2014 Veli-Matti Pelkonen. Kalvot: Thomas Hackman & Veli-Matti Pelkonen
10. Spektrometria Havaitsevan tähtitieteen luennot 27.3. & 3.4.2014 Veli-Matti Pelkonen Kalvot: Thomas Hackman & Veli-Matti Pelkonen HTTPK I kevät 2014, Luennot 10-11 1 10. Spektrometria Sisältö: Peruskäsitteet
LisätiedotHavaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin
Lisätiedot9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit
Lisätiedot10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
Lisätiedot9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria
9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1
Lisätiedot9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
LisätiedotHavaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
LisätiedotCCD-kamerat ja kuvankäsittely
CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate
Lisätiedot9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP)
9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Syksy 2017 Thomas Hackman (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4.
LisätiedotHavaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.
Lisätiedot7.4 Fotometria CCD kameralla
7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion
LisätiedotHavaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Datan käsittely Helsingin yliopisto, Fysiikan laitos kevät 2013 3. Datan käsittely Luennon sisältö: Havaintovirheet tähtitieteessä Korrelaatio Funktion sovitus Aikasarja-analyysi 3.1 Havaintovirheet Satunnaiset
Lisätiedot1. Polarimetria. voidaan tutkia mm. planeettojen ilmakehien ja tähtien välistä pölyä.
Polarimetria Tekijät: Immonen Antti, Nieminen Anni, Partti Jussi, Pylkkänen Kaisa ja Viljakainen Antton Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:
LisätiedotTyö 2324B 4h. VALON KULKU AINEESSA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada
LisätiedotPolarimetria. Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo
Polarimetria Teemu Pajunen, Kalle Voutilainen, Lauri Valkonen, Henri Hämäläinen, Joel Kauppo Sisällys 1. Polarimetria 1 2 1.1 Polarisaatio yleisesti 2 1.2 Lineaarinen polarisaatio 3 1.3 Ympyräpolarisaatio
LisätiedotHavaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 3.5.2012, T Hackman & V-M Pelkonen 1 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannattaa käyttää? Minkälaista teleskooppia millekin
LisätiedotFYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA
FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi
LisätiedotSähkömagneettinen säteily ja sen vuorovaikutusmekanismit
Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.
LisätiedotMIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma
MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen
LisätiedotHavaitsevan tähtitieteen pk I, 2012
Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän
LisätiedotTähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi
Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein
Lisätiedot1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.
1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on
Lisätiedot2.7.4 Numeerinen esimerkki
2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun
Lisätiedot8. Fotometria (jatkuu)
8. Fotometria (jatkuu) 1. Magnitudijärjestelmät 2. Fotometria CCD kameralla 3. Instrumentaalimagnitudit 4. Havaintojen redusointi standardijärjestelmään 5. Kalibrointi käytännössä 6. Absoluuttinen kalibrointi
LisätiedotYHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
LisätiedotS-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
LisätiedotRefraktorit Ensimmäisenä käytetty teleskooppi-tyyppi
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Galilei 1609 Italiassa, keksitty edellisenä vuonna Hollannissa(?) vastasi teatterikiikaria (kupera objektiivi, kovera okulaari) Kepler 1610: tähtititeellinen
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,
Lisätiedot7.-8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
7.-8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 1.3. ja 15.3.2012 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) HTTPKI, kevät 2012, luennot 7-8 1 7. Fotometria Sisältö: Johdanto Peruskäsitteitä
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotTarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
Lisätiedot7. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8
7. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 17.3. ja 24.3.2011 Mikael Granvik (Kalvot JN, TH & MG) HTTPKI, kevät 2011, luennot 7-8 1 8. Fotometria n Sisältö: q q q q q q q q q q Johdanto
Lisätiedot8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 18.3. ja 25.3.2010 Thomas Hackman (Kalvot JN & TH) HTTPKI, kevät 2010, luennot 8-9 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä Magnitudijärjestelmät
LisätiedotKeskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!
Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi
LisätiedotTähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,
Lisätiedot6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen
6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition
LisätiedotKosmos = maailmankaikkeus
Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita
LisätiedotFysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI
Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan
Lisätiedot5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys
Lisätiedot10. Fotometria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)
10. Fotometria Havaitsevan tähtitieteen peruskurssi I, Kevät 2013 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 10. Fotometria Sisältö: Johdanto Peruskäsitteitä Magnitudijärjestelmät Fotometrit Fotometria
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
Lisätiedotd sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia
Lisätiedot8. Fotometria. Havaitsevan tähtitieteen peruskurssi I, luennot ja Thomas Hackman (Kalvot JN, TH, VMP)
8. Fotometria Havaitsevan tähtitieteen peruskurssi I, luennot 2.11. ja 9.11.2017 Thomas Hackman (Kalvot JN, TH, VMP) HTTPKI, syksy 2017, luennot 2.11. ja 9.11. 0 8. Fotometria Sisältö: Johdanto Peruskäsitteitä
Lisätiedot5.13 Planetaarinen liike, ympyräradat
5.13 Planetaarinen liike, ympyräradat Muistellaan menneitä Jo peruskoulussa lienee opetettu tämä Newtonin gravitaatiolaki kahden kappaleen välisestä gravitaatiovoimasta: Tässä yhtälössä G on gravitaatiovakio
LisätiedotHÄRKÄMÄEN HAVAINTOKATSAUS
HÄRKÄMÄEN HAVAINTOKATSAUS 2008 Kierregalaksi M 51 ja sen seuralainen epäsää äännöllinen galaksi NGC 5195. Etäisyys on 34 miljoonaa valovuotta. M 51 löytyy l taivaalta Otavan viimeisen tähden t Alkaidin
LisätiedotFYSA230/2 SPEKTROMETRI, HILA JA PRISMA
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden
Lisätiedotc λ n m hf n m E m = h = E n 1. Teoria 1.1. Atomin energiatilat ja säteily
SPEKTROMETRIA Tekijät: Mönkkönen Tomi, Reinikainen Mikko, Tiilikainen Eero, Toivanen Maria ja Rikkinen Topi Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine:
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotHavaitsevan tähtitieteen peruskurssi I Johdanto
Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti:
Lisätiedot13. Uusi havaintoteknologia
13. Uusi havaintoteknologia E-ELT Havaitsevan tähtitieteen peruskurssi I, Kevät 2017 Thomas Hackman (kalvot: Jyri Näränen, Mikael Granvik, Veli-Matti Pelkonen ja TH) 13. Uusi havaintoteknologia Mosaiikki
LisätiedotPolarisaatio. Timo Lehtola. 26. tammikuuta 2009
Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät 2008
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: J. Lehtinen Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
LisätiedotJupiter-järjestelmä ja Galileo-luotain II
Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotKosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
LisätiedotTähtitieteen perusteet: Johdatusta optiseen havaitsevaan tähtitieteeseen. FT Thomas Hackman FINCA & HY:n fysiikan laitos
Tähtitieteen perusteet: Johdatusta optiseen havaitsevaan tähtitieteeseen FT Thomas Hackman FINCA & HY:n fysiikan laitos TT:n perusteet 2010-11, luento 3, 15.11.2010 1 Luennon sisältö Ilmakehän vaikutus
LisätiedotHavaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät 2007
Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
Lisätiedotellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.
KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa
Lisätiedot5. Kaukoputket ja observatoriot
5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys 4. Fokus 5. Kuvan laatuun vaikuttavia tekijöitä 6. Observatorion sijoituspaikka 5.1 Teleskooppia kuvaavat
LisätiedotMustien aukkojen astrofysiikka
Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät 2012
Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Luennoitsijat: FT Thomas Hackman & FT Veli-Matti Pelkonen Luentoajat: To 14-16, periodit 3-4 Kotisivu: http://www.helsinki.fi/astro/opetus/kurssit/havaitseva
LisätiedotAurinko. Tähtitieteen peruskurssi
Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S
LisätiedotPimeän energian metsästys satelliittihavainnoin
Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14
Lisätiedot11. Astrometria, ultravioletti, lähiinfrapuna
11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan
LisätiedotHavaitsevan tähtitieteen peruskurssi I
4. Teleskoopit ja observatoriot Lauri Jetsu Fysiikan laitos Helsingin yliopisto (kuva: @garyseronik.com) Tavoite: Kuvata, kuinka teleskooppi rakennetaan aiemmin kuvatuista optisista elementeistä Teleskoopin
LisätiedotGravitaatioaallot - uusi ikkuna maailmankaikkeuteen
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi
Lisätiedot3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
LisätiedotPlanck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio
Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz
LisätiedotHavaitsevan tähtitieteen peruskurssi I
Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä
LisätiedotKokeellisen tiedonhankinnan menetelmät
Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein
LisätiedotValon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
LisätiedotLuento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
LisätiedotSPEKTROMETRI, HILA JA PRISMA
FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.
Lisätiedot1.4. VIRIAALITEOREEMA
1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen
Lisätiedot7. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.
7. Kuvankäsittely 1. CCD havainnot 2. CCD kuvien jälkikäsittely 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja 6. Demo 7.1 CCD havainnot 1. Jäähdytys 2. Darkit (jos tarpeen) 3. Biakset
LisätiedotLa Palma ja NOT. Auni Somero Tuorlan observatorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto 3.10.2012
La Palma ja NOT Auni Somero Tuorlan observatorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto 3.10.2012 28 45 26.2 N 17 53 06 W 60 10 14 N 24 56 15 E Lanzarote Teneriffa Fuerteventura Gran Canaria
LisätiedotFotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami
1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien
LisätiedotHavaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely. Jyri Näränen
Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely Jyri Näränen 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen tekeminen 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja
LisätiedotHavaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik
Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik 7. Kuvankäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen
Lisätiedot3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu
3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan
LisätiedotHavaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen
Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu Luento 9.4.2015, V-M Pelkonen 1 1. Luennon tarkoitus Havaintoaikahakemuksen (teknisen osion) valmistelu Mitä kaikkea pitää ottaa
Lisätiedothttp://www.space.com/23595-ancient-mars-oceans-nasa-video.html
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa
LisätiedotTURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 24AB S4h. LASERTYÖ JA VALON SPEKTRIN ANALYSOINTI TYÖN TARKOITUS LASERTYÖ Lasereita käytetään esimerkiksi tiedonsiirrossa, analysoinnissa ja terapiassa ja työstämisessä.
LisätiedotFYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ
FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin
LisätiedotTähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily
Lisätiedot12. Kuvankäsittely. 1. CCD havainnot. 2. CCD kuvien jälkikäsittely 3. FITS. 4. Kuvankatseluohjelmistoja. 5. Kuvankäsittelyohjelmistoja. 6.
12. Kuvankäsittely 1. CCD havainnot 2. CCD kuvien jälkikäsittely 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja 6. Demo 12.1 CCD havainnot 1. Jäähdytys 2. Darkit (jos tarpeen) 3. Biakset
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotLuento 4: kertaus edelliseltä luennolta
Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ
LisätiedotSupernova. Joona ja Camilla
Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa
Lisätiedot4 Optiikka. 4.1 Valon luonne
4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee
LisätiedotFotometria ja avaruuskuvien käsittely
NOT-tiedekoulu 2011 Fotometria ja avaruuskuvien käsittely Rapusumu Ryhmä 2: Anna Anttalainen, Oona Snicker, Henrik Rahikainen, Arttu Tiusanen ja Sami Seppälä Sisällysluettelo 1 Fotometria 1.1 Johdantoa
LisätiedotTAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ
TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
Lisätiedot6. Ilmaisimet ja uudet havaintotekniikat. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman (Kalvot: J.
6. Ilmaisimet ja uudet havaintotekniikat Havaitsevan tähtitieteen peruskurssi I, luento 21.2.2008 Thomas Hackman (Kalvot: J. Näränen) 6. Ilmaisimet ja uudet havaintotekniikat 1. Silmä, valokuvaus, valomonistinputki
Lisätiedot