Taloustieteen perusteet 31A Mallivastaukset 2, viikko 3
|
|
- Anni Palo
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Taloustieteen perusteet 31A Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen preferenssinsä päiväkohtaisten tulojen ja vapaa-ajan suhteen alla olevaan kuvioon piirrettyjen indifferenssikäyrien mukaiset. Tuntipalkka Työtunnit (i) 5 4 (ii) 10 5 (iii) 15 5 a) Oletetaan, että opiskelija saa opintotukea 10 euroa päivässä. Ratkaise piirtämällä budjettisuorat ja merkitsemällä hyödyn maksimoivat valinnat yllä olevaan kuvioon, kuinka paljon opiskelija tekee opiskelun ohella päivittäin töitä, jos työtä on tarjolla (i) 5 euron tuntipalkalla, (ii)10 euron tuntipalkalla ja (iii) 15 euron tuntipalkalla. Merkitse tiedot myös yllä olevaan taulukkoon. b) Piirrä näiden tietojen perusteella opiskelijan työntuntien tarjontafunktio alla olevaan kuvioon. Merkitse akselit.
2 2. Tarkastellaan pientä kansakuntaa, joka ei itse valmista leipää ja joka siksi ostaa sen maailmanmarkkinoilta hintaan P = 2 euroa per leipä. Leivän kysyntäkäyrä on P = 4 0,5X, jossa X on kysytty määrä (vaikkapa tuhansina leipinä, yksiköt eivät ole tässä tärkeitä.) 5 Hinta 4 3 Kysyntäkäyrä 2 1 P=2 P= Määrä a) Ratkaise matemaattisesti tai yllä olevaan koordinaatistoon piirtämäsi kuvion avulla kuinka paljon maassa syödään leipää. Tarjontakäyrä on pisteeseen P = 2 piirretty vaakasuora koordinaatiossa. Kysyntäkäyrältä saadaan laskettua X: 2 = 4 0,5X => X = 4. b) Kuinka suuri on kuluttajan ylijäämä? Kuluttajan ylijäämä (4 2) 4/2 = 4 euroa kolmion pinta-alan laskukaavan mukaan. c) Ajatellaan, että maan hallitus päättääkin tukea leivän kulutusta siten, että se tuo leivän maahan maailmanmarkkinahinnalla P = 2 euroa mutta myy sen kuluttajille hintaan P = 1 euro per leipä. Kuinka paljon leipää nyt syödään? P = 1: => 1 = 4 0,5X => X = 6. d) Entä kuinka suuri on kuluttajan ylijäämä nyt? Kuluttajan ylijäämä (4 1) 6/2 = 9 euroa. e) Kuinka paljon tämä tukipolitiikka valtiolle maksaa? Miksi? Se maksaa valtiolle 1 6 = 6 euroa eli tuen määrä per leipä kertaa leipien kysytty määrä. f) Kuinka paljon yhteiskunta tukipolitiikasta kokonaisuutena menettää tai voittaa? Perustele! Kuluttajat hyötyvät tuesta kuluttajan ylijäämän kasvun verran eli 9 4 = 5 euroa, mutta tuki maksaa valtiolle 6 euroa, joten yhteiskunta kokonaisuutena menettää yhden euron.
3 3. Alla oleva kuvio esittää autojen markkinoita Euroopan unionin alueella. Oletetaan, että ne ovat kilpailulliset ja että autojen hinta maailmanmarkkinoilla on P W. Suojellakseen eurooppalaista autoteollisuutta unioni asettaa t:n euron suuruisen tuontitullin, joka nostaa autojen hinnan Euroopassa tasolle P W + t. Kirjaimet A, B,, G esittävät pinta-aloja. Autojen hinta tarjonta A P W + t P W G C D B E F kysyntä Q 1 Q 2 Q 3 Q 4 autojen määrä a) Mikä kuvion mukaan on tuontitullin vaikutus Euroopassa valmistettujen autojen määrään, autojen kysyntään ja autojen tuontiin? Ennen tullia valmistetaan määrä Q 1 ja kysytään määrä Q 4, joten tuontia on Q 4 -Q 1. Tullin jälkeen vastaavat määrät ovat Q 2, Q 3 ja Q 3 -Q 2. Euroopan tuotanto kasvaa määrän Q 2 -Q 1, kysyntä vähenee määrän Q 4 -Q 3 ja tuonti vähenee määrän (Q 2 -Q 1 ) + (Q 4 -Q 3 ). b) Mikä on tullin vaikutus kuluttajaylijäämän? Kuluttajaylijäämä pienenee alueesta A+B+C+D+E+F alueeseen A+B eli vähenee alueen C+D+E+F verran. c) Entä tuottajaylijäämään? Tuottajaylijämä kasvaa määrästä G määrään G+C eli alueen C verran. d) Kuinka paljon tuloja tulli luo unionille? Tullista syntyneet tulot: alueen E verran. e) Entä mikä on tullin aiheuttama hyvinvointitappio? Kokonaisylijäämä on alun perin A+B+C+D+E+F+G, tullin jälkeen A+B+C+E+G, jolloin tappio on erotus D+F. f) Mihin kolmeen osaan kuluttajaylijäämän muutos voidaan tämän perusteella jakaa? Kuluttajaylijäämän muutoksesta osa C menee tuottajille, osa E valtiolle ja D+F on nettotappiota.
4 4. Pienessä kylässä on 6 ihmistä. Jokainen voi olla töissä tehtaassa tai kalastaa järvellä. Palkka tehtaassa on 4 /päivä. Päivittäinen kokonaiskalansaalis järvestä on 8L 2L 2 kalaa, jossa L on kalastajien lukumäärä. Jokainen kalassa käyvä käyttää kalastukseen yhtä paljon aikaa. Kalat voi myydä torilla yksikköhintaan 1. a) Jos jokainen päättää itse kalastaako vai työskenteleekö tehtaassa, montako ihmistä on kalassa? Mitkä ovat kyläläisten yhteenlasketut ansiot? Perustele matemaattisesti tai kuviolla! b) Mikä on kylän kannalta (eli yhteiskunnallisesti) optimaalinen kalastajien lukumäärä? Mitkä tällöin ovat kyläläisten yhteenlasketut ansiot? Perustele matemaattisesti tai kuviolla! a) Kalastuksen nollavoittoehdosta saadaan: V = 8L 2L 2 4L = 0 => 4L 2L 2 = 0 => 4 2L = 0 => L = 2 Tämän voi laskea myös vertaamalla kalastuksen tuottamia tuloja kalastajaa kohden tehtaassa saatavaan palkkaa: Tulot kalastuksesta (8L 2L 2 )/L = 8 2L = 4 eli palkka tehtaasta => L = 2. Vaihtoehtoisesti tehtävän voi ratkaista kuvion avulla: nollavoitto kun L = 2 b) Optimi saadaan maksimoimalla kalastajien lukumäärän L suhteen kalastuksen tuottama voitto: V = 8L 2L 2 4L = 4L 2L 2 => dv/dl = 4 4L = 0 => L = 1. Tämän voi ratkaista myös yllä olevasta kuviosta piirtämällä tangentin tuloja kuvaavalle käyrälle: L = 1. Kyläläisten yhteenlasketut ansiot ovat = 6 kalastuksesta tehtaasta = 26 euroa
5 5. Tulokymmenysten tulo-osuudet Osuus kotitalouksista % Kumulatiivinen tulo-osuus % I 3,2 4, II 4,8 6,7 5,6 10 3,2 4,9 4,0 III 5,9 7,5 6,6 20 8,0 11,6 9,6 IV 6,9 8,3 7, ,9 19,1 16,2 V 8 9 8, ,8 27,4 23,8 VI 9,3 9,8 9, ,8 36,4 32,3 VII 10,7 10,7 10, ,1 46,2 41,8 VIII 12,4 11,7 11, ,8 56,9 52,4 IX 15 13,2 13, ,2 68,6 64,3 X 23,8 18,2 21, ,2 81,8 78, ,0 100,0 100, Kumula&ivinen tulo-osuus, % A B Osuus ko&talouksista, % b) Tulojen jakauma oli tasaisin vuonna 1992, koska jakaumaa kuvaava käyrä on lähimpänä tasajakoa kuvaavaa lävistäjää. Gini-kerroin A/(A+B) oli silloin pienin. Epätasaisin tulojen jakauma näyttäisi olleen vuonna c) Tuloerot kaventuivat vuodesta 1966 vuoteen 1992, mutta ovat sen jälkeen taas kasvaneet.
Harjoitusten 2 ratkaisut
Harjoitusten 2 ratkaisut Taloustieteen perusteet 31A00110 Tea Lönnroth tea.lonnroth(at)aalto.fi Teach a parrot the terms 'supply and demand' and you've got an economist. Thomas Carlyle 2 Tehtävä 1 Tarkastellaan
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
Taloustieteen perusteet 31A00110 19.02.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus
Taloustieteen perusteet 31A00110 19.02.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi
12 Oligopoli ja monopolistinen kilpailu
12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
TENTTIKYSYMYKSET
MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi
Taloustieteen perusteet 31A Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus
Taloustieteen perusteet 31A00110 17.02.2017 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi
4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
MATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,
Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus
Taloustieteen perusteet 31A00110 18.04.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi
MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
MATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
MIKROTEORIA, HARJOITUS 5 YRITYKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI
MIKROTEORIA, HARJOITUS 5 RITKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI Olkoon ritksen kustannusfunktio c ( F a ritksen rajakustannukset kertovat, paljonko ritksen kustannukset muuttuvan kun tuotantoa
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset
KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun
MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009
EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
Taloustieteen perusteet 31A Ratkaisut 3, viikko 4
Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan
Integraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka
Integraalilaskenta 9 Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Helsingissä Kustannusosakeyhtiö Otava Kirjan rakenne Aiemmin opiskeltua
TENTTIKYSYMYKSET 8.12.2006
MIKROTALOUSTEORIA (PKTY1) TuKKK Porin yksikkö/avoin yliopisto Ari Karppinen TENTTIKYSYMYKSET 8.12.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään
Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi
Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen
Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)
Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme
c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L
MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt
A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6
A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.
Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016
tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat
KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET
KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla
LIITE. asiakirjaan. ehdotus neuvoston päätökseksi
EUROOPAN KOMISSIO Bryssel 22.1.2016 COM(2016) 18 final ANNEX 3 PART 1/4 LIITE asiakirjaan ehdotus neuvoston päätökseksi Euroopan unionin ja sen jäsenvaltioiden sekä SADC:n talouskumppanuussopimusvaltioiden
1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10
Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,
Matematiikan peruskurssi (MATY020) Harjoitus 7 to
Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat
Hyvän vastauksen piirteet
Hyvän vastauksen piirteet Hakukohteen nimi: Taloustieteen kandiohjelma Kokeen päivämäärä ja aika: 24.4.2018 kl. 10.00-15.00 1. Määrittele lyhyesti seuraavat käsitteet. (a) Käytettävissä olevat tulot (disposable
KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET
KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:
Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio.
Harjoitukset 2 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. a) Mikä on kysynnän hintajousto 12 :n ja 6 :n välillä?
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä
Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2
Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Palautus ke 10.2. klo 16 mennessä Piian lokeroon Koetilantie 5, 3. krs tai B-talon vahtimestarien kopin luona olevaan kurssikansioon. En
1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä
0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).
Matemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?
TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)
Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä
Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Edellä rajakustannuksia MC(x) ja rajahyötyä MB(x) tarkasteltaessa käsiteltiin vain tapausta, jossa x on diskreetti suure (mahdollisia
Vahva korkeasuhdanne jatkui puumarkkinoilla. miljoonaa kuutiometriä yksityismetsistä
Puun ostot ja hinnat joulukuu 2000 Toimittaja: Martti Aarne 19.1.2001 561 Yksityismetsien puukaupassa 12 prosentin kasvu Vahva korkeasuhdanne jatkui puumarkkinoilla vuonna 2000. Metsäteollisuuden puun
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään
Suorakulmainen kolmio
Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2
MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009
EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:
MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan
Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?
1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa
matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus
Markkinainstituutio ja markkinoiden toiminta. TTT/Kultti
Markkinainstituutio ja markkinoiden toiminta TTT/Kultti Pyrin valottamaan seuraavia käsitteitä i) markkinat ii) tasapaino iii) tehokkuus iv) markkinavoima. Määritelmiä 1. Markkinat ovat mekanismi/instituutio,
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Harjoitukset 1. Kysynnän ja tarjonnan perusteet (kertausta ja lämmittelyä). 1. Jampan
Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut
Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Kolmen peräkkäisen kokonaisluvun summa on 42. Luvuista keskimmäinen on a) 13 b) 14 c) 15 d) 16. Ratkaisu. Jos luvut
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Harjoitukset 7 (viikko 13) Tehtävä 1 a) Tapahtuu siirtymä pisteestä A pisteeseen B. Jos TR-käyrä on vaakasuora, niin IS-käyrän siirtyminen oikealle ei
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)
11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan
yleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
MIKROTEORIA, HARJOITUS 8
MIKROTEORI, HRJOITUS 8 PNOSMRKKINT, KILPILU, OLIGOPOLI, PELITEORI J VIHTOTLOUS. Jatkoa tehtävään 4 (ja 5) harjoituksessa 7. a. Laske kolluusioratkaisu. Kahden samaa tuotetta tuottavan yrityksen kustannusfunktiot
Köyhyys ja huono-osaisuus hyvinvointivaltiossa
Köyhyys ja huono-osaisuus hyvinvointivaltiossa Jouko Karjalainen eapn-fin 29.11.2013 1 Tulkintakehikot Yksilön vastuu Yhteisöjen vastuu Yhteiskunnan vastuu 2 Mitä on köyhyys? vastentahtoinen tilanne, rajoittaa
2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon.
TU-91.1001 Kansantaloustieteen perusteet WWW-harjoitus 2, syksy 2016 Vastaukset 1. Millä hyödykkeistä on pienin kysynnän hintajousto? V: D. Maito. Pienin kysynnän hintajousto (eli hinnanmuutoksen vaikutus
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa
MATEMATIIKKA 3 VIIKKOTUNTIA
EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla
Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero
Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Tehtävä 1 2 3 4 5 6 7 Vastaus
Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT
I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '
ill 'l' L r- i-ir il_i_ lr-+ 1r l
ir a I - --+,.---+-,- i-ir il_i_ lr-+ 1r l rl ill 'l' L r- T- 'l rl *r- I s. ;l -' --S"[nJ+&L rlr D Ur-r^^;lA_e^ 3. Piirrä indi erenssikäyrät korille ( ; x 2 ); kun on tavallinen hyödyke, ja x 2 on tavallinen
Koontitehtäviä luvuista 1 9
11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:
5 Markkinoiden tehokkuusanalyysin sovelluksia (Mankiw & Taylor, Chs 6, 8-9)
5 Markkinoiden tehokkuusanalyysin sovelluksia (Mankiw & Taylor, Chs 6, 8-9) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme
Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18
Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa
3 Määrätty integraali
Määrätty integraali. a) Muodostuva alue on kolmio, jonka kanta on. Kolmion korkeus on funktion arvo kohdassa, eli f() = = 6. Lasketaan A() kolmion pintaalana. 6 A() 6 Vastaus: A() = 6 b) Muodostuva alue
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus
origo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on
1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on D. ε = 1 Ratkaistaan ensin markkinatasapaino asettamalla kysyntä ja tarjonta yhtä suuriksi.
Yrittäjät. Konsultit 2HPO 17.4.2013 2HPO.FI
Yrittäjät Konsultit 2HPO 1 Yrittäjien lukumäärä pl. maatalous 1990-270 250 230 210 190 170 150 130 110 90 tuhatta yrittäjää 261 000 169 000 92 000 70 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)
3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen
Luku 16 Markkinatasapaino
76 Luku 16 Markkinatasaaino 16.1 Markkinatasaainon määritys Tarkastelemme kilailullisia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaisunsa suhteessa maksimihintoihin talouenitäjien
Luku 14 Kuluttajan ylijäämä
Luku 4 Kuluttajan ylijäämä Tähän asti johdettu kysyntä hyötyfunktioista ja preferensseistä, nyt päinvastainen ongelma: eli kuinka estimoida hyöty havaitusta kysynnästä. Mitattavat ja estimoitavat kysyntäkäyrät
Kilpailulliset markkinat. Taloustieteen perusteet Matti Sarvimäki
Kilpailulliset markkinat Taloustieteen perusteet Matti Sarvimäki Johdanto Tähän mennessä valinta niukkuuden vallitessa strateginen kanssakäyminen, instituutiot, yritykset hinnat ja määrät kun yrityksellä
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT
TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla
x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)
Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista
3 Eksponentiaalinen malli
Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,
Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa
Harjoituksia 9 Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa 1. Kirjoita yhtälö ja ratkaise x. a) lukujen x ja 6 summa on yhtä suuri kuin lukujen x ja 4 tulo. b) Kun luku x kerrotaan kolmella
2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede
YLE5 / YET-09 Luonnonvarataloustieteen jatkokurssi. Uusiutuvat luonnonvarat: alastuksen taloustiede Marko Lindroos & Maija Holma Uusiutuvat luonnonvarat alastuksen taloustiede: Luentoteemat.1 Johdanto.
(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15)
12 Monopoli (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV
Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa