, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

Koko: px
Aloita esitys sivulta:

Download ", m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,"

Transkriptio

1 S-114.6, Fysiikka IV (EST),. VK , Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion hiukkasvaihtosymmetria ja sen toteutuminen determinanttiaaltofunktiossa. c) Paulin kieltosääntö. d) Alkuaineiden jaksollinen järjestelmä e) Bornin ja Oppenheimerin approksimaatio f) Yleistetyt värähtelykoordinaatit. a) Kunkin elektronin ajatellaan liikkuvan itsenäisesti muiden elektronien muodostaman keskimääräisen varaustiheyden ja ytimen positiivisen varauksen yhdessä muodostamassa sähköstaattisessa potentiaalissa. Tämä mahdollistaa monen elektronin aaltofunktion kuvaamisen yksitttäisten elektronien spinorbitaalien antisymmetrisoituna tulona. b) Monen fermionin aaltofunktio vaihtaa merkkinsä jos kahden fermionin paikka- ja spinkoordinaatit vaihdetaan keskenään. Tämä ehto täyttyy automaattisesti jos keskimääräisessä kentässä lasketuista aaltofunktioista muodostetaan ns Slaterin determinantti sjoittamalla yksi elektroni kullekin spin-orbitaalille. c) Yhdelle spinorbitaalille voidaan sijoittaa vain yksi elektroni (muuten determinanttiaaltofunktio on nolla kaikkialla). d) Keskimääräisessä kentässä lasketut spinorbitaalit (kvantiluvut n, l, ml, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, l ja sama määrä elektroneita ovat kemiallisesti samankaltaisia. e) Ytimillä on ainakin 000 kertaa suurempi massa kuin elektroneilla, joten elektronit ehtivät aina mukautua ytimien välisen etäisyyden muutokseen. f) Yleistetyissä koordinaateissa lasketut molekyylivärähtelyt voidaan kuvata riippumattomilla harmonisilla oskillaattoreilla (muunnos karteesisista koordinaateista yleistettyihin koordinaatteihin poistaa värähtelijöiden välisen kytkennän alimmassa kertaaluvussa). 1 piste kustakin kohdasta.

2 . (a) LiH molekyylin dipolimomentti on 1, Cm. Selvitä, onko kyseessä kovalenttinen vai ionisidos, kun tiedetään, että LiH molekyylin sidospituus on 0,160 nm. (b) Laske natrium ja kloori ionien tasapainoetäisyys ruokasuolakiteessä, kun tiedetään, että ruokasuolan tiheys on,16 g/cm. (a) LiH molekyylin dipolimomentti p LiH = 1,96 * 10-9 Cm ja sidospituus r 0 = 0,160 nm. Molekyylin sähködipolimomentti kertoo asteen, jolla sidos on ionisidos tai kovalenttinensidos. Jos sidos on täysin ionisidos, sen dipolimomentti on p ioninen = er 0 (1 piste), koska silloin varaukset e ja +e ovat etäisyydellä r 0. Sidoksen ionisuusaste saadaan siis jakamalla mitattu arvo tekijällä p ioninen = er 0 (1 piste): 9 p 1,96 10 Cm sidoksen ionisuus LiH = = 0, er 1,60 10 C 0,16 10 nm Sidos on siis 77% ionisidos (1 piste). 0 (b) NaCl-kiteen rakenne on prujun kuvan 7- mukainen. Kyseessä on kaksiatomisesta kantaklusterista muodostuva FCC-hila (1 piste). Natriumin moolimassa on M Na ja kloorin M Cl. Ajatellaan, että jokainen ioni sijaitsee kuutiomaisessa tilavuudessa, jonka sivun pituus on tasapainoetäisyys r 0. Yhden moolin massa natriumkloridia on (M Na + M Cl ) * amu * N A = m Ionit sijaitsevat tilavuudessa *N A *r 0 (1 piste), jossa N A on Avogadron luku. Tiheyden ja tasapainoetäisyyden suhde on siten m m m m ρ = r r V = N r = N = N ρ (1 piste) 0 0 A 0 Aρ A Sijoitetaan natriumin ja kloorin moolimassat ja saadaan: m = (,99 g/mol + 5,45 g/mol) * 1,6605*10-7 kg * 6,0*10 1/mol =58,4 g =,16 g/cm r 0 = 0,8 nm

3 . (a) Johda yhden alkuaineen atomeista muodostuvan atomiketjun hilavärähtelyjen dispersiorelaatio (kulmataajuus aaltovektorin funktiona). (b) Mikä on ääniaallon nopeus kun aaltovektori on hyvin pieni ja toisaalta kun aaltovektori lähestyy arvoa π / a, missä a on hilavakio? Luku (a) Liikeyhtälön muodostaminen: 1p Yritteen muodostaminen: 1p Oikea vastaus: p (b) Nopeus oikein, kun k = 0: 1p Nopeus oikein, kun k = pi/a: 1p

4 4. Tarkastellaan 79 Br 19 F molekyyliä. Atomien tasapainoetäisyys (sidospituus) on ro = 0,176 nm. (a) Laske neljän ensimmäisen rotaatiotason energia. (b) Määritä transitioissa l = 0 l = 1 ja l = 1 l = absorboituvien fotonien energiat. (c) Laske värähtelytasojen energiaero. Voimavakio on 4,5 N/m. (a) Rotaatioenergia on kvantittunut seuraavan yhtälön mukaisesti: E r = l ( l + 1 ), l = 0,1,,,, I m 1m missä hitausmomentti I on I = µ ro = ro. Nyt m1 = 78,918 u ja m = 18,998 u ovat m 1 + m 79Br:n 19 F:n massat, vastaavasti, joten hitausmomentiksi saadaan 79,918 18,998 1, kg 9 ( 0, ) m 7, kg m I =. 79, ,998 Rotaatio energiat voidaan siis kirjoittaa muodossa 4 ( 1, Js) 5 ( 1) 4,96 10 ( 1) Er = l l + ev l l , kg m Neljän alimman tilan enrgiat ovat: l Erl / µev , (b) Energiat saadaan suoraan eo. taulukosta energioiden erotuksina: 6 l = 0 l = 1: E = 87,9 10 ev abs 6 l = 1 l = : Eabs = 176,1 10 ev k (c) Värähtelytasojen energiaero on E v = ωo = 6,8 mev. µ. (a) Kaava oikein: 1p Rotaatiotasojen energiat laskettu oikein: 1p (b) Siirtymä l = 0 l = 1: 1p Siirtymä l = 1 l = : 1p (c) Kaava oikein: 1p Värähtelytasojen energiaero laskettu oikein: 1p

5 5. Laske tiheyssuhde yksiatomisille SC (simple cupic), FCC (face centered cubic) ja BCC (body centered cubic) hiloille olettamalla, että atomit ovat kovia R säteisiä palloja. (Laske kuinka suuren suhteellisen osan tilavuudesta pallot varaavat itselleen, jos kiteessä lähimmät pallot ovat annetun symmetrian puitteissa kiinni toisissaan. (a) SC hila: Atomit sijaitsevat kuution kärjissä pallojen säde R kuution sivun pituus a = R Kustakin kahdeksasta pallosta on yksi kahdeksasosa kuution sisällä. Täyttösuhteeksi saadaan: 4 1 π R π 0.5 =. R 6 (b) BCC hila: Atomit sijaitsevat kuution kärjissä ja lisäksi kuution keskipisteessä. Pallojen säteen ja kuution särmän pituuksien suhteen määrää nyt kuution lävistäjä, jonka pituus on vähintään R + R + R = 4R. Tästä laskemme kuution särmän pituudeksi 1/ 4 a + a = 4R a = R Kuution sisällä on nyt kahdeksas osa kustakin nurkka-atomista ja lisäksi keskellä oleva atomi eli yhteensä kaksi atomia. Täyttösuhde on siis 4 π R π 0.68 =. 4 8 R (c) FCC hila: Atomit sijaitsevat kuution nurkissa ja tahkojen keskipisteissä. Sivun pituuden määrää tahkon lävistäjä, joka on R + R + R. Sivun pituudeksi saadaan siis 4 a = 4R a = R = R. Kuution sisällä on nurkkapisteissä olevista atomeista yhteensä yksi atomi ja sivutahkoissa olevista 6 atomista puolet eli yhteensä 4 atomia. Täyttäsuhteeksi saadaan siis 4 4 π R π 0.74 =. R (a) (b) ja (c) kohdista: Periaate oikein: 1p Tiheyssuhteet laskettu oikein: 1p

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä)

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä) S-.7 Fysiikka III (st), VK 8.5.008 Malliratkaisut (Arvosteluperusteita täydennetään vielä). Näytä, että sekä symmetrinen aaltofunktio ψn( x ) ψn ( x) + ψn( x) ψn, että antisymmetrinen aaltofunktioψn( x)

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen.

11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen. 11. MOLEKYYLIT Vain harvat alkuaineet esiintyvät luonnossa atomeina (jalokaasut). Useimmiten alkuaineet esiintyvät yhdisteinä: pieninä tai isoina molekyyleinä, klustereina, nesteinä, kiinteänä aineena.

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Molekyylit. Atomien välisten sidosten muodostuminen

Molekyylit. Atomien välisten sidosten muodostuminen Molekyylit. Johdanto. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit 6. Orgaaniset

Lisätiedot

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017 Materiaalifysiikan perusteet 51104P Ratkaisut 1, Kevät 017 1. Kiderakenteen alkeiskopin hahmottamiseksi pyritään löytämään kuvitteellisesta rakenteesta sen pienin toistuva yksikkö (=kanta). Kunkin toistuvan

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

Jaksollinen järjestelmä ja sidokset

Jaksollinen järjestelmä ja sidokset Booriryhmä Hiiliryhmä Typpiryhmä Happiryhmä Halogeenit Jalokaasut Jaksollinen järjestelmä ja sidokset 13 Jaksollinen järjestelmä on tärkeä kemian työkalu. Sen avulla saadaan tietoa alkuaineiden rakenteista

Lisätiedot

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan

Lisätiedot

Luku 2: Atomisidokset ja ominaisuudet

Luku 2: Atomisidokset ja ominaisuudet Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

MUUTOKSET ELEKTRONI- RAKENTEESSA

MUUTOKSET ELEKTRONI- RAKENTEESSA MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu

Lisätiedot

Atomi. Aineen perusyksikkö

Atomi. Aineen perusyksikkö Atomi Aineen perusyksikkö Aine koostuu molekyyleistä, atomeista tai ioneista Yhdiste on aine joka koostuu kahdesta tai useammasta erilaisesta atomista tai ionista molekyylit rakentuvat atomeista Atomit

Lisätiedot

Chem-C2400 Luento 2: Kiderakenteet Ville Jokinen

Chem-C2400 Luento 2: Kiderakenteet Ville Jokinen Chem-C2400 Luento 2: Kiderakenteet 11.1.2019 Ville Jokinen Oppimistavoitteet Metalli-, ioni- ja kovalenttinen sidos ja niiden rooli metallien ja keraamien kiderakenteissa. Metallien ja keraamien kiderakenteen

Lisätiedot

9. JAKSOLLINEN JÄRJESTELMÄ

9. JAKSOLLINEN JÄRJESTELMÄ 9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,

Lisätiedot

ULKOELEKTRONIRAKENNE JA METALLILUONNE

ULKOELEKTRONIRAKENNE JA METALLILUONNE ULKOELEKTRONIRAKENNE JA METALLILUONNE Palautetaan mieleen jaksollinen järjestelmä ja mitä siitä saa- Kertausta daan irti. H RYHMÄT OVAT SARAKKEITA Mitä sarakkeen numero kertoo? JAKSOT OVAT RIVEJÄ Mitä

Lisätiedot

Alikuoret eli orbitaalit

Alikuoret eli orbitaalit Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia

Lisätiedot

Kertaus. Tehtävä: Kumpi reagoi kiivaammin kaliumin kanssa, fluori vai kloori? Perustele.

Kertaus. Tehtävä: Kumpi reagoi kiivaammin kaliumin kanssa, fluori vai kloori? Perustele. Kertaus 1. Atomin elektronirakenteet ja jaksollinen järjestelmä kvanttimekaaninen atomimalli, atomiorbitaalit virittyminen, ionisoituminen, liekkikokeet jaksollisen järjestelmän rakentuminen alkuaineiden

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

S Fysiikka III (Est) 2 VK

S Fysiikka III (Est) 2 VK S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Kidehilan perusominaisuudet

Kidehilan perusominaisuudet Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne.

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine on hyvä erottaa kiinteästä aineesta, johon kuuluu myös

Lisätiedot

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden. . Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet

Lisätiedot

Kidehilan perusominaisuudet

Kidehilan perusominaisuudet Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

j = I A = 108 A m 2. (1) u kg m m 3, (2) v =

j = I A = 108 A m 2. (1) u kg m m 3, (2) v = 764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

Teddy 1. harjoituksen malliratkaisu kevät 2011

Teddy 1. harjoituksen malliratkaisu kevät 2011 Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x

Lisätiedot

:n perustilaan energiasta. e) Elektronien ja ytimien välinen vuorovaikutusenergia H 2

:n perustilaan energiasta. e) Elektronien ja ytimien välinen vuorovaikutusenergia H 2 S-11446 Fysiikka IV (Sf), II Välikoe 15 1 H vetyioi perustila eergia (ytimie välimatka 1,6 Å) verrattua systeemii, jossa perustilassa oleva vetyatomi ja H -ioi ovat äärettömä kaukaa toisistaa o,65 ev Laske

Lisätiedot

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2 S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

Luento 11. Elektronin spin

Luento 11. Elektronin spin Elektronin spin Luento 11 Spektrimittaukset osoittivat, että energiatasot jakautuvat todellisuudessa useampaan kuin normaalin Zeemanin ilmiön ennustamaan kolmeen. Ruvettiin puhumaan anomaalisesta Zeemanin

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

Määritelmä, metallisidos, metallihila:

Määritelmä, metallisidos, metallihila: ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön

Lisätiedot

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Kertausta IONIEN MUODOSTUMISESTA Jos atomi luovuttaa tai

Lisätiedot

Kvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman

Kvanttimekaaninen atomimalli. Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Kvanttimekaaninen atomimalli "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Tunnin sisältö 1. 2. 3. 4. 5. 6. 7. Kvanttimekaaninen atomimalli Orbitaalit Kvanttiluvut Täyttymisjärjestys

Lisätiedot

1. a) Selitä kemian käsitteet lyhyesti muutamalla sanalla ja/tai piirrä kuva ja/tai kirjoita kaava/symboli.

1. a) Selitä kemian käsitteet lyhyesti muutamalla sanalla ja/tai piirrä kuva ja/tai kirjoita kaava/symboli. Kemian kurssikoe, Ke1 Kemiaa kaikkialla RATKAISUT Maanantai 14.11.2016 VASTAA TEHTÄVÄÄN 1 JA KOLMEEN TEHTÄVÄÄN TEHTÄVISTÄ 2 6! Tee marinaalit joka sivulle. Sievin lukio 1. a) Selitä kemian käsitteet lyhyesti

Lisätiedot

Ionisidos ja ionihila:

Ionisidos ja ionihila: YHDISTEET KEMIAA KAIK- KIALLA, KE1 Ionisidos ja ionihila: Ionisidos syntyy kun metalli (pienempi elek.neg.) luovuttaa ulkoelektronin tai elektroneja epämetallille (elektronegatiivisempi). Ionisidos on

Lisätiedot

4πε. on molekyylin ionisaatioenergia eli energia, joka vaaditaan elektronin siirtämiseen K:lta Cl:lle. (a) Potentiaalin attraktiivinen osa on 2

4πε. on molekyylin ionisaatioenergia eli energia, joka vaaditaan elektronin siirtämiseen K:lta Cl:lle. (a) Potentiaalin attraktiivinen osa on 2 S-446 FYSKKA V (Sf Kevät 5 LHSf4 Ratkaisut - LHSf4- K - ja C -ionien tasapainoetäisyys KC oekyyissä on r = 67 n (a Laske ionien väinen attraktiivinen potentiaaienergia oettaaa että ionit ovat pistevarauksia

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat

Lisätiedot

Ympyrän yhtälö

Ympyrän yhtälö Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Ydinfysiikkaa. Tapio Hansson

Ydinfysiikkaa. Tapio Hansson 3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10

Lisätiedot

Vesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen

Vesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen Vesi Hyvin poolisten vesimolekyylien välille muodostuu vetysidoksia, jotka ovat vahvimpia molekyylien välille syntyviä sidoksia. Vetysidos on sähköistä vetovoimaa, ei kovalenttinen sidos. Vesi Vetysidos

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11 S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia

Lisätiedot

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 % 1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

KIINTEÄN AINEEN RAKENNE JA FYSIKAALISET OMINAISUUDET

KIINTEÄN AINEEN RAKENNE JA FYSIKAALISET OMINAISUUDET KIINTEÄN AINEEN RAKENNE JA FYSIKAALISET OMINAISUUDET... 78 7.1 Johdanto...78 7. Kiteiden perustyypit...80 7.3 Kiderakenteiden peruskäsitteitä...85 7.4 Hilavärähtelyt kiinteässä aineessa....91 7.4.1 Identtisten

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Kiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia

Kiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia Kiinteän aineen ominaisuuksia I Kiteiden perustyypit Kiderakenteiden peruskäsitteitä Kiteisen aineen perusominaisuuksia Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit

Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä Kertausta 1.kurssista Hiilen isotoopit 1 Isotoopeilla oli ytimessä sama määrä protoneja, mutta eri määrä neutroneja. Ne käyttäytyvät kemiallisissa

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 % 1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden

Lisätiedot

8. MONIELEKTRONISET ATOMIT

8. MONIELEKTRONISET ATOMIT 8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä

Lisätiedot

KEMIA HYVÄN VASTAUKSEN PIIRTEET

KEMIA HYVÄN VASTAUKSEN PIIRTEET BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.

Lisätiedot

766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)

766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014) 7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali

Lisätiedot

S , Fysiikka III (S) I välikoe Malliratkaisut

S , Fysiikka III (S) I välikoe Malliratkaisut S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli

Lisätiedot

PHYS-C0240 Materiaalifysiikka kevät 2017

PHYS-C0240 Materiaalifysiikka kevät 2017 PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin. KERTAUSKOE, KE1, SYKSY 2013, VIE Tehtävä 1. Kirjoita kemiallisia kaavoja ja olomuodon symboleja käyttäen seuraavat olomuodon muutokset a) etanolin CH 3 CH 2 OH höyrystyminen b) salmiakin NH 4 Cl sublimoituminen

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot