Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
|
|
- Esko Kaarlo Pesonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1
2 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien pyörimismäärän komponentti molekyylin sidosakselilla Λ Λ = 0,1,2,... Σ,Π,Δ,... tilat (vrt. S, P, D,...) Λ koostuu yksittäisten elektronien pyörimismäärän komponenteista (vrt l ja L elektroneille atomeissa) λ Esim. σ orbitaalilla olevilla elektroneilla ei ole pyörimismäärää sidosaksellilla (λ=0) (vrt s-elektroni) Σ tila 2
3 π elektroneille λ = +1 tai -1 1 Pariton π elektroni Π-tila 2 Paritonta π elektronia eri π orbitaalilla (joko saman- tai vastakkaissuuntaisin spinnein) Σ tilat 2 paritonta π elektronia samalla π orbitaalille Δ tila 1 Δ tai 1 Σ 3 Σ 3
4 Kokonaispariteetti sadaan säännöistä: (suljettu kuori) g x g = g u x u = g u x g = u g ja u käyttäytyvät kuten luvut 1 ja -1 kertolaskussa 3 Σ g (suljettu kuori) x (+) x (-) = (-) + tai - kertoo elektronikonfiguraation symmetriasta (symmetrinen + antisymmetrinen -) heijastuksessa tasosta, joka sisältää ytimet (yz-taso) 4
5 3 Σ u + tai 3 Σ u 5
6 Valintasääntöjen pohjana on pyörimismäärien molekyylin akselin suuntaisten komponenttien säilyminen absorptio- ja emissioprosesseissa Kyseessä on elektronien liikkeeseen liittyvät pyörimismäärät valintasäännöt: ΔΛ = 0,±1 ΔS = 0 ΔΣ = 0 ΔΩ = 0,±1 L = ratapyörimiseen liittyvä pyörimismäärä Λ = sen komponentti akselilla S = spinneistä aiheutuva pyörimismäärä Σ = sen komponentti akselilla Ω = Λ+Σ = kokonaispyörimismäärä akselilla Lisäksi symmetriaan liittyvät valintasäännöt: Σ -termeille sallittuja Σ + Σ + ja Σ Σ sentrosymmetrisille molekyyleille: u g 6
7 Elektronispektroskopiassa absorption seurauksena elektroni siirtyy ylemmälle molekyyliorbitaalille. ydinten kokema elektronien muodostama potentiaali muuttuu voidaan kuvitella, että molekyyli siirtyy potentiaalipinnalta toiselle tässä esimerkissä viritystilaisen molekyylin tasapainosidospituus on pidempi kuin perustilassa Elektronin siirtyminen orbitaalilta toiselle fotonin absorption ansiosta on hyvin nopea prosessi Molekyyli mukautuu myöhemmin elektronisen viritystilan potentiaaliin ytimet eivät ennätä liikkua elektronin siirtymisen aikana Molekyyli hyppää vertikaalisesti perustilan potentiaalipinnalta viritystilan potentiaalipinnalle Franck-Condon periaate 7
8 Elektronisiin transitioihin liittyy muutoksia myös värähdytiloissa Tästä johtuu nimitys vibroninen transitio. Spektriä kutsutaan vibroniseksi tai elektroni-vibraatio spektriksi. Spektrin rakennetta kutsutaan vibroniseksi rakenteeksi v f tässä kuvassa on havainnollistettu yhtä siirtymää v i ja v f tilojen välillä v i Kutakin piikkiä vastaa siirtymä (kuten toisessa kuvassa). Alatiloja (v i ) on tyypillisesti vain yksi, ylätiloja (v f ) voi olla useita Yksittäisten transitioiden intensiteetit riippuvat perustilan ja viritystilan aaltofunktioiden keskenäisen peittointegraalin neliöstä S(v f,v i ) 2 tätä kutsutaan siirtymän Franck-Condon tekijäksi 8
9 9
10 Tarkastellaan transitiodipolimomenttia vibronisessa transitiossa ψ ε, f ψ v, f ψ ε,i ψ v,i µ fi = ψ ε, f * ψ v, f * e r i + e Z I R I i I ψ ε,iψ v,i dτ = e ψ ε, f * r i ψ ε,,i dτ i ψ v, f * ψ v,i dτ n i +e Z I ψ ε, f * ψ ε,i dτ e ψ v, f * R I ψ v,i dτ n = e ψ ε, f * r i ψ ε,,i dτ i ψ v, f * ψ v,i dτ n I =0 µ e, fi S(v f, v i ) i µ e, fi = puhtaan elektronisen siirtymän transitiodipolimomentti S(v f, v i ) = vibraatiotilojen (eri elektronisissa tiloissa) peitto S(v f, v i ) 2 = Franck-Condon tekijä 10
11 Esim. vibroninen 0 ß0 siirtymä S(0,0) ψ 0 = 1 απ 1/2 1/2 e x2 /2α 2 ja ψ ' 0 = 1 απ 1/2 1/2 e x'2 /2α 2 x = R R e x' = R R' e α = (! 2 / mk ) 1/4 f Kts johto (Example 13A.1) S(0, 0) = e (R e R e ')/4α 2 11
12 Siirtymien suhteelliset F-C tekijät riippuvat siitä miten elektronisen perustilan ja viritystilan potentiaalit ovat sijoittuneet toisiinsa nähden 12
13 Moniatomisilla molekyyleillä elektroninen viritys lokalisoituu tiettyihin atomiryhmiin, joita kutsutaan kromoforeiksi (chromophore) Spektreissä on tyypillisesti leveitä absorptiovöitä, värillisissä yhdisteissä on absorptioita näkyvän valon aallonpituuksilla 13
14 Siirtymämetallikomplekseilla on voimakkaita absorptioita Ligandien (ligandikenttä) vaikutuksesta d-orbitaalien ympäristö ei ole isotrooppinen d-d siirtymä d-orbitaalien degeneraatio purkautuu ja niistä muodostuu kaksi energiatasoa 14
15 Metallikomplekseilla on myös voimakkaita metallin ja ligandin välisiä elektronisiirtymiä: LMCT = ligand to metal charge transfer transition MLCT = metal to ligand charge transfer transition π* π MLCT LMCT 15
16 π* π siirtymässä kaksoissidoksen elektroni siirtyy antibonding orbitaalille - - π* n + + Karbonyyliryhmän (C=O) sitomaton elektroni siirtyy antibonding orbitaalille 16
17 Elektronisella viritystilalla on äärellinen elinikä ja viritys purkautuu fotonin emission kautta (säteilevä siirtymä) tai säteilyksettömästi siten, että elektroninen energia muuttuu värähtelyenergiaksi (lämmöksi) Säteilevät siirtymät: fluoresenssi ja fosforesenssi = hidas prosessi (kielletty siirtymä) = yleensä hyvin nopea prosessi (sallittu siirtymä) elektroninen viritystila S 1 vibraatiorelaksaatio sallittu S 1 S 0 sallittu S 1 S 0 absorptio emissio elektroninen perustila S 0 17
18 Fosforesenssissa viritys on kuten edellä, eli sallittu S 1 S 0 Virittyneen singletin S 1 ja alimman triplettitilan T 1 potentiaalipinnat risteävät vibraatiorelaksaation aikana molekyyli voi hypätä triplettitilalle. Tätä kutsutaan systeemien väliseksi siirtymäksi (intersystem crossing) Molekyyli siirtyy tripletitilan alimmalta värähtelytilalta säteilemällä elektroniseen perustilaan S 0. Tämä siirtymä on spinkielletty T 1 S 0 ja tästä johtuen hidas 18
Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
LisätiedotFysikaalinen kemia II
Fysikaalinen kemia II Perttu Lantto Luentokalvot perustuvat kirjaan: Atkins Physical Chemistry, 10 th Edition P. Atkins & J. de Paula (Oxford University Press, 2014) 23. marraskuuta 2015 Osa VI Elektroniset
LisätiedotMolekyylit. Atomien välisten sidosten muodostuminen
Molekyylit. Johdanto. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit 6. Orgaaniset
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotLuku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit
Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti
Lisätiedot11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen.
11. MOLEKYYLIT Vain harvat alkuaineet esiintyvät luonnossa atomeina (jalokaasut). Useimmiten alkuaineet esiintyvät yhdisteinä: pieninä tai isoina molekyyleinä, klustereina, nesteinä, kiinteänä aineena.
Lisätiedotpääkiertoakseli #$%%ä 2C 2 C 2!"
Tehtävä 1 Määritä seuraavien molekyylien pisteryhmät: (a) H 3 N H 3 N l o l NH 3 + NH 3 urataan lohkokaaviota: lineaari!"!" suuri symmetria 2s v #$%%ä 2v!" pääkiertoakseli #$%%ä 2 2 2!" s h Vastaavasti:
LisätiedotLuku 10: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H
Luku 10: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1 Molekyylien elektronirakennetta
LisätiedotLuku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
LisätiedotLIISA-ionilähteen vetyplasman VUV-spektrin ja H -ionisuihkun intensiteetin korrelaatio
LIISA-ionilähteen vetyplasman VUV-spektrin ja H -ionisuihkun intensiteetin korrelaatio Pro gradu -tutkielma, 21.12.2016 Tekijä: Sakari Lätti Ohjaaja: Olli Tarvainen 2 3 Tiivistelmä Lätti, Sakari Tapio
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
Lisätiedota) Jos törmäysten määrä sekunnissa on f = s 1 ja jokainen törmäys deaktivoi virityksen, niin viritystilan keskimääräinen elinikä on
KEMA225 syksy 2016 Demo 6 Malliratkaisut 1. Törmäyksistä johtuva viivan levenemä on muotoa δe = h τ, (1) jossa τ on viritystilan keskimääräinen elinaika. Tämä tulos löytyy luentoslaideista ja Atkinsista
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
Lisätiedot3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
LisätiedotDemo: Kahden elektronin spintilojen muodostaminen
Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotLuku 11: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H
Luku 11: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1 Elektronien liike on hyvin
LisätiedotAtomin elektronikonfiguraatiot (1)
Atomin elektronikonfiguraatiot (1) Atomiin sidotun elektronin tilaa kuvataan neljällä kvanttiluvulla: n pääkvattiluku - aaltofunktion eli orbitaalin energia, keskimääräinen etäisyys ytimestä, saa arvot
LisätiedotKemian syventävät kurssit
Kemian syventävät kurssit KE2 Kemian mikromaailma aineen rakenteen ja ominaisuuksien selittäminen KE3 Reaktiot ja energia laskuja ja reaktiotyyppejä KE4 Metallit ja materiaalit sähkökemiaa: esimerkiksi
Lisätiedot780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
LisätiedotLisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
LisätiedotLuku 12: Molekyylispektroskopia 1 rotaatio- ja värähdysspektroskopia
Luku 12: Molekyylispektroskopia 1 rotaatio- ja värähdysspektroskopia Yleisiä piirteitä Puhdas rotaatiospektri 2-atomisen molekyylin värähtely moniatomisten molekyylien värähtely 1 Tarkastellaan sähkömagneettisen
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
LisätiedotLuento Atomin rakenne
Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa
LisätiedotHiilen ja vedyn reaktioita (1)
Hiilen ja vedyn reaktioita (1) Hiilivetyjen tuotanto alkaa joko säteilevällä yhdistymisellä tai protoninvaihtoreaktiolla C + + H 2 CH + 2 + hν C + H + 3 CH+ + H 2 Huom. Reaktio C + + H 2 CH + + H on endoterminen,
LisätiedotS Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä)
S-.7 Fysiikka III (st), VK 8.5.008 Malliratkaisut (Arvosteluperusteita täydennetään vielä). Näytä, että sekä symmetrinen aaltofunktio ψn( x ) ψn ( x) + ψn( x) ψn, että antisymmetrinen aaltofunktioψn( x)
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotJ 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
Lisätiedot1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
Lisätiedot7. Atomien rakenne ja spektrit
7. Atomien rakenne ja spektrit Atomien rakenteella tarkoitetaan niiden elektroniverhojen rakennetta, erilaisia jakautumia ja erityisesti elektronien energiatiloja. Atomien spektreillä taas tarkoitetaan
LisätiedotLuku 15: Magneettinen resonanssi
Luku 15: Magneettinen resonanssi Ytimen ja elektronin vuorovaikutus ulkoisen magneettikentän kanssa: magneettinen momentti ja energiatilat Ydinmagneettinen resonanssi, NMR (nuclear magnetic resonance)
Lisätiedot766326A Atomifysiikka 1 - Syksy 2013
766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9
LisätiedotMolekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset
Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
Lisätiedot2. Fotonit, elektronit ja atomit
Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin
LisätiedotTURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V
TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight
LisätiedotMOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN
MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN PRO GRADU -TUTKIELMA SAKARI MIKKONEN OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 2005 Sisällysluettelo
LisätiedotVetymolekyylin energiatilat
Vetymolekyyli H 2 Maailmankaikkeuden ensimmäinen ja yleisin neutraali molekyyli Tiheiden tähtienvälisen pilvien pääasiallinen komponentti Luja rakenne, esiintyy hyvin erilaisissa ympäristöissä: -Jupiterin
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
LisätiedotMOLEKYYLIT Johdanto Vetymolekyyli-ioni Kaksiatomiset molekyylit...239
MOLEKYYLIT... 8 6.1 Johdanto...8 6. Vetymolekyyli-ioni...9 6.3 Kaksiatomiset molekyylit...39 6.4 Kaksiatomisten molekyylien elektronikonfiguraatioita...43 6.5 Moniatomiset molekyylit...5 6.6 Orgaaniset
LisätiedotMonen elektronin atomit
Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä Heliumin emissiospektri Vety
LisätiedotAineen ja valon vuorovaikutukset
Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotLuku 13: Molekyylispektroskopia 1 rotaatio- ja värähdysspektroskopia
Luku 13: Molekyylispektroskopia 1 rotaatio- ja värähdysspektroskopia Yleisiä piirteitä Puhdas rotaatiospektri 2-atomisen molekyylin värähtely moniatomisten molekyylien värähtely 1 Tarkastellaan sähkömagneettisen
Lisätiedot2m 2 r + V (r) ψ n (r) = ɛ n ψ n (r)
Kvanttimekaniikka I. 5. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Tarkastellaan keskeisliikettä potentiaalissa V (r = V (r, missä r = r on keskeisliikkeeseen liittyvä suhteellinen etäisyys. Separoi Schrödingerin
LisätiedotOsallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
LisätiedotRadiospektroskopia Linnunrata (valokuva) Linnunrata (valokuva+co)
Radiospektroskopia Linnunrata (valokuva) Linnunrata (valokuva+co) Kaasun säteily Atomeilla ja molekyyleillä on diskreettejä energiatiloja Ne lähettävät tai absorboivat säteilyä siirtyessään energiatilalta
LisätiedotAikaerotteinen spektroskopia valokemian tutkimuksessa
Aikaerotteinen spektroskopia valokemian tutkimuksessa TkT Marja Niemi Tampereen teknillinen yliopisto Kemian ja biotekniikan laitos 23.4.2012 Suomalainen Tiedeakatemia, Nuorten klubi DI 2002, TTKK Materiaalitekniikan
Lisätiedot3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen
LisätiedotFYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
LisätiedotAtomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
LisätiedotFRANCKIN JA HERTZIN KOE
FYSP106/2 Franckin ja Hertzin koe 1 FYSP106/2 FRANCKIN JA HERTZIN KOE Työssä mitataan elohopea-atomin erään viritystilan energia käyttäen samantyyppistä koejärjestelyä, jolla Franck ja Hertz vuonna 1914
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
LisätiedotSäteily ja suojautuminen Joel Nikkola
Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa
Lisätiedot, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
LisätiedotS Fysiikka III (Est) 2 VK
S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotLaskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka
Laskennalinen kemia Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka Molekyyligeometria ja elektronirakenteet Empiiriset menetelmät (Hückel, Extended Hückel) Semi-empiiriset
LisätiedotMolekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset
Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit
LisätiedotInfrapunaspektroskopia
ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista
LisätiedotLuento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko
Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen
LisätiedotMonen elektronin atomit
Jukka Tulkki Luentoja Randy Harrisin luvuista 8.-9 Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotULKOELEKTRONIRAKENNE JA METALLILUONNE
ULKOELEKTRONIRAKENNE JA METALLILUONNE Palautetaan mieleen jaksollinen järjestelmä ja mitä siitä saa- Kertausta daan irti. H RYHMÄT OVAT SARAKKEITA Mitä sarakkeen numero kertoo? JAKSOT OVAT RIVEJÄ Mitä
Lisätiedot5.1 Johdanto 185. 5.2 Helium-atomi 186. 5.3 Keskeiskenttämalli 201. 5.4 Paulin kieltosääntö 206. 5.5 Atomien elektronirakenne 208
MONIELEKTRONIATOMIT 5. Johdanto 85 5. Helium-atomi 86 5.3 Keskeiskenttämalli 0 5.4 Paulin kieltosääntö 06 5.5 Atomien elektronirakenne 08 5.6 L--kytkentä monen elektronin atomeissa 3 5.7 Röntgenspektrien
LisätiedotYdin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
LisätiedotKEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli
KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli Aineen rakenteen teoria alkoi hahmottua, kun 1800-luvun alkupuolella John Dalton kehitteli teoriaa atomeista jakamattomina aineen perusosasina. Toki
Lisätiedot6.2 Vetymolekyyli-ioni Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 238
MOLEKYYLIT 6.1 Johdanto 7 6. Vetymolekyyli-ioni 8 6.3 Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 38 6.4 Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 4 6.5 Moniatomiset molekyylit
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotAtomien rakenteesta. Tapio Hansson
Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
LisätiedotVarauksensiirto-siirtymä
Vaauksensiito-siitymä LMCT vaauksen siito ligandilta metallille MLCT vaauksen siito metallilta ligandille Väähtelyspektoskopia Klassisen mekaniikan mukainen malli kaksiatomiselle molekyylille: Hooken laki:
LisätiedotKvanttisointi Aiheet:
Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?
LisätiedotLuku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
Lisätiedotn=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 2 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 3-3 Ydinmagneettinen resonanssi NMR-spektroskopiassa (NMR = Nuclear
LisätiedotS-108.189 Mittaustekniikan erikoistyö. Fluoresoivat materiaalit ja fluoresenssimittaussovellukset
S-108.189 Mittaustekniikan erikoistyö Fluoresoivat materiaalit ja fluoresenssimittaussovellukset Kotamäki Ilkka Laurila Marko Ohjaaja: Holopainen Silja Tiistai, 19. huhtikuuta 2005 Sisällysluettelo Sisällysluettelo...2
LisätiedotMUUTOKSET ELEKTRONI- RAKENTEESSA
MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.
LisätiedotLinssin kuvausyhtälö (ns. ohuen linssin approksimaatio):
Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta
Lisätiedot(Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen)
KE2-kurssi: Kemian mikromaalima Osio 1 (Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen) Monivalintatehtäviä 1. Etsi seuraavasta aineryhmästä: ioniyhdiste molekyyliyhdiste
LisätiedotKvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
LisätiedotProjektin arvon aleneminen
Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen
LisätiedotCis trans isomeria. Pohdintaa: Kummalla 1,2 dikloorieteenin isomeerillä on korkeampi kiehumispiste? kp = 60,2 o C. kp = 48,5 o C
Cis trans isomeria Pohdintaa: Kummalla 1,2 dikloorieteenin isomeerillä on korkeampi kiehumispiste? kp = 48,5 o C kp = 60,2 o C 1 Cis trans isomeriaa voi ilmetä kahdessa erilaisessa tilanteessa: Tapaus
LisätiedotLuku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Vibraatio eli värähdysliike Rotaatio eli pyörimisliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
LisätiedotKvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia
Kvanttimekaniikka I.. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Olkoon H systeemin Hamiltonin operaattori, ja A jotakin observaabelia kuvaava operaattori. Johda Ehrenfestin teoreema d A dt = ī [A, H] + A
LisätiedotTalousmatematiikan perusteet, L2 Kertaus Aiheet
Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-
LisätiedotLiittymis- eli additioreaktio Määritelmä, liittymisreaktio:
Liittymis- eli additioreaktio Määritelmä, liittymisreaktio: REAKTIOT JA ENERGIA, KE3 Liittymis- eli additioreaktiossa molekyyliin, jossa on kaksois- tai kolmoissidos, liittyy jokin toinen molekyyli. Reaktio
LisätiedotCh9 Sisäiset Spinvuorovaikutukset. Molekyylin sisäisten spinvuorovaikutusten tarkempaa pohdiskelua
Ch9 Sisäiset Spinvuorovaikutukset Molekyylin sisäisten spinvuorovaikutusten tarkempaa pohdiskelua Kemiallinen siirtymä Molekyylien elektroniverho aiheuttaa paikallisen modulaation ulkoisiin kenttiin. Modulaatio
LisätiedotKVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
LisätiedotSpin ja atomifysiikka
Spin ja atomifysiikka Harris luku 8 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Lämmittelykysymys Pohdi parin kanssa 5 min Kysymys Atomin säde on epämääräinen käsite. Miksi?
Lisätiedot