Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
|
|
- Aarno Honkanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1
2 Vapaan hiukkasen (V =0) Schrödingerin yhtälön ratkaisuna saatiin aaltofunktio ja kokonaisenergia: " k = Ae ikx + Be #ikx E k = k 2 h 2 2m (tiettyä k-arvoa vastaava energia) Havaitaan, että vapaan hiukkasen energia ei ole kvantittunut Kvantittuminen aiheutuu hiukkasen liikkeeseen kohdistuvista reunaehdoista Yksinkertaisin reunaehdot sisältävä malli on hiukkanen 1-ulotteisessa laatikossa 2
3 Potentiaalienergia V = 0 laatikon sisällä V = seinämällä Hiukkanen ei voi mennä seinälle Seinä on lisäksi äärettömän paksu Aaltofunktio alueessa, jossa V =0 " k = Ae ikx + Be #ikx = A(coskx + isinkx) + B(coskx # isinkx) = (A + B)coskx + (A # B)isinkx Merkitään: (A+B) = C ja (A-B) = D " k = Ccoskx + Disinkx 3
4 Koska hiukkanen ei voi mennä seinälle (sen potentiaalienergia olisi ääretön), täytyy seuraavien reunaehtojen olla voimassa: " k (0) =" k (L) = 0 Tästä seuraa, että hiukkasen energia on kvantittunut: E = n 2 h 2 8"L 2 n = 1,2,... Kvantittumisesta johtuen myös aaltofunktio lausutaan k:n asemasta n:n funktiona ( kl = n" ): " n = Csin(n#x /L) Vakio C saadaan normittamalla aaltofunktio: $ L L n#x " 2 dx = C 2 sin 2 L = C 2 L $ =1 C = " 2 % $ # L ' & 1/ 2 4
5 E n = n 2 h 2 8mL 2 Tilojen välinen energiaero: E n +1 " E n = (n +1)2 h 2 8mL 2 " n 2 h 2 8mL 2 = (2n +1) h 2 8mL 2 # " n = 2 & % ( $ L' 2 # sin n)x & % ( $ L ' ratkaisut ovat ns. seisovia aaltoja (reaalinen aaltofunktio) vrt. vapaan hiukkasen ratkaisu (kompleksinen aaltofunktio) 5
6 Johtamamme aaltofunktiot eivät ole liikemääräoperaattorin ominaisfunktioita: ˆ p x = h i " 2 % $ ' # L& 1/ 2 h d dx ; i d dx " " n(x %% $ sin$ ' # # L && ' = " 2 % $ # L ' & 1/ 2 h i " n(x % cos$ ' # L & Onko liikemäärä määritelty? Aaltofunktio voidaan kuitenkin kirjoittaa superpositiona kahdesta liikemääräoperaattorin ominaisfunktiosta: # " n = 2 & % ( $ L' 1/ 2 sin n)x L = 1 # 2 & % ( 2i $ L' 1/ 2 ( e ikx * e *ikx ) p x = +hk p x = "hk k = n" L 6
7 Koska molempien ominaisarvojen todennäköisyydet ovat samat, saadaan klassisen mekaniikan kuvaa vastaava tulos jossa hiukkanen liikkuu edes takaisin seinien väliä Merkittävä ero klassiseen mekaniikkaan on se, että hiukkasen alin energia E 1 = h 2 8mL " 0 ns. nollapiste-energia 2 Hiukkasen paikan todennäköisyystiheys saadaan: " 2 (x) = 2 L sin2 n#x L 7
8 Kutakin energian ominaisarvoa E n vastaavat aaltofunktiot ovat keskenään ortogonaalisia: $ " n *" n' d# = 0 L % esim. " 1 *" 3 d# = 2 L 0 L % 0 sin $x L sin 3$x L dx = 0 8
9 Tarkastellaan seuraavaksi hiukkasta 2-ulotteisessa laatikossa, ts. hiukkasta, joka on vangittu pinnalle: 9
10 Schrödingerin yhtälö saa nyt muodon: " h2 2m %# 2 $ #x + # 2 $ ( ' * = E$ & 2 #y 2 ) Yhtälö ratkaistaan siten, että kirjoitetaan aaltofunktio tulona kahdesta funktiosta, joista toinen riippuu x:stä ja toinen y:stä (muuttujien separoiminen) "(x, y) = X(x)Y(y) sij. Schrödingerin yhtälöön: " 2 # "x = Y d 2 X 2 2 dx ;" # 2 "y = X d 2 Y 2 dy 2 # 2m Y d 2 X % $ dx 2 " h2 + X d 2 Y dy 2 & ( = EXY ' 1 X d 2 X dx Y d 2 Y dy = " 2mE 2 h 2 10
11 x- ja y-suuntaiset liikkeet ovat toisistaan riippumattomia, jolloin E = E x + E y ja ongelma palautuu kahdeksi normaaliksi differentiaaliyhtälöksi: 1 X d 2 X dx 2 = " 2mE x 1 h 2 Y d 2 Y dy = " 2mE y 2 h 2 ratkaisut identtisiä 1-ulotteisen tapauksen kanssa: " X n1 (x) = 2 % $ ' # L 1 & 1/ 2 sin n (x " 1 ;Y n2 (y) = 2 % $ ' L 1 # L 2 & 1/ 2 sin n 2 (x L 21 n 1 kvanttiluku liittyy x-suuntaan n 2 kvanttiluku liittyy y-suuntaan Kokonaisaaltofunktio saadaan tulona: " n1 n 2 (x, y) = 2 ( L 1 L 2 ) sin n 1#x sin n 2#x 1/ 2 L 1 L 2 0 " x " L 1 ;0 " y " L 2 " Kokonaisenergia saadaan summana: E n1,n 2 = n L + n 2 % 2 $ 2 ' h2 # 1 L 2 & 8m 11
12 n 1 =1;n 2 =1 n 1 =1;n 2 = 2 n 1 = 2;n 2 =1 n 1 = 2;n 2 = 2 sama energia kahdesti degeneroitunut tila 12
13 aaltofunktiot ψ 1,2 ja ψ 2,1 ovat keskenään degeroituneita eli niillä on sama energian ominaisarvo degeneraatio aiheutuu tarkasteltavan systeemin symmetriasta. Degeneroituneet aaltofunktiot voidaan muuttaa toisikseen symmetriaoperaatioiden avulla ψ 1,2 ja ψ 2,1 muuntuvat toisikseen 90 asteen kierron avulla 13
14 Mielenkiintoinen ilmiö havaitaan tilanteessa, jossa potentiaalienergia on äärellinen seinällä. Nyt aaltofunktion ei tarvitse noudattaa ehtoa ψ(seinällä) = 0 vaimenee mutta ei häviä Ilmiötä kutsutaan tunneloitumiseksi ja sen mukaan hiukkanen voi mennä potentiaaliseinämän läpi vaikka hiukkasen energia E<V. 0 L 14
15 Aaltofunktio alueessa x<0 vastaa vapaan hiukkasen tilannetta: " = Ae ikx + Be #ikx kh = ( 2mE) 1/ 2 Tarkastellaan tilannetta seinämän sisällä tapauksessa E<V: " h2 2m d 2 # + V# = E# 2 dx Ratkaisuna saadaan superpositio kahdesta reaalisesta funktiosta: " = Ce #x + De $#x #h = { 2m( V $ E) } 1/ 2 Seinämän ulkopuolella (x>l) ratkaisu on taas tuttu: " = A'e ikx + B'e #ikx kh = ( 2mE) 1/ 2 15
16 +hk tn " A 2 "hk tn " B 2 +hk tn " A' 2 Kokonaisaaltofunktio saadaan ehdoista, että aaltofunktion tulee olla jatkuva ja derivoituva piteissä x=0 ja x=l 16
17 pisteessä x=0 e 0 =1 A + B = C + D pisteessä x=l Ce "L + De #"L = A'e ikl + B'e #ikl jatkuvuusehdot pisteessä x=0 ika " ikb = #C "#D derivoituvuusehdot pisteessä x=l "Ce "L #"De #"L = ika'e ikl # ikb'e #ikl Fysikaalisista syistä B = 0 Tunneloitumistodennäköisyys (transmission probability) T = A' 2 A 2 ( ) 2 % = ' 1+ e "L # e #"L & 16$(1# $) (' ) ' * + ' #1 " = E /V Tapauksessa jossa κl>>1, ts potentiaalivalli on korkea T =16"(1#")e #2$L 17
18 Tunneloitumistodennäköisyys pienenee eksponentiaalisesti potentiaaliseinämän paksuuden funktiona Tunneloitumistodennäköisyys riippuu hiukkasen massasta (T m 1/2 ) numerot viittaavat suureen L( 2mV ) 1/ 2 /h arvoon Huomaa, että vaikka E>V hiukkanen ei kuitenkaan etene esteettä vallin yli! 18
19 Tunneloitumista hyödynnetään STM (scanning tunnelling microscopy) mikroskopiassa, joka on eräs SPM (scanning probe microscopy) mikroskopian laji 19
20 elektronit tunneloituvat pinnan ja kärjen välillä tunneloitumisvirta on riippuvainen pinnan topografiasta. Saadaan erittäin tarkka kuva pinnan rakenteesta 20
21 Cs atomit gallium arsenidin pinnalla 21
22 Värähdys (vibraatio) liike Yksinkertainen lähtökohta on olettaa, että värähtely noudattaa Hooken lakia: x Palauttava voima F = -kx; k = jousivakio Potentiaalienergia V = 1/2 kx 2 Tällaista värähtelijää kutsutaan harmoniseksi värähtelijäksi. Harmoninen värähtelijä on yksinkertainen malli atomien värähtelylle molekyyleissä 22
23 Kvanttimekaanista harmonista värähtelijää kuvaa Schrödingerin yhtälö: " h2 2m d 2 # dx kx 2 # = E# Yhtälön ratkaisuna saadaan värähtelijän energiatilat E v = (v + 1)h" " = # k & 2 % ( $ m' 2 v=0,1,2,... värähdyskvanttiluku ω= kulmataajuus = 2πf k = potentiaalin muotoa kuvaava voimavakio k = d 2 dx 2 V (x) Alin energia (nollapisteenergia): E 0 = 1 2 h" 23
24 Harmonisen värähtelijän Schrödingerin yhtälön ratkaisuna saadaan aaltofunktiot, jotka ovat tyyppiä: " v (x) = N v H v (y)e #y 2 / 2 % ( y = x /$ $ = ' h2 * & mk ) N v = normitusvakio; H v = Hermiten polynomi Hermiten polynomit ovat differentiaaliyhtälön 1/ 4 H v ''"2yH v '+2vH v = 0 ratkaisuja Hermiten polynomien rekursiorelaatio: H v +1 " 2yH v + 2vH v"1 = 0 Hermiten polynomien ortogonaalisuus: # $ H v' H v e "y 2 dy = "# ' 0, jos v'% v ( )& 1/ 2 2 v v! jos v'= v 24
25 25
26 Aaltofunktio " v (x) = N v H v (y)e #y 2 / 2 polynomin lisäksi Gaussin funktiosta koostuu Hermiten 26
27 Perustilan aaltofunktio: " 0 (x) = N 0 H 0 (y)e #y 2 / 2 = N 0 e #x 2 / 2$ 2 1. Viritystilan (v=1) aaltofunktio 27
28 aaltofunktioita "v! todennäköisyystiheyksiä "v 2! 28
29 Pyörimis- eli rotaatioliike 1. Pyöriminen 2-ulotteisessa renkaassa 2. Pyöriminen pallon pinnalla (3-ulotteinen tapaus) Pyörimisliikkeen kuvaamisessa käytetään liikemäärän asemasta pyörimismäärää J ja massan asemasta hitausmomenttia I E = J 2 z 2I J z = ± pr 29
30 Voimme ymmärtää pyörimisliikkeen kvantittumisen sijoittamalla debroglien tuloksen J z :n lausekkeeseen: J z = ± hr " Ympyräradalla liikkuvaa hiukkasta voidaan siis kuvata aallolla. Reunaehtona on kuitenkin, että aallon pitää toistaa itsensä täydellä (2π) kierroksella huono ratkaisu hyvä ratkaisu 30
31 Vain tietyt sopivat aallonpituudet toteuttavat tämän ehdon: Sijoittamalla tämä tulos: " = 2#r m l m l = 0,±1,±2,... Vastaavasti pyörimisenergia: J z = ± hr " = m lhr 2#r = m lh 2# = m l h E = J 2 z 2I = m l 2I huomaa, että tapausta m l =0 lukuunottamatta energiatilat ovat kahdesti degeneroituneita (+ m l ja - m l antavat saman energian) 2 h 2 2-uloitteista pyörimistä (hiukkanen renkaan kehällä) kuvaa aaltofunktio: " ml (#) = 1 (2$) 1/ 2 eim l# 31
32 Ongelmaamme on yksinkertaisinta tarkastella ns. sylinterikoordinaatistossa ˆ H = " h2 2m $ # 2 #x + # 2 ' & ) % 2 #y 2 ( " 2 "x 2 + " 2 "y 2 = " 2 "r r " "r + 1 r 2 " 2 "# 2 0 (koska r on vakio) x = rcos" y = rsin" = " h2 d 2 2mr 2 d# = h2 2 2I d 2 d# 2 I = hitausmomentti ratkaisuna aaltofunktio: " ml (#) = eim l# (2$) 1/ 2 32
33 Aaltofunktion tulee noudattaa syklistä reunaehtoa: " ml (# + 2$) =" ml (#) " ml (# + 2$) = eim l (# +2$) = eiml# e 2$iml =" (2$) 1/ 2 (2$) 1/ 2 ml (#)e 2$im l e i" = cos" # isin" = #1 " ml (# + 2$) = (%1) 2m l " m l (#) jotta tämä ehto toteutuisi täytyy ("1 ) 2m l =1 m l = 0,±1,±2,... 33
34 3-ulotteinen pyörimisliike (hiukkanen pallon pinnalla) edellyttää aaltofunktiolta kahta syklistä reunaehtoa Schrödingerin yhtälö on muotoa: " 2 = # 2 # 2 #r r " h2 2m # 2 $ = E$ #x 2 + # 2 #y 2 + # 2 #z 2 = # #r + 1 & 1 # 2 r 2 sin 2 $ #% + 1 # 2 sin$ #$ sin$ # ) ( + ' #$ * Koska r = vakio: 1 r 2 "2 # = 2mE # h 2 " 2 ratkaisuna saadaan kulmista riippuva funktio: " #,$ jolle voidaan tehdä muuttujien separointi ( ) = % # ( )& $ ( ) 34
35 Ratkaisut sisältävät nyt kaksi kvanttilukua: l = 0,1,2,... m l = l,l "1,...,"l ratapyörimismäärä kvanttiluku (orbital angular momentum quantum number) magneettinen kvanttiluku Normitettuja aaltofunktioita kutsutaan palloharmonisiksi funktioiksi Y l,ml (",#) Palloharmoniset funktiot ovat keskenään ortogonaalisia: $ % 0 2$ % 0 Y l',ml '(",#)Y l,ml (",#) = 0 35
36 36
37 nollakohdat (solmutasot) Varsinaiset funktiot 37
38 Solmutasojen (nodal plane) lukumäärä kasvaa l:n funktiona. m l = 0 ratkaisuissa ei esiinny solmuja tasossa johon kuuluu z-akseli. Fysikaalinen tulkinta on, että näissä tiloissa ei ole z-akselin suuntaista pyörimismäärää Pyörimisenergia on kvantittunut kvanttiluvun l suhteen: E = l(l +1) h2 2I Kutakin l-arvoa vastaa 2l+1 m l arvoa, joten kukin energiatila on (2l+1)-kertaisesti degeneroitunut Pyörivän kappaleen energia voidaan aina liittää sen pyörimismäärään. Kvanttimekaniikan mukaan : pyörimismäärävektorin pituus = { l(l + 1) } 1/ 2 h vektorin z " komponentinpituus = m l h 38
39 z-komponentin kvantittuminen vastaa klassisessa fysiikassa tilannetta, että pyöriminen olisi sallittu vain tietyissä pyörimistasoissa. Ilmiötä kutsutaan avaruuden kvantittumiseksi (space quantization) 39
40 vain pyörimismäärän z-komponentti on kiinnitetty 40
41 Stern ja Gerlach tutkivat Ag atomien muodostamaa suihkua epähomogeenisessa magneettikentässä klassisen fysiikan ennustama tulos kokeellinen havainto. Näytteessä on ikään kuin kahdenlaisia atomeita, jotka vuorovaikuttavat magneettikentän kanssa eri tavoin 41
42 Tulos tulkittiin johtuvaksi pyörimismäärän z-komponentit kvantittumisesta Mutta kokeessa havaittiin vain kaksi orientaatiota, ts. se vastaisi tilannetta missä l=1/2 Pian ymmärrettiin, että havainto liittyy elektronin sisäiseen pyörimismäärään, jota kutsutaan spinniksi Elektronin spin s=1/2 ja sen komponentit m s =±1/2 Joskus käytetään merkintöjä (spin ylös) ja (spin alas) Spin ei rajoitu elektroneihin. Hiukkaset, joiden spin on puoliluku ovat fermioneja. Hiukkaset, joiden spin on kokonaisluku (tai nolla) ovat bosoneja 42
Luku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Vibraatio eli värähdysliike Rotaatio eli pyörimisliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LisätiedotLisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
LisätiedotKvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
Lisätiedot1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
LisätiedotTilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
LisätiedotJ 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
Lisätiedot1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
LisätiedotKvanttimekaniikkaa yhdessä ulottuvuudessa
Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttiefektit ovat tärkeitä nanoskaalassa. Tässä on ksenon-atomeilla tehtyjä kirjaimia metallipinnalla. Luennon tavoite: Ymmärtää kvanttimekaniikan perusperiaatteet
Lisätiedot1 Aaltofunktio, todennäköisyystulkinta ja normitus
KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotAineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
Lisätiedot(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
LisätiedotBM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan
LisätiedotLuento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
LisätiedotJukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2
S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
LisätiedotFYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
LisätiedotSidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos
Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja
LisätiedotKVANTTIMEKANIIKAN PERUSTEET...57
KVANTTIMEKANIIKAN PERUSTEET...57.1 Johdanto... 57. Aaltofunktio ja todennäköisyystiheys... 58.3 Schrödingerin yhtälö... 61.3.1 Vapaan hiukkasen aaltofunktio... 6.4 Hiukkasen sironta potentiaaliaskeleesta...
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotLuku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit
Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
LisätiedotJakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotFononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
LisätiedotEsimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:
Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotLiikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
LisätiedotLuku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
LisätiedotVapaat tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 6. Mikro- ja nanotekniikan laitos
Vapaat tilat Harris luku 6 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Potentiaaliaskel Potentiaalivalli ja tunneloituminen Aaltopaketti ja aineaallon eteneminen Potentiaaliaskel
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotS Fysiikka III (EST) (6 op) 1. välikoe
S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
LisätiedotFysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Laskuharjoitukset: Lauri Nykänen; lauri.j.a.nykanen@.jyu.fi
LisätiedotKvanttifysiikan perusteet, harjoitus 5
Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
LisätiedotLuento Atomin rakenne
Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotOsallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotFysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Vastaanotto torstaisin klo 13-15 Laskuharjoitukset: FM
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotDemo: Kahden elektronin spintilojen muodostaminen
Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
Lisätiedot780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotYdin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1
Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
Lisätiedotkertausta Esimerkki I
tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin
LisätiedotLuento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Lisätiedot, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotLuento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
LisätiedotUseita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
LisätiedotNyt kerrataan! Lukion FYS5-kurssi
Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle
LisätiedotKvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aaltofunktio ja todennäköisyystiheys
LisätiedotS , Fysiikka III (S) I välikoe Malliratkaisut
S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli
Lisätiedotinfoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2
infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä
Lisätiedot3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotAineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos
Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen
LisätiedotLuku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
Lisätiedot