766334A Ydin- ja hiukkasfysiikka
|
|
- Armas Ketonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää ajan funktiona. Lukumäärä pienenee aina puoleen yhden puoliintumisajan T 1/ kuluessa. 6- Radioaktiiviset sarjat Kuva esittää uraanisarjassa 38 ja puoliintumisajat. 9U 06 8Pb esiintyvät nuklidit, niiden hajoamisreaktiot 7 Alfa-aktiivisuus Jos radioaktiivinen emoydin A ZX on ennen hajoamistaan levossa, sen massa on M 1 = M(Z, N) Zm 0, (M7.1) missä M(Z, N) on taulukossa annettu neutraalin atomin A Z X massa ja Zm 0 on atomiin kuuluvien Z:n elektronin massojen summa. Jos emoytimestä lähtee α-hiukkanen, siitä tulee tytärydin A 4 Z Y, jonka lepomassa on M(Z, N ) (Z )m 0. Itse α-hiukkasen 4 He lepomassa on M(, ) m 0. Hajoamisen jälkeen systeemin kokonaismassa on siis M = [M(Z, N ) (Z )m 0 ] + [M(, ) m 0 ] + Q = M(Z, N ) + M(, ) Zm 0 + Q, (M7.) missä Q on tytärytimen ja α-hiukkasen liike-energioiden summaa vastaava massa. Kuva 1
2 Kuva Spontaanissa hajoamisessa kokonaismassa (= kokonaisenergia/c ) säilyy, joten M 1 = M. Tästä saadaan tulos M(Z, N) = M(Z, N ) + M(, ) + Q. (M7.3) Koska liike-energia on aina positiivinen, Q 0. Tästä seuraa, että alfa-hajoaminen on mahdollinen vain, jos emoatomin massa on vähintään yhtä suuri kuin tytäratomin ja 4 Heatomin massojen summa. 8-3 K-kaappaus Välittömästi K-kaappauksen jälkeen atomi on virittyneessä tilassa, koska sen sisäkuorelta (yleensä K-kuorelta) puuttuu yksi elektroni. Tästä syystä neutraalin atomin massa on tällöin jonkin verran suurempi kuin perustilassa olevan atomin massa. Tytäratomin ja prosessissa emittoituvan neutriinon muodostaman systeemin kokonaismassa on M = M(Z 1, N + 1) + E K + Q, (M8.1) missä M(Z 1, N + 1) on perustilassa olevan tytäratomin lepomassa, E K on atomin elektroniverhon viritysenergiaa vastaava massa ja Q on atomin ja neutriinon liike-energioiden summaa vastaava massa (neutriinon lepomassa jätetään tässä huomiotta).
3 Jos neutraalin atomin massa ennen K-kaappausta on M 1 = M(Z, N), täytyy spontaanissa prosessissa olla voimassa yhtälö M 1 = M, ts. M(Z, N) = M(Z 1, N + 1) + E K + Q. 3 (M8.) K-kaappaus on siis mahdollinen vain, jos emoatomin massa on vähintään yhtä suuri kuin tytäratomin massan ja sen elektroniverhon viritysenergiaa vastaavan massan summa. Elektroniverhon viritysenergia on pieni (suuruusluokkaa 10 kev) ja tästä syystä termi E K voidaan usein jättää yhtälössä (M8.) huomiotta. Elektroniverhon viritystila purkautuu jonkin ulomman (esimerkiksi L-kuoren) elektronin täyttäessä K-kuorella olevan aukon. Tällöin emittoituu röntgenkvantti. Joissakin tapauksissa tämä röntgenkvantti absorboituu saman atomin toiseen (esimerkiksi L-kuorella olevaan) elektroniin, joka sinkoutuu saamansa ylimääräisen energian takia atomin ulkopuolelle. Tätä sanotaan Augerin ilmiöksi. 9 Gamma-aktiivisuus Kuva 7-0 esittää parillis-parillisten ydinten 180 7Hf ja 38 94Pu pyörimisenergiatasoja. Yhtälön (9-1) mukaisesti energiat ovat suoraan verrannollisia tekijään I(I + 1). Kuva 7-1 esittää parillis-parillisten ydinten 8 36Kr, 16 5Te, Xe ja 19 78Pt joitakin värähdysenergiatasoja. Ytimen kahden energiatason (ytimen energiat E i, E f ja spinit I i, I f ) välisen siirtymän todennäköisyys kasvaa energiaeron E = E f E i kasvaessa ja pienenee spinin muutoksen I = I f I i kasvaessa. Näin ollen viritetyn tilan elinaika on sitä pitempi, mitä enemmän tässä tilassa olevan ytimen spin poikkeaa perustilassa olevan ytimen spinistä (ellei siirtymä voi tapahtua toiseen, alempana olevaan viritettyyn tilaan, jolla I on pienempi). Kuva 7-3 esittää ytimen kuorimallilla laskettuja protonin viritettyjen tilojen elinaikoja siirtymän tyypin (E1, M1, E, etc.) ja energian funktiona. Huomaa, että kuvan molemmissa akseleissa on logaritminen mitta-asteikko!
4 4 Luentomonisteen sivulla 7 olevasta kuorimallin energiatasokaaviosta nähdään, että välittömästi maagisten lukujen 50, 8, 16 ja 184 alapuolella on energiatasoja, joiden impulssimomenttikvanttiluvut j eroavat suuresti toisistaan. Näiden tasojen viritystiloilla voi olla pitkät eliniät. Kuvassa 7-4(a) tarkastellaan bariumin stabiilia isotooppia Ba, jolla on 56 protonia ja 81 neutronia. Perustilassa pariton neutroni on energiatasolla d 3/, joten ytimen spin on 3. (Luentomonisteen sivulla 7 olevan energiatasokaavion mukaan ko. neutroni olisi
5 5 tasolla 1h 11/, mutta nukleonien keskinäisten vuorovaikutusten takia taso d 3/ on tässä lähes täysien kuorien tapauksessa tason 1h 11/ yläpuolella.) Ytimen ensimmäinen viritetty tila (661, 659 kev perustilan yläpuolella) saadaan, kun pariton neutroni on energiatasolla 1h 11/. (Tämä tila on saatu nostamalla yksi neutroni täydeltä tasolta 1h 11/ vajaalle tasolle d 3/, jolloin tasolle 1h 11/ jää yksi pariton neutroni) Tässä tilassa ytimen spin on 11 ja sen pariteetti on perustilaan verrattuna vastakkainen. Näin ollen virityksen purkautuminen perustilaan vaatii siirtymän M4, ja tilan elinaika on pitkä,,55 min. Kuvassa 7-4(b) esiintyvällä kryptonin stabiililla isotoopilla 83 36Kr on 36 protonia ja 47 neutronia. Perustilassa pariton neutroni on energiatasolla 1g 9/, jossa ytimen spin on 9. Ensimmäisessä viritetyssä tilassa, jonka energia on 9,4053 kev perustilan yläpuolella, ytimen spin on 7. Tästä tilasta päästään perustilaan siirtymällä M1, ja tilan elinaika on 154,4 ns. Parittoman neutronin seuraava viritetty tila on p 1/, jonka spin on 1 (yksi neutroni on nostettu tasolta p 1/ tasolle 1g 9/ ). Se on 41,5569 kev perustilan yläpuolella ja sillä on perustilaan verrattuna vastakkainen pariteetti. Tämän ja ensimmäisen viritetyn tilan välinen siirtymä on E3, ja tilan eliaika on 1,83 h. Tällaisia pitkäikäisissä viritetyissä tiloissa olevia ytimiä sanotaan isomeereiksi. Siirtymiä, joilla I > 3, sanotaan isomeerisiksi siirtymiksi. Kuva 7-5 osoittaa, että isomeerit esiintyvät kuorimallin antaman ennusteen mukaisesti välittömästi maagisten lukujen alapuolella esiintyvinä ryhminä Reaktion Q-arvo Tarkastellaan reaktiota, jossa m i -massainen hiukkanen (liikemäärä p i ) törmää levossa olevaan M i -massaiseen hiukkaseen. Törmäyksen jälkeen systeemi muodostuu m f - ja M f - massaisista hiukkasista, joiden liikemäärät ovat (samassa järjestyksessä) p f ja P f. Koska systeemin liikemäärä säilyy, p i = p f + P f. (M10.1)
6 6 Tästä ratkaistun M f -massaisen hiukkasen liikemäärän P f = p i p f itseisarvon neliö on P f = (p i p f ) (p i p f ) = p i + p f p i p f = p i + p f p i p f cos θ, (M10.) missä θ on alku- ja loppuliikemäärien p i ja p f välinen kulma. Näin ollen M f -massaisen hiukkasen liike-energia on epärelativistisessa tapauksessa T Mf = P f = 1 ( p M f M i + p f p i p f cos θ ) f = 1 (m i T mi + m f T mf ) m i m f T mi T mf cos θ, (M10.3) M f missä on käytetty relaatioita p i = m i T mi ja p f = m ft mf. Reaktiossa vapautuva energia, reaktion Q-arvo, on systeemin liike-energian muutos: ( Q = T Mf + T mf T mi = 1 + m ) ( f T mf 1 m ) i T mi mi m f T mi T mf cos θ. M f M f M f (M10.4) Esimerkiksi kaappausprosessissa tuleva hiukkanen absorboituu kohtiohiukkaseen, jolloin tuloksena on vain yksi hiukkanen, jonka massa on M f M i + m i. Tällöin T mf = 0 ja yhtälön (M10.4) mukaan ( Q = 1 m ) i T mi M i T mi < 0. (M10.5) M f M f Osa tulevan hiukkasen liike-energiasta sitoutuu kohtiohiukkaseen sen viritysenergiaksi. Sitoutunut osa on sitä suurempi, mitä suurempi on kohtiohiukkasen massa M i.
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
LisätiedotAtomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
LisätiedotFYSN300 Nuclear Physics I. Välikoe
Välikoe Vastaa neljään viidestä kysymyksestä 1. a) Hahmottele stabiilien ytimien sidosenergiakäyrä (sidosenergia nukleonia kohti B/A massaluvun A funktiona). Kuvaajan kvantitatiivisen tulkinnan tulee olla
LisätiedotYdin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1
Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,
LisätiedotYdin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
LisätiedotVIII RADIOAKTIIVISEN HAJOAMISEN MUODOT
VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT Radioaktiivisessa hajoamisessa on neljä perusmuotoa: fissio alfahajoaminen betahajoaminen sisäinen siirtymä Viime vuosikymmeninä on havaittu paljon harvinaisempiakin
Lisätiedotn=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
Lisätiedot1 Johdanto. 2 Lähtökohdat
FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen
LisätiedotOsallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
Lisätiedot2.2 RÖNTGENSÄTEILY. (yli 10 kv).
11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty
LisätiedotLuento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot
Luento 3 7 Ydinfysiikka Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot Ytimien ominaisuudet Ydin koostuu nukleoneista eli protoneista ja neutroneista Ydin on
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
Lisätiedot6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA
6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA Atomin elektronirakenne tunnettiin paljon ennen ytimen rakenteen tuntemista: elektronien irrottamiseen atomista tarvitaan paljon pienempiä energioita (muutamia ev)
LisätiedotTyössä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan kev keskimääräinen elinaika ja puoliintumisaika.
FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen
Lisätiedot3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
Lisätiedotraudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.
Vinkkejä tenttiin lukemiseen Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä luentomuistiinpanojen
Lisätiedotelektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni
3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja
LisätiedotYdinfysiikkaa. Tapio Hansson
3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10
LisätiedotTehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).
TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte
LisätiedotA Z X. Ydin ja isotoopit
Ydinfysiikkaa Ydin ja isotoopit A Z X N Ytimet koostuvat protoneista (+) ja neutroneista (0): nukleonit (Huom! nuklidi= tietty ydinlaji ) Ydin pysyy kasassa, koska vahvan vuorovaikutuksen aiheuttama vetävä
LisätiedotOppikirja (kertauksen vuoksi)
Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain
Lisätiedotfissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö
YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotSäteily ja suojautuminen Joel Nikkola
Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 1 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 1 Ytimen rakenne Luentomonisteen sivulla 3 oleva nuklidien N Z-diagrammi
LisätiedotLuku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
LisätiedotLHC -riskianalyysi. Emmi Ruokokoski
LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski
LisätiedotSäteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Tarja K. Ikäheimonen, Roy Pöllänen, Anne Weltner, Olavi Pukkila, Wendla Paile, Jorma Sandberg, Heidi Nyberg, Olli J. Marttila, Jarmo
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
LisätiedotHajoamiskaaviot ja niiden tulkinta (PHYS-C0360)
Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,
LisätiedotNeutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa Graduseminaari Joonas Ilmavirta Jyväskylän yliopisto 15.6.2012 Joonas Ilmavirta (JYU) Neutriinot ja cqpa 15.6.2012 1 / 14 Osa 1: Neutriinot
LisätiedotTeoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
LisätiedotAtomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
LisätiedotNeutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto
Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.
LisätiedotRadioaktiivinen hajoaminen
radahaj2.nb 1 Radioaktiivinen hajoaminen Radioaktiivinen hajoaminen on ilmiö, jossa aktivoitunut, epästabiili atomiydin vapauttaa energiaansa a-, b- tai g-säteilyn kautta. Hiukkassäteilyn eli a- ja b-säteilyn
LisätiedotYdinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
Ydinfysiikka Atomin ydin kuuluu silmillemme näkymättömään maailmaan, mutta ydinfysiikan ilmiöt ovat osa modernia teknologiaa. Esim ydinvoima, ydinfysiikan käyttö lääketieteessä, ydinjätteet. Luennon tavoite:
LisätiedotKemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö
Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
Lisätiedot(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
LisätiedotAtomi- ja ydinfysiikan peruskäsitteitä. Seppo Sipilä
Atomi- ja ydinfysiikan peruskäsitteitä Seppo Sipilä Aineen perushiukkaset Varaus Massa [kg] elektroni, e - -q 9.1096 10-31 protoni, p +q 1.6726 10-27 (1836 m e ) neutroni, n 0 1.6749 10-27 (1839 m e )
Lisätiedotluku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio
Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2
Lisätiedot5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen
TURUN AMMATTIKORKEAKOULU työohje 1(8) 5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen 1. TYÖN TAVOITE 2. TEORIAA 2.1. Aktivointi Työssä perehdytään radioaktiivisuuteen ja radioaktiivisen säteilyn
LisätiedotAtomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
LisätiedotRadioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa
Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa Aki Puurunen JYVÄSKYLÄN YLIOPISTO FYSIIKAN LAITOS Pro Gradu -tutkielma Ohjaaja: Jaana Kumpulainen 3. lokakuuta 2011 Tiivistelmä Kiihdytinlaboratoriossa
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotLuku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
LisätiedotHiukkasfysiikkaa. Tapio Hansson
Hiukkasfysiikkaa Tapio Hansson Aineen Rakenne Thomson onnistui irrottamaan elektronin atomista. Rutherfordin kokeessa löytyi atomin ydin. Niels Bohrin pohdintojen tuloksena elektronit laitettiin kiertämään
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
LisätiedotHiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat
LisätiedotHiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto
Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter
Lisätiedotperushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi
8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotIonisoiva säteily. Tapio Hansson. 20. lokakuuta 2016
Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
Lisätiedota) Jos törmäysten määrä sekunnissa on f = s 1 ja jokainen törmäys deaktivoi virityksen, niin viritystilan keskimääräinen elinikä on
KEMA225 syksy 2016 Demo 6 Malliratkaisut 1. Törmäyksistä johtuva viivan levenemä on muotoa δe = h τ, (1) jossa τ on viritystilan keskimääräinen elinaika. Tämä tulos löytyy luentoslaideista ja Atkinsista
LisätiedotFysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli
LisätiedotLeptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
LisätiedotRADIOHIILIAJOITUS. Pertti Hautanen. Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino
RADIOHIILIAJOITUS Pertti Hautanen Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino Esipuhe Päädyin tekemään Pro Gradu -tutkielmani radiohiiliajoituksesta löydettyäni
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LisätiedotMAOL-Pisteitysohjeet Fysiikka kevät 2011
MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä
LisätiedotPiirrostehtiivissa merkitse nakyviin mahdollisimman paljon tietoa, jolla ilmaiset ymmartaneesi tarkasteltavan ilmion.
YDINFYSIIKKA FYSN3 kl. 211 Valikoe 1 25.2.211 Piirrostehtiivissa merkitse nakyviin mahdollisimman paljon tietoa jolla ilmaiset ymmartaneesi tarkasteltavan ilmion. 1. a) 14 C-ajoitusmenetelma perustuu 14
Lisätiedoteriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu
LisätiedotSÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI
SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI 1 Sisällysluettelo 1. Luonnossa esiintyvä radioaktiivinen säteily... 2 1.1. Alfasäteily... 2 1.2. Beetasäteily... 3 1.3. Gammasäteily... 3 2. Radioaktiivisen
LisätiedotKemian syventävät kurssit
Kemian syventävät kurssit KE2 Kemian mikromaailma aineen rakenteen ja ominaisuuksien selittäminen KE3 Reaktiot ja energia laskuja ja reaktiotyyppejä KE4 Metallit ja materiaalit sähkökemiaa: esimerkiksi
LisätiedotKorrelaatiofunktio ja pionin hajoamisen kinematiikkaa
Korrelaatiofunktio ja pionin hajoamisen kinematiikkaa Timo J. Kärkkäinen timo.j.karkkainen@helsinki.fi Teoreettisen fysiikan syventävien opintojen seminaari, Helsingin yliopiston fysiikan laitos 11. lokakuuta
LisätiedotNUKLIDIEN PYSYVYYS. Stabiilit nuklidit
VI NUKLIDIEN PYSYVYYS Stabiilit nuklidit Luonnon 92 alkuaineessa on kaiken kaikkiaan 275 pysyvää nuklidia. Näistä noin 60%:lla on sekä parillinen (even) protoniluku että parillinen (even) neutroniluku.
Lisätiedot55 RADIOAKTIIVISUUS JA SÄTEILY
55 RADIOAKTIIVISUUS JA SÄTEILY 55.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina (ytimen
LisätiedotNeutriino-oskillaatiot
Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa
LisätiedotYdinfysiikka lääketieteellisissä sovelluksissa
Ydinfysiikka lääketieteellisissä sovelluksissa Ari Virtanen Professori Jyväskylän yliopisto Fysiikan laitos/kiihdytinlaboratorio ari.j.virtanen@jyu.fi Sisältö Alkutaival Sädehoito Radiolääkkeet Terapia
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotAine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
LisätiedotPerusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Lisätiedot763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013
7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()
LisätiedotAineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
Lisätiedot9. JAKSOLLINEN JÄRJESTELMÄ
9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,
LisätiedotHiukkaskiihdyttimet ja -ilmaisimet
Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan näkökulmasta, vastaavia
LisätiedotPerusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Lisätiedotraudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.
Vinkkejä tenttiin lukemiseen Friday 11 May 2018 Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä
LisätiedotSuhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava
LisätiedotFRANCKIN JA HERTZIN KOE
FRANCKIN JA HRTZIN KO 1 Atomin kokonaisenergian kvantittuneisuuden osoittaminen Franck ja Hertz suorittivat vuonna 1914 ensimmäisinä kokeen, jonka avulla voitiin osoittaa oikeaksi Bohrin olettamus, että
LisätiedotYDIN- JA SÄTEILYFYSIIKAN PERUSTEET
1 YDIN- JA SÄTEILYFYSIIKAN PERUSTEET Jorma Sandberg ja Risto Paltemaa SISÄLLYSLUETTELO 1.1 Atomi- ja ydinfysiikan peruskäsitteitä... 12 1.2 Radioaktiivinen hajoaminen... 19 1.3 Ydinreaktiot ja vaikutusala...
LisätiedotIonisoiva Säteily Koe-eläintöissä. FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto
Ionisoiva Säteily Koe-eläintöissä FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto Sisältö Mitä ionisoiva säteily on Säteilyn käytön valvonta Työturvallisuus säteilytyössä
LisätiedotFYS08: Aine ja Energia
FYS08: Aine ja Energia kurssin muistiinpanot Rami Nuotio päivitetty 6.12.2009 Sisältö 1. Sähkömagneettinen säteily 3 1.1. Sähkömagneettinen säteily 3 1.2. Mustan kappaleen säteily 3 1.3. Kvantittuminen
LisätiedotKEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli
KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli Aineen rakenteen teoria alkoi hahmottua, kun 1800-luvun alkupuolella John Dalton kehitteli teoriaa atomeista jakamattomina aineen perusosasina. Toki
LisätiedotAlkuaineita luokitellaan atomimassojen perusteella
IHMISEN JA ELINYMPÄRISTÖN KEMIAA, KE2 Alkuaineen suhteellinen atomimassa Kertausta: Isotoopin määritelmä: Saman alkuaineen eri atomien ytimissä on sama määrä protoneja (eli sama alkuaine), mutta neutronien
LisätiedotHiukkaskiihdyttimet ja -ilmaisimet
Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
LisätiedotHiukkasfysiikkaa teoreetikon näkökulmasta
Hiukkasfysiikkaa teoreetikon näkökulmasta @ CERN Risto Paatelainen CERN Theory Department KUINKA PÄÄDYIN CERN:IIN Opinnot: 2006-2011 FM, Teoreettinen hiukkasfysiikka, Jyväskylän yliopisto 2011-2014 PhD,
LisätiedotLisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
LisätiedotMODERNIA FYSIIKKAA, SÄHKÖ- JA MAGNEETTIKENTTIÄ YO-TEHTÄVIEN LAAJENNUKSINA
2009 pietarsaaren lukio Vesa Maanselkä MODERNIA FYSIIKKAA, SÄHKÖ- JA MAGNEETTIKENTTIÄ YO-TEHTÄVIEN LAAJENNUKSINA Yo-kirjoituksissa usein kysyttyjen aiheiden kertausta Aiheittain niputettuja yo-tehtäviä
LisätiedotL a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
LisätiedotFY8_muistiinpanot. Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. 10. marraskuuta 2013 10:00
FY8 Sivu 1 FY8_muistiinpanot 10. marraskuuta 2013 10:00 Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. FY8 Sivu 2 Sähkömagneettinen säteily s. 5 11.
LisätiedotJakso 8: Monielektroniset atomit
Jakso 8: Monielektroniset atomit Näytä tai palauta tämän jakson tehtävät viimeistään tiistaina 9.6.2015. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 6 ja 7. Suunnilleen samat asiat ovat
Lisätiedot766326A Atomifysiikka 1 - Syksy 2013
766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9
LisätiedotPerusvuorovaikutukset
Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009 Sisältö 1 Johdanto... 3 2 Perusvuorovaikutusten historia... 3 3 Teoria... 6 3.1 Gravitaatio... 6 3.2 Sähkömagneettinen
Lisätiedot