T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu

Koko: px
Aloita esitys sivulta:

Download "T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu"

Transkriptio

1 Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta useimmiten käsitellä pieninä häiriöinä. idehilassa elektroni kokee potentiaalin U(r, joka noudattaa hilan symmetriaa, ts. U(r + R = U(r, kun R on mielivaltainen Bravais n hilan vektori. Olettaen, että elektronit eivät vuorovaikuta keskenään (riippumattomien elektronien malli, jokaisen elektronin (n.s. Blochin elektronin aaltofunktio toteuttaa Schrödingerin yhtälön Hψ = ( h m + U(r ψ = Eψ, missä U(r on periodinen potentiaali. Blochin teoreema Potentiaalin periodisuudesta johtuen Blochin elektroneilla on tärkeä ominaisuus: Lause: Olkoon U(r periodinen siten, että U(r + R = U(r olipa R mikä tahansa Bravais n hilan vektori. Tällöin yhden elektronin Hamiltonin H = h /m + U(r ominaistiloiksi ψ voidaan valita tasoaallon ja Bravais n hilan periodisuutta noudattavan funktion tulo: ψ nk = e ik r u nk (r, missä u nk (r + R = u nk (r kaikille Bravais n hilan vektoreille R. Aaltofunktiolle ψ on siis voimassa ψ nk (r + R = e ik R e ik r u nk (r + R = e ik R ψ nk (r. Blochin teoreema voidaan siis lausua myös muodossa: Lause: Hamiltonin H ominaistilat voidaan valita siten, että ominaistilaan ψ liittyy aaltovektori k ja että ψ toteuttaa ehdon ψ(r + R = e ik R ψ(r kaikille Bravais n hilan vektoreille R. Blochin teoreeman todistus Määritellään jokaista Bravais n hilan vektoria R kohti translaatio-operaattori T R siten, että T R f(r = f(r + R, kun f(r on mielivaltainen funktio. oska Hamilton H = h m + U(r on periodinen, on voimassa T R Hψ = H(r + Rψ(r + R = H(rψ(r + R = HT R ψ olipa ψ mikä tahansa funktio. Operaattorit T R ja H toteuttavat siis kommutaatiorelaation T R H = HT R. ahden peräkkäisen translaation vaikutus ei riipu operaatioiden järjestyksestä, sillä T R T R ψ(r = T R ψ(r + R = ψ(r + R + R = T R T R ψ(r. Translaatio-operaattorit siis kommutoivat keskenään: T R T R = T R T R = T R+R. oska kaikki translaatio-operaattorit T R kommutoivat keskenään ja Hamiltonin H kanssa, voidaan Hamiltonin ominaistilaksi valita aaltofunktio, joka on samanaikaisesti kaikkien translaatio-operaattorien ominaistila: Hψ = Eψ T R ψ = c(rψ, R Bravais n hila, missä E on Hamiltonin H ja c(r operaattorin T R ominaisarvo. oska ψ on kaikkien translaatio-operaattoreiden ominaistila, on sille voimassa Toisaalta T R T R ψ = c(rt R ψ = c(rc(r ψ. T R T R ψ = T R+R ψ = c(r + R ψ, joten ominaisarvojen c(r täytyy toteuttaa funktionaalinen relaatio c(r + R = c(rc(r. Olkoon a i Bravais n hilan primitiivivektori. Operaattorin T ai ominaisarvo c(a i voidaan aina kirjoittaa eksponenttimuotoon c(a i = e πix i, missä x i on jokin (kompleksiluku (myöhemmin nähdään, että x i on reaalinen. Hilavektoriin R = n 1 a 1 + n a + n 3 a 3 liittyvä translaatio T R voidaan konstruoida peräkkäisistä primitiivitranslaatioista T ai kuten T R = T n 1 a 1 T n a T n 3 a 3. Operaattorin T R ominaisarvo c(r voidaan siis kirjoittaa muotoon c(r = c(a 1 n1 c(a n c(a 3 n3 = e πi(x 1n 1 +x n +x 3 n 3.

2 Olkoon k vektori k = x 1 b 1 + x b + x 3 b 3, missä b i ovat käänteishilan primitiivivektoreita, jotka toteuttavat resiprokaalisuusehdon a i b j = πδ ij. Hamiltonin ominaistilat ψ voidaan siis valita siten, että sallitun aaltovektorin viemä tilavuus kirjoittaa myös muotoon k = (π3 V. Blochin teoreeman toinen todistus Mikä tahansa funktio ψ, joka toteuttaa Born-von armanin reunaehdot, voidaan kehittää reunaehdot toteuttavien tasoaaltojen superpositiona, kuten T R ψ = ψ(r + R = c(rψ = e ik R ψ(r. ψ(r = c e i r. Tämä on Blochin teoreeman jälkimmäinen muoto. Born-von armanin reunaehdot Oletetaan, että kidehilan ottama kokonaistilavuus on V ja täytetään tämä tilavuus alkeiskopeilla, joita suunnassa a i oletetaan olevan kappaletta. iteen alkeiskoppien kokonaislukumäärä N on siis N = N 1 N N 3, ja jokainen on kertalukua N 1/3. Asetetaan nyt tavanomaiset periodiset reunaehdot: ψ(r + a i = ψ(r, i = 1,, 3. Olkoon ψ nk aaltovektoriin k (n tarkoittaa kaikkia muita kvanttilukuja liittyvä Blochin tila. Sovelletaan Blochin teoreemaa reuna-arvoihin, jolloin ψ nk (r + a i = e ik a i ψ nk (r. Ottaen huomioon periodiset reuanehdot saadaan e ik a i = 1. Sijoittamalla vektorin k eksplisiittinen lauseke nähdään, että e πinixi = 1, eli lukujen x i täytyy toteuttaa ehto x i = m i, m i I. Sallitut Blochin aaltovektorit k ovat siis muotoa k = 3 i=1 m i b i, m i I. Yksi sallittu vektori k vie siis k-avaruudessa tilavuuden k = b ( 1 b b 3 = 1 N 1 N N 3 N b 1 (b b 3. oska b 1 (b b 3 on käänteishilan alkeiskopin tilavuus, voidaan sanoa, että käänteishilan alkeiskopissa olevien sallittujen aaltovektoreiden lukumäärä on sama kuin hilapisteiden lukumäärä. oska käänteishilan alkeiskopin tilavuus on (π 3 /v, kun v = V/N on suoran hilan alkeiskopin tilavuus, voidaan oska potentiaali U(r noudattaa hilan periodisuutta, sen tasoaaltokehitelmässä esiintyvät vain ne tasoaallot, joiden periodisuus on sama kuin hilalla eli U(r = U e i r, missä ovat käänteishilan vektoreita. Fourierin kertoimet U voidaan laskea kaavasta U = 1 v koppi dr e i r U(r. Valitaan energian nollataso siten, että U 0 = 1 dr U(r = 0. v koppi oska potentiaali U(r on reaalinen, sen Fourierin kertoimet toteuttavat ehdon U = U. Oletettaen, että kidehila on inversiosymmetrinen, voidaan origo valita siten, että U( r = U(r. Inversiosymmetrisessä hilassa on silloin voimassa relaatio U = U = U, eli potentiaalin Fourierin kertoimet ovat reaalisia. Tasoaaltokehitelmien avulla Schrödingerin yhtälön kineettinen energia on p m ψ = h m c e i r = Potentiaalienergiaksi saadaan ( ( Uψ = U e i r = U c e i(+ r = U c e i r. h m c e i r. c e i r Vaihtamalla tässä summausindeksien nimet :sta ja :sta :ksi ja :ksi ja sijoittamalla kehitelmät Schrödingerin yhtälöön saadaan [ ( e i r h m E c + ] U c = 0.

3 oska tasoaallot ovat toisistaan lineaarisesti riippumattomia, täytyy jokaisen termin erikseen toteuttaa ehto m E c + U c = 0. Yhtälö voidaan kirjoittaa myös sellaiseen muotoon, että siinä esiintyy vain ensimmäisen Brillouinin vyöhykkeen aaltovektoreita. Merkitään = k ja valitaan siten, että k on ensimmäisessä Brillouinin vyöhykkeessä. Nyt m (k E c k + U c k = 0. Tämä saadaan hieman symmetrisempään muotoon vaihtamalla summausmuuttujaa, : m (k E c k + U c k = 0. Olkoon k jokin kiinnitetty ensimmäisen Brillouinin vyöhykkeen vektori. Ylläoleva yhtälö kytkee toisiinsa kertoimet c k, c k, c k, c k,..., eli kertoimet, joiden aaltovektorit eroavat toisistaan käänteishilan vektoreilla. oska ensimmäsessä Brillouinin vyöhykkeessä on täsmälleen N sallittua aaltovektoria k, on alkuperäinen probleema hajotettu N riippumattomaksi probleemaksi: yksi probleema jokaista sallittua ensimmäisen Brillouinin vyöhykkeen vektoria k kohti. Jokaisen yksittäisen probleeman ratkaisu on sellaisten tasoaaltojen superpositio, joiden aaltovektorit ovat k ja siitä käänteishilavektorien verran eroavat vektorit. Superpositiossa ψ = c e i r aaltovektori voi siis saada vain arvot k, k, k,... eli ψ k = c k e i(k r. Tämä voidaan kirjoittaa myös muotoon ψ k (r = e ik r ( c k e i r joka on täsmälleen Blochin teoreeman muotoa, sillä jälkimmäinen tekijä u(r = c k e i r ilmeisestikin noudattaa hilan periodisuutta., Huomioita Blochin teoreemasta 1. Operoitaessa liikemääräoperaattorilla p = i h Blochin tilaan ψ nk saadaan ( i h ψ nk = i h e ik r u nk (r = hkψ nk i he ik r u nk (r, joten Blochin tila ei yleensä ole liikemäärän ominaistila. Blochin tilan aaltovektori k ei siis ole suoraan verrannollinen elektronin liikemäärään (toisin kuin vapaalla elektronilla, jolla liikemäärää p vastaa aaltovektori p/ h. Suuretta hk nimitetään kideliikemääräksi.. Blochin tilan aaltovektori k voidaan aina valita ensimmäisestä Brillouinin vyöhykkeestä (tai mistä tahansa käänteishilan alkeiskopista. Jos nimittäin k ei ole ensimmäisessä Brillouinin vyöhykkeesä, niin on olemassa sellainen käänteishilavektori, että k = k +, missä k on ensimmäisessä Brillouinin vyöhykkeessä. Jos Blochin teoreema on voimassa vektorille k, niin se on myös voimassa vektorille k, sillä e i R = Tarkastellaan kaikkia aaltovektoriin k liittyviä muotoa ψ(r = e ik r u(r olevia Blochin tiloja. Sijoittamalla tämä tila Schrödingerin yhtälöön saadaan funktiolle u(r yhtälö m ( i + k + U(r u k (r = E k u k (r, missä on eksplisiittisesti merkitty näkyviin ko. aaltovektori. Blochin teoreeman mukaan funktion u k täytyy toteuttaa reunaehdot u k (r = u k (r + R. Voidaan siis ajatella, että yo. ominaisarvoprobleema on rajoitettu äärellistilavuiseen hilan alkeiskoppiin. Tälläisellä probleemalla on yleensä numeroituvasti ääretön määrä ominaisarvoja ja niihin liittyviä ominaisfunktioita. Nämä tiettyyn k:n arvoon liittyvät on edellä numeroitu kvanttiluvulla n. oska aaltovektori k esiintyy yo. ominaisarvoyhtälössä parametrina, yhtälön ominaisarvot E nk muuttuvat vektorin k muuttuessa. Energiatasot onkin siksi tapana joskus kirjoittaa muotoon E n (k. 4. Vaikka täydellinen ominaistilojen joukko saadaankin rajoittamalla k ensimmäiseen Brillouinin vyöhykkeeseen on joskus hyödyllistä antaa vektorin k saada arvoja koko k-avaruudessa. oska energiat ja ominaistilat säilyvät muuttumattomina aaltovektorin muuttuessa käänteishilavektorin verran, ovat ne vektorin k käänteishilan periodisuutta noudattavia funktioita: ψ n,k+ (r = ψ nk (r E n,k+ = E nk.

4 Elektronien energiatasoja periodisessa potentiaalissa kuvaavat siten periodiset (ja jatkuvat, kun N funktiot E n (k. Näiden funktioiden sisältämää informaatiota nimitetään kiinteän aineen vyörakenteeksi. Energiavyöllä tarkoitetaan kuhunkin kvanttilukuun n liittyviä energian arvoja E n (k. Lukua n sanotaan vyöindeksiksi. 5. Voidaan osoittaa, että elektronilla, joka on vyöllä n ja jonka aaltovektori on k, on nollasta poikkeava keskimääräinen nopeus v n (k = 1 h ke n (k. Elektronilla on siis periodisessa potentiaalissa stationäärisiä tiloja, joissa se liikkuu ikuisesti samalla kesimääräisellä nopeudella hilan ionien millään lailla hidastamatta. Fermi-pinta Merkitään Blochin elektronin tiloja kvanttiluvuilla n ja k. Vastaavat energiat ovat E n (k. Jotta tilat otettaisiin huomioon vain kertaalleen, rajoitetaan aaltovektorin k arvot yhteen käänteishilan alkeiskoppiin. Tarkastellaan N vuorovaikuttamatonta Blochin elektronia. Näiden perustila muodostetaan täyttämällä energiatasot E n (k järjestyksessä lähtien pienimmästä energiasta: jokaisella vyöllä n jokaista sallittua aaltovektoria k kohti voi olla kaksi elektronia (spin ylös ja spin alas. aikkien elektronien ollessa sijoitettuna alimmille energiatasoille on kaksi mahdollisuutta: 1. Jotkin energiavyöt saattavat olla täysin miehitettyjä muiden vöiden ollessa täysin tyhjiä. Ylimmän miehitetyn ja alimman miehittämättömän energiatason välistä eroa sanotaan vyöraoksi (band gap. Jos vyörako on huomattavasti suurempi kuin k B T (huoneen lämpötilassa, niin kyseessä on eriste. suuruusluokkaa k B T, niin kyseessä on luonnollinen puolijohde (intrinsinc semiconductor. oska sallittujen tilojen (k:n arvojen lukumäärä vyöllä on sama kuin kiteen alkeiskoppien lukumäärä ja koska jokaisessa tilassa voi olla kaksi elektronia, vyöraollinen konfiguraatio voi esiintyä vain, jos yhtä alkeiskoppia kohti on parillinen määrä elektroneja.. Jotkin vyöt saattavat olla vain osittain täytettyjä. orkeimman miehitetyn tason energia, Fermi-energia E F, sijaitsee silloin yhdellä tai useammalla energiavyöllä. Jokaista osittain täytettyä vyötä kohti on olemassa k-avaruuden pinta, joka erottaa toisistaan miehitetyt ja miehittämättömät vyön energiatasot. aikkien näiden pintojen joukkoa sanotaan Fermi-pinnaksi. Yksittäiseen energiavyöhön liittyvää pintaa sanotaan Fermi-pinnan haaraksi (branch. Jos kiinteällä aineella on Fermi-pinta, se käyttäytyy kuten metalli. Fermi-pinnan haara vyöllä n määräytyy ehdosta ratkaisuna on samaa periodisuutta noudattava pinta. Fermi-pintoja on tapana esittää: toistuvan vyöhykkeen skeemassa (repeated zone scheme Fermi-pinnan haarat esitetään täydellisinä periodisessa muodossa. rajoitetun vyöhykkeen skeemassa (reduced zone scheme kustakin täydellisestä periodisesta haarasta esitetään vain käänteishilan alkeiskoppiin osuva alue. Alkeiskoppina on useimmiten ensimmäinen Brillouinin vyöhyke. Tilatiheys Joudumme usein käsittelemään muotoa olevia termejä. Tässä Q = n,k Q n (k summaus käy käy yli kaikkien sallittujen elektronisten yksihiukkastilojen, ts. kullakin vyöllä n aaltovektori k voi saada arvot k = 3 i=1 m i b i suureen m i ollessa rajoitettu sellaisiin kokonaislukuihin, jotka johtavat erillisiin fysikaalisiin tiloihin (esim. ensimmäiseen Brillouinin vyöhön, tekijä huomioi elektronien spinin: kutakin tilaa (n, k voi miehittää kaksi elektronia. Näimme, että kukin sallittu aaltovektori ottaa tilavuuden Voimme siis kirjoittaa k = (π3 V. Q n (k = V 8π 3 Q n (k k. k k Suuressa kiteessä energiavyön aaltovektorit muodostavat jatkumon. Summaus voidaan tällöin korvata alkeiskopin yli ulottuvana integrointina, kuten Q = lim V V = n dk (π 3 Q n(k. Usein suure Q n (k riippuu kvanttiluvuista n ja k ainoastaan yksihiukkasenergian E n (k kautta. Määritellään tilatiheys g(e siten, että = de g(eq(e. E n (k = E F. oska E n (k on käänteishilan periodisuutta noudattava argumentin k funtio, tämän yhtälön täydellisenä Voimme myös kirjoittaa g(e = n g n (E,

5 missä g n (E on vyöhön n liittyvä tilatiheys dk g n (E = 4π 3 δ(e E n(k itegroinnin käydessä yli jonkin alkeiskopin. Tilatiheydelle saadaan tulkinta vyöllä n g n (EdE = energiavälillä V (E, E + de olevien sallittujen energiatilojen lukumäärä. oska kukin sallittu aaltovektori ottaa tilavuuden k = (π3 V, voimme kirjoittaa myös { dk 1, E g n (EdE = π En (k E + de, 0, muulloin. Olkoot S n (E alkeiskopissa oleva pinnan E n (k = E osa, δk(k pintojen S n (E ja S n (E + de välinen kohtisuora etäisyys. Tällöin g n (EdE = Gradientti E n (k on S n (E ds 4π 3 δk(k. kohtisuorassa pintaa E n (k = vakio vastaan, suuruudeltaan energian E n (k gradientin suuntaisen muutoksen suuruinen, joten E + de = E + E n (k δk(k. Nähdään, että pintojen välinen etäisyys on δk(k = Saamme tuloksen g n (E = S n (E de E n (k. ds 1 4π 3 E n (k. Huom. oska E n (k on argumentin k periodinen, rajoitettu ja yleensä differentioituva funktio, täytyy jokaisessa alkeiskopissa olla aaltovektoreita joille E n (k = 0. Näissä pisteissä yo. integrandi divergoi. Voidaan osoittaa, että tälläiset singulariteetit ovat kolmessa ulottuvuudessa integroituvia mutta johtavat derivaatan dg n /de divergensseihin. Näitä sanotaan van Hoven singulariteeteiksi.

Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1

Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1 Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni

Lisätiedot

Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),

Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R), Tiukan sidoksen malli Tarkastellaan sellaisia kiderakenteita, joissa atomien elektronien aaltofunktiot ovat lokalisoituneet isäntäionien läheisyyteen. Jos unohdetaan periodisuuden vaikutukset, elektronien

Lisätiedot

sillä hilassa vaikuttava periodinen potentiaali vaihtelee väleillä, jotka ovat pieniä verrattuna aaltopaketin

sillä hilassa vaikuttava periodinen potentiaali vaihtelee väleillä, jotka ovat pieniä verrattuna aaltopaketin Semiklassinen elektronidynamiikka Blochin teoria osoittaa, että metallikiteissä elektronit eivät siroa ioneista (kuten Druden malli olettaa). Metallit eivät kuitenkaan ole täydellisiä johteita, sillä mikään

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

Aineaaltodynamiikkaa

Aineaaltodynamiikkaa Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset

Lisätiedot

Tilat ja observaabelit

Tilat ja observaabelit Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ

Lisätiedot

Vuorovaikuttavat elektronit Tarkastellaan N elektronia kiteessä, jonka struktuuri on jokin Bravais n hila. Koska elektronit vuorovaikuttavat

Vuorovaikuttavat elektronit Tarkastellaan N elektronia kiteessä, jonka struktuuri on jokin Bravais n hila. Koska elektronit vuorovaikuttavat Vuorovaikuttavat elektronit Tarkastellaan N elektronia kiteessä, jonka struktuuri on jokin Bravais n hila. Koska elektronit vuorovaikuttavat keskenään, on selvää, että tähän saakka käyttämämme yksihiukkaskuva,

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Ominaisarvot ja ominaisvektorit 140 / 170

Ominaisarvot ja ominaisvektorit 140 / 170 Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Demo: Kahden elektronin spintilojen muodostaminen

Demo: Kahden elektronin spintilojen muodostaminen Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Kvanttifysiikan perusteet, harjoitus 5

Kvanttifysiikan perusteet, harjoitus 5 Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan

Lisätiedot

Paulin spinorit ja spinorioperaattorit

Paulin spinorit ja spinorioperaattorit Paulin spinorit ja spinorioperaattorit Spinoreita on useita erilaisia. Esimerkiksi Paulin, Dirackin ja Weyelin spinorit. Yhteisenä piirteenä eri spinoreilla on se, että kukin liittyy tavallisesti johonkin

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

1 Aaltofunktio, todennäköisyystulkinta ja normitus

1 Aaltofunktio, todennäköisyystulkinta ja normitus KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen

Lisätiedot

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Lisävaatimuksia aaltofunktiolle

Lisävaatimuksia aaltofunktiolle Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia

Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia Kvanttimekaniikka I.. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Olkoon H systeemin Hamiltonin operaattori, ja A jotakin observaabelia kuvaava operaattori. Johda Ehrenfestin teoreema d A dt = ī [A, H] + A

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö. TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Jatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen

Jatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen Jatko-opintoseminaari 21-211 Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus Petteri Laakkonen 23.9.21 Tämä teksti on tiivistelmä kirjan [1] luvun 2 tekstistä. Pyrkimyksenä on esittää perustellusti

Lisätiedot

Homogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään:

Homogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään: Homogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään: metallit ainakin yksi energiavyö on osittain täytetty eristeet energiavyöt ovat joko tyhjiä tai täysiä. Eristeitä karakterisoi nollasta

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

Kidehilan perusominaisuudet

Kidehilan perusominaisuudet Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (24.4.2014) Tehtävä 1 Kuva 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Kvanttimekaniikan perusteet

Kvanttimekaniikan perusteet Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys

Lisätiedot

Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos

Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

S Fysiikka III (EST) (6 op) 1. välikoe

S Fysiikka III (EST) (6 op) 1. välikoe S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

1 Tensoriavaruuksista..

1 Tensoriavaruuksista.. 1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m

Lisätiedot