Sopimuksenteon dynamiikka: moraalinen uhkapeli

Koko: px
Aloita esitys sivulta:

Download "Sopimuksenteon dynamiikka: moraalinen uhkapeli"

Transkriptio

1 Sopimuksenteon dynmiikk: morlinen uhkpeli Mt Optimointiopin seminri Ville Venoärvi Esitelmä 15 Ville Venoärvi

2 Sisältö Hsteit Uudelleen neuvottelu gentin työpnoksen älkeen Konvergenssi optimiin Äärellisesti toistuv morlinen uhkpeli: Agentill ei mhdollisuutt luottoon Agentill mhdollisuus luottoon Kotitehtävä Esitelmä 15 Ville Venoärvi

3 Kertust Morlist uhkpeliä esiintyy os Agentti toiminnlln vikutt sekä omn että päämiehen hyötyyn. Päämies hvitsee inostn toiminnn tuloksen ei itse toimint. Agentin spontnisti vlitsem toiminto ei ole Preto-optimlinen. Esitelmä 15 Ville Venoärvi

4 Hsteit 1/2 Agentin sm korvus työstä määräytyy hänen työpnoksens, sekä hänestä riippumttomst häiriöstä, ok vikutt työsuorituksen lopputulokseen. x = + ε. Näin ollen gentti hlu tsoitt kulutustn säästämällä, linmll ti kuluttmll säästöä. Edellinen seurust oletuksest että gentin hyötyfunktio on idosti konkvi. Esitelmä 15 Ville Venoärvi

5 Hsteit 2/2 Usein toistuvss morlisen uhkpelin ongelmss on mhdollist että gentti hyötyy yksityisestä informtiostn. Esiintyy esimerkiksi os gentin tuotos riippuu hänen nykyhetkeä edeltävistä työpnoksist. Päämies hvitsee inostn työn lopputuloksen, ei työpnost. Esitelmä 15 Ville Venoärvi

6 Uudelleen neuvottelu gentin työpnoksen älkeen1/2 Trksteluss yksiperiodinen morlisen uhkpelin ongelm. Agentin tuotos: x = + ε * * * Päämiehen yliäämä optimiss: + ε w + ε Trkstelunkohtn hetki olloin gentti suorittnut työpnoksens, mutt työntulost ei vielä hvit. Oletus: päämies riskineutrli gentti riskiä krttv. * Optimiss tulee plkn w oll vkio. Ospuolet hyötyisivät os kikki riski siirretään päämiehen knnettvksi lkuperäinen optimlinen sopimus ei ole robusti uudelleen neuvottelulle. Tämä gentin vlitsemn itsensä knnlt edullisimmn työpnoksen, sillä plkk ei enää gentille knnustin. Esitelmä 15 Ville Venoärvi

7 Uudelleen neuvottelu gentin työpnoksen älkeen2/2 Uudelleen neuvottelu stt sd huomttvsti lisää pinorvo tilnteiss oiss intervlli työpnoksen vlitsemisen työn tuloksen hvitsemisess pitenee. Esimerkiksi mittvt rkennusproektit. Stt oht hitllisen vlikoitumisen tehtäväänei käsitellä. Tällisess tilnteess päämies ei enää kykene smn gentti toimimn optimlisesti todennäköisyydellä 1, eli uudelleen neuvottelun mhdollisuus työpnoksen vlitsemisen älkeen ikns tehottomuutt. Näin ollen yhden periodin mittisill morlisen uhkpelin ongelmill on myös dynmisi piirteitä. Esitelmä 15 Ville Venoärvi

8 Konvergenssi optimiin1/3 Trksteluss tilnne, oss gentin päämiehen välisten knsskäymisten määrä lähestyy ääretöntä. Voidn osoitt että tällöin gentti voidn sd toimimn optimlisell tvll. Perustuu päämiehen kykyyn rvioid gentin työpnost trkkilemll gentin työn tuloksi. Esitelmä 15 Ville Venoärvi

9 Konvergenssi optimiin2/3 2 Olkoot: xt = + ε t, E ε t = 0, vr ε t = σ. * Olkoot: gentin optimlinen työpnos. t 1 * Tällöin: At = xτ 0, t, os gentti vlitsee t τ = 1 optimlisen työpnoksen kikill periodeill. Näin ollen päämies voi pyrkiä pkottmn gentin * toimimn tvll, rnkisemll gentti os At :n itseisrvo trpeeksi suuri. Ongelmn kuink vlit se r olloin gentti tulee rnkist? Esitelmä 15 Ville Venoärvi

10 Konvergenssi optimiin3/3 Eräs vihtoehto on rnkist gentti os: Pätee A t 2 2 λσ ln ln t >, λ t Johto ks. kir: Hyödyntää mm. Iteroidun logritmin lki. Jos päämiehen genttiin soveltm rngistus trpeeksi voimks gentti vlitsee työpnoksekseen * optimlisen. > 1 Mllin heikkouksi/vhvuuksi: kotitehtävä. Esitelmä 15 Ville Venoärvi

11 Morlinen uhkpeli: äärellisesti toistuv peli. Agentin päämiehen välinen knsskäynti kestää T periodi. Kyseessä siis äärellisesti toistuv morlinen uhkpeli. Olkoot: xt = + ε t T Päämiehen hyöty: x t. w t T t = 1 Agentin hyöty: u c t t t = 1 Missä u ksvv konkvi sekä ct gentin kulutus. Oletuksen että x riippuu inostn :stä t Muutoin gentti sttisi hyötyä siitä että hän tietää iemmt työsuorituksens. Oletuksen ei diskonttust. t Esitelmä 15 Ville Venoärvi

12 Äärellisesti toistuv peli: ei mhdollisuutt luottoon1/4 Agentin kulutus vst hänen tulons kikiss periodeiss. Voidn osoitt että tässä mlliss täysi sitoutuminen vst pitkänn sitoutumist. Konkvin hyötyfunktions tki gentti hlu kulutt mhdollisimmn tsisesti. x t stt kuitenkin ksv onin periodin voimkksti suotuisn häiriön seuruksen. Päämies voi pyrkiä säilyttämään gentin tulovirrn mhdollisimmn tsisen Agentin päämiehen välinen sitoutuminen mhdollist tämän. Näin ollen gentin tulot riippuvt myös menneistä työtuloksistmuistiefekti. Jos päämiehen gentin välillä ei ole minkäänlist sitoutumist, päämies ei voi tsoitt gentin tulovirt tehottomuutt. Esitelmä 15 Ville Venoärvi

13 Äärellisesti toistuv peli: ei mhdollisuutt luottoon2/4 Täyden sitoutumisen optimiss on seurv ominisuus: Se roitt gentin säästämään vähemmän kuin hän hluisi. Olkoot: T =2kksi periodi, muodostetn: u wi + u wi = Ui, i, C i 1 m wi + p i wi, i 2 = 1 Minimoidn 2 i, s.e C i = 1... m pätee kun ensimmäisen periodin ulostulo on. x i Lgrnge + Jensenin epäyhtälö Esitelmä 15 Ville Venoärvi

14 Äärellisesti toistuv peli: ei mhdollisuutt luottoon3/4 Edellisen klvon muuttuien selitykset: w i,ensimmäisen periodin plkk, kun ensimmäisen periodin työtulos on x i. w i, toisen periodin plkk, kun ensimmäisen periodin työtulos on x i toisen x. i työpnos, onk gentti vlitsee toisell periodill, kun ensimmäisen periodin työtulos on x i. p työtuloksen x tn. millä thns periodill os vlittu työpnos on. Esitelmä 15 Ville Venoärvi

15 Äärellisesti toistuv peli: ei mhdollisuutt luottoon4/4 u w m p u w i i i = 1 Yllä olevst tuloksest voidn nähdä että gentti tosin hluisi säästää os vin voisi. Edellä esitetty tulos osoitt että tämän mllin soveltminen stt oll hnkl. Eräs rtkisu se että päämies määrää gentin periodikohtisen plkn lisäksi myös hänen kulutuksens. Tässä tpuksess gentin päämiehen välinen sitoutumttomuus, oht smn optimiin kuin täysi sitoutuminen. Esimerkkinä kehittyvien miden vilely sekä tilnhltioiden vuokrien välinen suhde. Esitelmä 15 Ville Venoärvi

16 Äärellisesti toistuv peli: mhdollisuus luottoon 1/5 Agentti voi säästää lint omn thtons mukn. Päämies ei voi hvit Agentin säästöä. Olkoot s T 1 gentin säästöt periodill T-1. Agentin hyötyfunktioksi sdn u w T + s T 1. Kosk päämies ei hvitse gentin säästöä hän ei yleensä tiedä tämän hyötyfunktiot morlisen uhkpelin ongelmn lisäksi, esiintyy myös hitllist vlikoitumist. Näin ollen mm. täyden pitkäikisen sitoutumisen rtkisut erovt toisistn. Esitelmä 15 Ville Venoärvi

17 Äärellisesti toistuv peli: mhdollisuus luottoon 2/5 Merkittävä tulos: Jos pitkäikinen optimi svutetn soveltmll puhtit strtegioit, vst toisest periodist lähtien voidn sovelt kustnnukset minimoiv toimint. Todistus: T = 2 si säästöt kun ensimmäisen periodin ulostulo on i. 0 gentin optimlinen toimint ensimmäisellä periodill. Muuten merkinnät kuten edellä. Esitelmä 15 Ville Venoärvi

18 Äärellisesti toistuv peli: mhdollisuus luottoon 3/5 Oletus: optimlinen sopimus iheutt toiminnon i toisell periodill, kun ensimmäisen ulostulo ollut i. Jos i ei ole kustnnukset minimoiv, tulee onkin toisen periodin knnustin roitteen oll ktiivinen. Näin ollen tulisi s.e p u w s = p u w + s i i + i i i i Esitelmä 15 Ville Venoärvi

19 Äärellisesti toistuv peli: mhdollisuus luottoon 4/5 Olkoot s optimlinen säästöen määrä kun gentti vlitsee. Tällöin s mksimoi s:n suhteen: u w i s + p u w Oletetn että sen sin että gentin vste optimliseen sopimukseen w i, w i olisi 0, s i, i gentti vstkin strtegill, s i,, missä =, s s. 0 i Tämän voidn osoitt prntvn gentin odotettv hyötyä. i + s i i = Esitelmä 15 Ville Venoärvi

20 Esitelmä 15 Ville Venoärvi Äärellisesti toistuv peli: mhdollisuus luottoon 5/5 Yllä olevss ensimmäinen yhtälöroite seur :n määritelmästä. Epäyhtälö yleensä pätee kosk on prempi vihtoehto säästöen määräksi kuin, nnetull. Kosk epäyhtälö rikkoo ensimmäisen periodin knnustinroitett, tulee oletuksen että ei ole kustnnukset minimoiv toiminto oll väärä. M.O.T + + < + + = + + k k k k k k k k k s w u p s w u p s w u p s w u p s w u p s w u p i s s i

21 Yhteenveto Myös yhden periodin mittisess morlisen uhkpelin ongelmss stt oll dynmisi piirteitä. Jos morlisen uhkpelin ongelmn periodien määrä lähestyy ääretöntä voi päämies pyrkiä pkottmn gentin toimimn optimlisesti. Äärellisesti toistettvt pelit: Ei mhdollisuutt luottoon: optimiss gentti hluisi säästää. Mhdollisuus luottoon: optimiss sovellettv sekstrtegioit os sen hlutn omvn hyvät knnustin ominisuudet. Kulutuksen tsminen: muistiefekti : kunkin hetken kulutus riippuu myös menneistä nhetkistä. Eri sitoutumistyyppien suhteellinen tehokkuus määräytyy niiden kyvystä tsoitt gentin kulutust. Esitelmä 15 Ville Venoärvi

22 Kotitehtävä Äärettömästi toistuv morlinen uhkpeli. pohdi konvergenssi optimiin kohdss esitetyn mllin vhvuuksi/heikkouksi, os sitä pyritään soveltmn käytäntöön? b keksitkö mitään relimilmn tilnnett, oss esitettyä mlli voidn sovelt? Perustele. Esitelmä 15 Ville Venoärvi

Moraalinen uhkapeli: laajennuksia

Moraalinen uhkapeli: laajennuksia Morlinen uhkeli: ljennuksi Mt-2.4142 Otimointioin seminri Juho Kokkl 4.3.2008 steeminlsin Lbortorio Teknillinen korkekoulu Esitelmä 12 Juho Kokkl Otimointioin seminri - Kevät 2008 Esitksen rkenne Informtiivisuus

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset Y6 Mikron jtkokurssi kl 008: HARJOITUSTEHTÄVÄT Mllivstukset Kuluttjn vlint (Muokttu Burketist 006, 07) Olkoon Mrkon udjettirjoite = 40 Mrkoll on hvin kättätvät referenssit j Mrkon rjusustituutiosuhde on

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

Mikrotalousteoria 2, 2008, osa III

Mikrotalousteoria 2, 2008, osa III Sisältö Mikrotlousteori 2, 2008, os III Yrityksen tuotntofunktiost 2 Pnosten substituoitvuus 2 3 Yrityksen teori 3 4 Mittkvedut tuotnnoss 5 5 Yksikkökustnnusten j skltuottojen steen välinen yhteys 5 6

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 8

Mat Dynaaminen optimointi, mallivastaukset, kierros 8 Mt-.148 Dynminen optimointi, mllivstukset, kierros 8 1. Idelisess tsvirtmoottoriss vääntömomentti on suorn verrnnollinen virtn. Moottori pyörittää ikiliikkuj (ei kitk- ti sähkömgneettisi vstusvoimi). Moottorin

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta Kirsi Myllyniemi, Blogikurssi teologeille mlikuuss 2006 Mitä blogit ovt Mhdollisuuksi Verkostoitumist Mitä ovt blogit? Mhdollisuuksi Verkostoitumist Sn blogi tulee englnnin snoist web log. Se sisältää

Lisätiedot

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä T 79.1001/1002 Tietojenkäsittelyteorin perusteet 2.3 Äärellisen utomtin käsitteen formlisointi eknistinen mlli: syötenuh: nuhpää: ohjusyksikkö: i n p δ u q 1 q 2 Äärellinen utomtti koostuu äärellistilisest

Lisätiedot

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 }, T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (Predikaattilogiikka )

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (Predikaattilogiikka ) T-79.3001 Kevät 2009 Logiikk tietotekniikss: perusteet Lskuhrjoitus 7 (Predikttilogiikk 9.1 10.2) 19.3. 23.3. 2009 Rtkisuj demotehtäviin Tehtävä 9.1 Rtkisuss on käytetty usen otteeseen rjoitettuj universli-

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

Moraalinen uhkapeli: laajennuksia ja sovelluksia

Moraalinen uhkapeli: laajennuksia ja sovelluksia Moraalinen uhkapeli: laajennuksia ja sovelluksia Sisältö Kysymysten asettelu Monen tehtävän malli Sovellusesimerkki: Vakuutus Sovellusesimerkki: Palkkion määrääminen Johtajan palkitseminen Moraalisen uhkapelin

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

EDE Elementtimenetelmän perusteet. Luento vk 1 Syksy Matematiikan ja matriisilaskennan kertausta

EDE Elementtimenetelmän perusteet. Luento vk 1 Syksy Matematiikan ja matriisilaskennan kertausta mperee tekillie yliopisto hum.8.3 Kostruktiotekiik litos EDE-00 Elemettimeetelmä perusteet. Lueto vk Syksy 03. Mtemtiik j mtriisilske kertust Yleistä Kirjoittele täe joiti kurssi keskeisiä sioit iille,

Lisätiedot

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää Solmu 3/2008 Mtemtiikkolympiliset 2008 kuusi vike tehtävää Mtti Lehtinen Mnpuolustuskorkekoulu 49. Knsinväliset mtemtiikkolympiliset pidettiin Mdridiss 4. 22. heinäkuut 2008. Kilpilijoit oli 535 j he edustivt

Lisätiedot

ELE-3600 Elektroniikan erikoistyö 24.05.2007 tomi.kettunen@biaspiste.fi. Putkitekniikan perusteet

ELE-3600 Elektroniikan erikoistyö 24.05.2007 tomi.kettunen@biaspiste.fi. Putkitekniikan perusteet Putkitekniikn perusteet 1 Sisällysluettelo 1. Historist nykypäivään...3 2. Putkitekniikn perusteet...4 3. Putken eri ost...8 4. Diodi...12 5. Triodi...18 6. Tetrodi...31 7. Pentodi...33 8. Lähdeluettelo...39

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

2.2 Monotoniset jonot

2.2 Monotoniset jonot Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

Moraalinen uhkapeli: perusmalli ja optimaalinen sopimus

Moraalinen uhkapeli: perusmalli ja optimaalinen sopimus Moraalinen uhkapeli: perusmalli a optimaalinen sopimus Mat-2.4142 Optimointiopin seminaari Mauno Taaamaa 18.02.2008 Esityksen rakenne Johdanto moraalisen uhkapelin käsite) Yksinkertaistettu tapaus a sen

Lisätiedot

Menetelmiä formuloinnin parantamiseen

Menetelmiä formuloinnin parantamiseen Meetelmiä formuloii prtmisee Mikko Korpel Dimitris Bertsims & Robert Weismtel, 2005, Optimiztio over Itegers, ch 2.-2.5 S ysteemilyysi Lbortorio Tekillie korkekoulu Mikko Korpel Sovelletu mtemtiik tutkisemiri-

Lisätiedot

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista 6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä 766319A Sähkömgnetismi, 7 op Vnhoj tenttitehtäviä 1. Puoliympyrän muotoon tivutettu suv on vrttu tsisesti siten, että vrus pituusyksikköä kohti on λ. Puoliympyrän säde on. Lske sähkökenttä puoliympyrän

Lisätiedot

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L ) 76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst...

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot