Fysiikan matemaattiset menetelmät II

Koko: px
Aloita esitys sivulta:

Download "Fysiikan matemaattiset menetelmät II"

Transkriptio

1 Fysiikan matemaattiset menetelmät II Christofer Cronström Fysikaalisten tieteiden laitos, teoreettisen fysiikan osasto Helsingin yliopisto 9. tammikuuta 2006

2 i Esipuhe Tämä teos perustuu useana vuonna Helsingin yliopiston fysikaalisten tieteiden laitoksen teorettisen fysiikan osastolla pitämiini luentoihin Fysiikan matemaattiset menetelmät II. Kirja on kuitenkin näiden luentojen laajennettu ja täydennetty kokonaisuus, joka soveltuu myös itseopiskeluun. Kirjassa on seitsemän lukua, joista ensimmäinen on suurelta osin Fourier n integraalien kertausta. Fourier n integraalien avulla tässä luvussa esitetään Poissonin yhtälön, diffuusioyhtälön ja aaltoyhtälön ratkaisut. Toinen luku käsittelee edellistä yleisemmin lineaarisia osittaisdifferentiaaliyhtälöitä, niiden luokittelua sekä esimerkkejä muuttujien erotteluun perustuvasta ratkaisumenetelmästä erilaisin reunaehdoin. Kolmas luku sisältää toisen kertaluvun yhden muuttujan lineaaristen differentiaaliyhtälöiden sarjaratkaisumenetelmän. Menetelmää sovelletaan neljännessä luvussa erikoisfunktioiden, erityisesti Besselin funktioiden sekä Hermiten, Laguerren ja Legendren polynomien ja funktioiden konstruoimiseen. Laajahkon neljännen luvun tarkoitus on olla enemmän kuin pelkkä luettelo mainittujen erikoisfunktioiden ominaisuuksista. Esitetyt metodit ovat suurelta osin analyyttisten funktioiden teorian sovelluksia, minkä tuntemus on yleensäkin hyödyllistä. Luvussa viisi käsitellään variaatiolaskua laajemmin kuin fyysikoille suuntautuvissa matemaattisten menetelmien kirjoissa on tapana. Luvun viimeinen alaluku, jossa analysoidaan variaatio-ongelmia sidosehtojen vallitessa, alkaa yleistason esityksellä ilman sidos- ja reunaehtojen seikkaperäisiä yhteensopivuustarkasteluja jotka olisivat vieneet suhteettoman paljon tilaa. Luku päättyy klassisen mekaniikan variaatioperiaatteiden analyysiin sekä holonomisten että ei-holonomisten sidosehtojen tapauksessa. Tämä analyysi on relevantti myös sellaisten kvanttimekaanisten systeemien tapauksissa, joissa on sidosehtoja. Luvussa kuusi on lyhyt esitys Sturmin ja Liouvillen teoriasta, joka käsittelee tietyntyyppisten differentiaaliyhtälöiden ominaisarvo-ongelmaa. Tässä johtavana metodina on erityisesti Rayleigh n-ritzin variaatioperiaatteen sovellus k. o. differentiaaliyhtälöihin reunaehtoineen. Viimeinen eli seitsemäs luku on johdatus niihin Hilbertin avaruuden käsitteisiin ja menetelmiin, jotka ovat tarpeen erityisesti kvanttimekaniikan kannalta. Luku päättyy Hilbertin avaruuden lineaaristen rajoitettujen operaattorien, erityisesti kompaktien ja hermiittisten operaattorien teoriaan, joka on tärkeä myös muiden sovellusten kuin kvanttimekaniikan kannalta.

3 ii Sellaisenaan tämä teos lienee hieman liian laaja yhden lukukauden neljän viikkoluentotunnin mittaiseksi kurssiksi. Tiettyjen alalukujen otsikot on merkitty tähdellä *. Ainakin nämä alaluvut voidaan tarvittaessa jättää vähemmälle huomiolle, ilman että kokonaisuuden omaksuminen sanottavasti kärsii. Matemaattisia menetelmiä opitaan laskemalla, ei vain lukemalla. Tämäkin kirja on tarkoitettu luettavaksi kynän ja paperin kanssa niin, että aina tarvittaessa voi tarkistaa päättelyt kaavasta toiseen. Mahdollisten painovirheidenkin takia tämä on suotavaa. Tässä teoksessa on 2428 numeroitua kaavaa. Vaikka olen pyrkinyt tarkkuuteen, on mahdollista, että painovirheitä sittenkin on jäänyt korjaamatta. Otan mielihyvin vastaan korjausehdotuksia. Fil. yo. Jussi Lehtola on ystävällisesti ja tarmokkaasti tarkistanut ja korjannut käsikirjoituksen kieliasun ja on tehnyt muitakin parannusehdotuksia sekä auttanut kuvien piirtämisessä ja joidenkin LaTeX-ongelmien selvittämisessä. Lausun hänelle parhaimmat kiitokseni. Dos. Mikko Sainio on lukenut koko käsikirjoituksen ja kiitän häntä rakentavista ja kannustavista kommenteista. Dos. Claus Montonen on myös lukenut suuria osia tekstistä ja tehnyt parannusehdotuksia, joista olen kiitollinen. Tampereella Christofer Cronström

4 Sisällys 1 Fourier n integraaleista Fourier n muunnos, kertausta Cauchyn ja Weierstrassin singulaariset integraalit Laplace-muunnos Mellin-muunnos *Eulerin Γ- ja B-funktiot Sovelluksia osittaisdifferentiaaliyhtälöihin Poissonin yhtälö R 3 :ssa Diffuusioyhtälö *Aaltoyhtälö, Kirchhoffin kaava Osittaisdifferentiaaliyhtälöistä Differentiaaliyhtälöiden luokittelusta Reuna-arvo-ongelmista Poissonin yhtälön reuna-arvoprobleema Muuttujien erottelu Laplacen yhtälö suorakulmaisessa R 3 :ssa Dirichlet n ongelma suorakaiteessa *Separoituvat koordinaatistot R 3 :ssa iii

5 iv SISÄLLYS Oikein asetetut ongelmat Laplacen yhtälö pallokoordinaateissa *Palloharmoniset funktiot Y lm Schrödingerin yhtälö Pallosymmetrinen Schrödingerin yhtälö Yhden muuttujan differentiaaliyhtälöt Toisen kertaluvun lineaariset yhtälöt Lineaaristen yhtälöiden yleisistä ominaisuuksista Erikoispisteet ja niiden luokittelu Hypergeometrinen yhtälö Yleinen sarjaratkaisumenetelmä Ratkaisut kun s r 1 r 2 0, 1, 2, Toinen ratkaisu kun s r 1 r 2 = 0, 1, 2, Ratkaisut säännöllisen pisteen ympäristössä *Asymptoottisista ratkaisuista *Sarjaratkaisujen suppenemisesta Fysiikan tavallisimmat erikoisfunktiot Legendren funktiot Legendren funktiot P λ (z) ja Q λ (z) Legendren polynomit P l (z) Polynomien P l (x) ortonormitusrelaatiot Sarjakehitelmistä a l P l (z) Polynomien P l (z):n muodostajafunktio Legendren liittofunktiot P m l (x) *Laplacen integraaliesitykset funktioille P m l (x)

6 SISÄLLYS v *Legendren polynomien yhteenlaskuväittämä Besselin funktiot Muuttujien separointi sylinterikoordinaatistossa Besselin funktiot J ±ν (z) origon z = 0 ympäristössä Weberin ja Hankelin funktiot Y ν ja H 1,2 ν Besselin funktioiden palautuskaavat Funktioiden J n (z) muodostajafunktio Poissonin integraaliesitys J ν (z):lle Funktiot J ±(n+ 1 )(z) Tasoaallon pallo-aaltokehitelmä *Asymptoottisista kehitelmistä Laguerren polynomit ja Coulombin ongelma Vetyatomin Schrödingerin yhtälö Vety-atomin diskreetti energiaspektri Laguerren yhtälöiden polynomiratkaisut Laguerren polynomien ortonormitus Laguerren polynomien muodostajafunktio *Laguerren liittopolynomien muodostajafunktio *Vetyatomin radiaalinen normitusintegraali Hermiten polynomit ja harmoninen värähtelijä Kvanttimekaaninen harmoninen värähtelijä Hermiten polynomit H n (z) Muodostajafunktio polynomeille H n (z) Palautuskaavat H n (z):lle Polynomin H n (z) normitusintegraali *Harmonisen värähtelijän operaattorialgebra

7 vi SISÄLLYS 5 Variaatiolaskua Johdanto, brachistochronongelma Funktionaalit ja niiden ääriarvo-ongelmat Variaatiolaskun perusongelma Eulerin yhtälö Maksimi- ja minimitarkasteluja Legendren ehdot ääriarvoille Brachistochronongelman ratkaisu Minimipinnan ongelman ratkaisu Perusongelma n:lle muuttujalle Maksimi- ja minimitarkastelu. Legendren lause Perusongelman yleistyksiä Funktionaalit, jotka riippuvat korkeimmista derivatoista Useammat riippuvaiset muuttujat Rayleigh n-ritzin variaatioperiaate Homogeeninen integraaliyhtälö Isoperimetriset ongelmat, Eulerin lause Sovelluksia Eulerin-Lagrangen kertojasääntö Holonomisia sidosehtoja *Ei-holonomisia sidosehtoja *D Alembert n ja Hamiltonin periaatteet *Sidosehdot ja D Alembert n periaate *Ei-holonomisen systeemin liikeyhtälöt

8 SISÄLLYS vii 6 Sturmin ja Liouvillen teoria Johdanto Lisää reunaehdoista Erikoisfunktiot ja Sturm-Liouville- yhtälöt Variaatioperiaatteet Ominaisarvoratkaisuista u(x, λ) Ominaisarvoratkaisujen olemassaolo Ominaisarvojen asymptoottinen jakauma Ominaisarvoratkaisujen täydellisyydestä *Ortogonaalikehitelmistä funktioluokassa L 2 wr Hilbertin avaruuksista Johdanto Lineaariset vektoriavaruudet Sisätuloavaruus, normi ja metrisointi Cauchyn-Schwarzin-Bunjakovskin epäyhtälö Hilbertin vektoriavaruus l Suppeneminen l 2 :ssa Normiavaruus *Sisätulon olemassaolo normiavaruudessa Hilbertin funktioavaruus L Suppeneminen funktioavaruudessa L Hilbertin ja Banachin avaruudet Separoituva Hilbertin avaruus Kuvaus L 2 :n ja l 2 :n välillä

9 viii SISÄLLYS 7.6 Kuvaukset normi- ja Hilbertin avaruudessa Lineaariset rajoitetut funktionaalit Lineaarisista operaattoreista Käänteisoperaattori Banachin avaruudessa Adjungoitu operaattori Hilbertin avaruudessa Hermiittiset ja unitaariset operaattorit Lineaarioperaattorin spektri Kompaktit operaattorit Määritelmä, perusominaisuudet Kompaktit operaattorit ja funktionaaliyhtälöt Hilbertin-Schmidtin operaattorit Hilbertin-Schmidtin integraalioperaattorit Kompaktit hermiittiset operaattorit Ominaisarvo-ongelma Spektraalilause Viitteet 389

FyMM IIa Kertausta loppukoetta varten

FyMM IIa Kertausta loppukoetta varten Tiistai 27.2.2018 1/11 FyMM IIa Kertausta loppukoetta varten 2018 Tiistai 27.2.2018 2/11 1 Kokeesta yleisesti 2 3 4 5 6 Koealue jakaantuu neljään pääalueeseen: 1 Ensimmäisen kertaluvun ODY:t 2 Toisen kertaluvun

Lisätiedot

FyMM IIb Kertausta kurssin asioista

FyMM IIb Kertausta kurssin asioista Keskiviikko 2.5.2018 1/12 FyMM IIb Kertausta kurssin asioista 2018 Keskiviikko 2.5.2018 2/12 1 Kokeesta yleisesti 2 3 4 5 6 7 Keskiviikko 2.5.2018 3/12 Koealue jakaantuu seuraaviin pääalueesiin: 1 2 3

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

6. Lineaariset operaattorit

6. Lineaariset operaattorit 96 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että Fourier-sarjat suppenevat L 2 -normissa (kts. Seuraus 5.8 sivulla 80). Osoitimme myös, että kun f on jatkuva ja

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Tilat ja observaabelit

Tilat ja observaabelit Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ

Lisätiedot

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja

u 2 dx, u A f siten, että D(u) = inf D(U). Tarkemmin: Tarkoitus on osoittaa seuraavat minimointitehtävä ja Dirichlet n tehtävä u A f ja 1. Dirichlet n periaatteesta 1.1. Periaate I. Dirichlet n periaate pohjautuu fysikaaliseen minimienergiaperiaatteeseen ja luo pohjaa osittaisdifferentiaaliyhtälöiden ja variaatiolaskennan välille). Yksinkertaisesti

Lisätiedot

7. Laplace-operaattorin ominaisarvoista

7. Laplace-operaattorin ominaisarvoista 7. Laplace-operaattorin ominaisarvoista Värähtelevän jousen ja lämmönjohtumisyhtälöiden ratkaisemisessa päädyttiin seuraavankaltaiseen reuna-arvotehtävään { V = λv välillä (a, b), ja V (a) = V (b) = 0.

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

f(k)e ikx = lim S n (f; x) kaikilla x?

f(k)e ikx = lim S n (f; x) kaikilla x? 102 FUNKTIONAALIANALYYSIN PERUSKURSSI 6. Lineaariset operaattorit Luvussa 5 osoitimme, että jos f L 2, niin vastaavan Fourier-sarjan osasummat suppenevat kohti f:ää L 2 -normissa (kts. Seuraus 5.8 sivulla

Lisätiedot

Lakkautetut vastavat opintojaksot: Mat Matematiikan peruskurssi P2-IV (5 op) Mat Sovellettu todennäköisyyslaskenta B (5 op)

Lakkautetut vastavat opintojaksot: Mat Matematiikan peruskurssi P2-IV (5 op) Mat Sovellettu todennäköisyyslaskenta B (5 op) KORVAVUUSLISTA 31.10.2005/RR 1 KURSSIT, jotka luennoidaan 2005-2006 : Lakkautetut vastavat opintojaksot: Mat-1.1010 Matematiikan peruskurssi L 1 (10 op) Mat-1.401 Mat-1.1020 Matematiikan peruskurssi L

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)

Lisätiedot

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa. LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v.

Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos. Luennot, kevät 2006 ja kevät Kari Astala ja Petteri Piiroinen (v. FUNKTIONAALIANALYYSIN PERUSKURSSI Helsingin Yliopisto, Matematiikan ja tilastotieteen laitos Luennot, kevät 2006 ja kevät 2008 Kari Astala ja Petteri Piiroinen (v. 2006) Hans-Olav Tylli (v. 2008 hienosäätöä)

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät

Lisätiedot

MS-C1540 Euklidiset avaruudet

MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

800346A Differentiaaliyhtälöt II. Martti Kumpulainen

800346A Differentiaaliyhtälöt II. Martti Kumpulainen 8346A Differentiaaliyhtälöt II Martti Kumpulainen 6. maaliskuuta 214 DIFFERENTIAALIYHTÄLÖT II Kesto: 3 op. Luentoja 3 h, harjoituksia 16 h. Opintojaksossa tarkastellaan erikoisfunktioita, ortogonaalikehitelmiä

Lisätiedot

Reuna-arvotehtävien ratkaisumenetelmät

Reuna-arvotehtävien ratkaisumenetelmät Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

6 Variaatiolaskennan perusteet

6 Variaatiolaskennan perusteet 6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.

Lisätiedot

800346A Differentiaaliyhtälöt II. Seppo Heikkilä, Martti Kumpulainen, Janne Oinas

800346A Differentiaaliyhtälöt II. Seppo Heikkilä, Martti Kumpulainen, Janne Oinas 8346A Differentiaaliyhtälöt II Seppo Heikkilä, Martti Kumpulainen, Janne Oinas 6. toukokuuta 9 DIFFERENTIAALIYHTÄLÖT II Kesto: 3 op. Luentoja 3 h, harjoituksia 16 h. Opintojaksossa tarkastellaan erikoisfunktioita,

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

4. Hilbertin avaruudet

4. Hilbertin avaruudet FUNKTIONAALIANALYYSIN PERUSKURSSI 51 4. Hilbertin avaruudet Hilbertin avaruudet ovat ääretönulotteisista normiavaruuksista ominaisuuksiltaan kaikkein lähinnä kotiavaruutta R n tai C n. Tästä syystä niiden

Lisätiedot

Lectio Praecursoria: Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit

Lectio Praecursoria: Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit : Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit Janne Korvenpää Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Lokaali ja lineaarinen:

Lisätiedot

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä . Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 26. huhtikuuta 2017 Pekka Salmi Hilbertin avaruudet 26. huhtikuuta 2017 1 / 115 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L),

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille:

Opetusperiodi:I, suunnattu hakukohteille: Kurssin nimi ja koodi Muut kommentit MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi Teknillinen fysiikka ja matematiikka käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka Kurssin nimi ja koodi MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja sovelluksineen. Sisältö: vektorilaskentaa, matriisit

Lisätiedot

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II 802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Sisätulo- ja normiavaruudet 3 1.1 Sisätuloavaruus/Inner product space..............

Lisätiedot

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II/PART II 802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Integraaliyhtälöt ja Tikhonovin regularisointi

Integraaliyhtälöt ja Tikhonovin regularisointi Integraaliyhtälöt ja Tikhonovin regularisointi Annemari Kiviniemi Pro gradu -tutkielma Toukokuu 2017 MATEMATIIKAN JA TILASTOTIETEEN LAITOS HELSINGIN YLIOPISTO Tiedekunta/Osasto Fakultet/Sektion Faculty

Lisätiedot

x y dx + y = x3 yleinen ratkaisu ja hahmottele integraalikäyrien parvea.

x y dx + y = x3 yleinen ratkaisu ja hahmottele integraalikäyrien parvea. Harjoitus 1 Tehtävä 1.01 Kappale, jonka massa on m pudotetaan ilmakehässä alkunopeudella v 0 hetkellä t = 0. Sen liikeyhtälö on m dv dt = kv2 + mg, missä yhtälön oikean puolen ensimmäinen termi kuvaa ilmanvastusta,

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Fysiikan matemaattiset menetelmät II Luentomuistiinpanot helmikuuta 2015

Fysiikan matemaattiset menetelmät II Luentomuistiinpanot helmikuuta 2015 Fysiikan matemaattiset menetelmät II Luentomuistiinpanot 5 6. helmikuuta 5 Sisältö Johdanto 4 Ensimmäisen kertaluvun osittaisdifferentiaaliyhtälöt (ODYt 4. Ensimmäisen kertaluvun kvasilineaariset osittaisdifferentiaaliyhtälöt.......

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Kvanttimekaniikka: Luento 4. Martikainen Jani- Petri

Kvanttimekaniikka: Luento 4. Martikainen Jani- Petri Kvanttimekaniikka: Luento 4 Martikainen Jani- Petri Viimeksi Ajasta riippuva Schrödingerin yhtälö Alkuarvo- ongelman ratkaisu Aaltofunktio Tänään Mittauspostulaatti Diracin merkintätapa. Hermiittiset operaattorit

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

FYSA2031 Potentiaalikuoppa

FYSA2031 Potentiaalikuoppa FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali

Lisätiedot

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II

802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II 802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Sisätulo- ja normiavaruudet 2 1.1 Sisätuloavaruus/Inner product space..............

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

802320A LINEAARIALGEBRA OSA II/PART II

802320A LINEAARIALGEBRA OSA II/PART II 802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

HILBERTIN AVARUUKSISTA

HILBERTIN AVARUUKSISTA HILBERTIN AVARUUKSISTA Pro gradu -tutkielma Hannariikka Lehtiniemi Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto syksy 2014 TIIVISTELMÄ Ääretönulotteiset avaruudet ovat monilta ominaisuuksiltaan

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V

( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +

Lisätiedot

Inversio-ongelmia ja matematiikan sovelluksia. Joonas Ilmavirta Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto Täydennyskoulutus 5.6.

Inversio-ongelmia ja matematiikan sovelluksia. Joonas Ilmavirta Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto Täydennyskoulutus 5.6. Inversio-ongelmia ja matematiikan sovelluksia Joonas Ilmavirta Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto Täydennyskoulutus 5.6.2017 I Johdanto Miksi matemaatikko näkee seinän läpi? Nopea

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet:

5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet: 5.. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [, ) jolla on ominaisuudet: x = x = x + y x + y, x, y V a x = a x, x V, a K (= R tai C) Esimerkki 5..

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

INFO / Matemaattinen Analyysi, k2016, L0

INFO / Matemaattinen Analyysi, k2016, L0 INFO / Matemaattinen Analyysi, k2016, L0 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke 14-16 Viikot 09-10 salissa F119 Ke 14-16 Viikot 11 salissa F140 Ke 14-16 Viikot 13-18

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Hamiltonin formalismia

Hamiltonin formalismia Perjantai 3.10.2014 1/20 Hamiltonin formalismia Olemme valmiit siirtymään seuraavalle tasolle klassisen mekaniikan formalismissa, jonka aloitti Hamilton n. 1830. Emme käytä tätä formalismia minkään vaikeamman

Lisätiedot

Fysiikan matemaattiset menetelmät IIa Luentomuistiinpanot helmikuuta 2018

Fysiikan matemaattiset menetelmät IIa Luentomuistiinpanot helmikuuta 2018 Fysiikan matemaattiset menetelmät IIa Luentomuistiinpanot 8 6. helmikuuta 8 Sisältö Johdanto 4 Ensimmäisen kertaluvun osittaisdifferentiaaliyhtälöt (ODYt) 4. Johdatukseksi ODY:ihin: liikennevirtaesimerkki..................

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot