Kon Hydraulijärjestelmien mallintaminen ja simulointi L (3 op)
|
|
- Aili Nurmi
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kon Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Viikkoharjoitukset syksyllä 2015 Paikka: Maarintalo, E-sali Aika: perjantaisin klo 10:15-13:00 (14:00) Päivämäärät: Opetushenkilöstö Asko Ellman, prof. (TTY) Jyrki Kajaste, yliopisto-opettaja Jyri Juhala, tohtoriopiskelija Yhteyshenkilö: Heikki Kauranne, yliopisto-opettaja Aloitus, ryhmien muodostaminen Ryhmien muodostaminen, sylinterimallin kehittäminen Huom: Sylinterimallin pakollinen välinäyttö Huom: Pakollinen demonstraatiotilaisuus Hydr. laboratoriossa (K4) Huom: Venttiilimallin pakollinen välinäyttö Huom: Henkilökohtaisen harjoitustyön pakollinen esittely ja palautus Huom: Ryhmätyön pakollinen esittely ja palautus
2 Lisäohjeita Harjoituksissa tarvitaan - Windows -salasana - Ellman & Linjaman -opintomoniste "Hydraulijärjestelmien mallinnus ja simulointi" Harjoituksiin liittyvä materiaali löytyy sivulta (MyCourses) Aikatauluun merkityt pakolliset välinäytöt tarkoittavat sitä, että kunkin kurssilla olevan tulee kyseisessä harjoituksessa esittää harjoituksen vetäjälle dokumentaatio vaaditusta mallista. Dokumentaatioon tulee sisältyä mallin kuvaus lohkokaaviona sekä simulointeja, joilla on todennettu mallin toimivuus. Nämä venttiili- ja sylinterimallien dokumentoinnit sisällytetään henkilökohtaisesta simulointityöstä laadittavaan työselostukseen (palautettava viimeistään ). Pakollinen demonstraatiotilaisuus järjestetään Hydrauliikan tutkimusryhmän laboratoriohallissa, Sähkömiehentie 4 [Energia- ja Virtaustekniikkarakennus (K4), Maarintaloa vastapäätä]. Opaskartta löytyy kohdasta "Muu materiaali". Harjoituspäivänä kartan osoittamilla (sininen ja punainen nuoli) ovilla on tarkemmat kulkuopasteet. Demonstraatiotilaisuutta ennen käydään läpi ryhmätutkimuksen tilanne jokaisen ryhmän osalta Ryhmätutkimus Loppuseminaari: Ryhmätutkimuksen pakollinen esittely ja palautus
3 Toteutus, työmuodot ja arvosteluperusteet Luennot Luentopäiväkirja (50%) Harjoitustyö (50%) Henkilökohtainen harjoitustyö (hyväksytty/hylätty) Harjoitustyö Demonstraatio Harjoitustyön välinäytöt (2 kpl) Ryhmätutkimus (arvosana 0-5) Arviointikriteerit RYHMÄTUTKIMUS-ohjepaperilla
4 YLEISET MALLINNUS- ja SIMULOINTITAIDOT Osaamistavoitteet Opintojakson suoritettuaan opiskelija ymmärtää mallinnuksen ja simuloinnin perusteet (A, vaativuustaso 2) Opintojakson suoritettuaan opiskelija osaa soveltaa mallinnustyökalun (Matlab- ja Simulink-ohjelmistot) perusominaisuuksia järjestelmien dynaamisen käyttäytymisen ratkaisemiseen (A, vaativuustaso 3) HYDRAULISTEN JÄRJESTELMIEN ERITYISET MALLINNUS- JA SIMULOINTITAIDOT Opintojakson suoritettuaan opiskelija kykenee soveltamaan mallinnusta ja simulointia hydraulisten järjestelmien erityisalueella (A, vaativuustaso 3) Opintojakson suoritettuaan opiskelija kykenee analysoimaan kriittisesti hydrauliselle komponentille tai järjestelmälle laaditun mallin hyvyyttä ja puutteita (B, vaativuustaso 4) DYNAAMISTEN JÄRJESTELMIEN ANALYSOINTITAIDOT Opintojakson suoritettuaan opiskelija pystyy analysoimaan hydraulijärjestelmien dynamiikkaa askel- ja taajuusvastekokeiden avulla (A, vaativuustaso 4) Opintojakson suoritettuaan opiskelija kykenee tunnistamaan hydraulisissa järjestelmissä olevia dynaamisia järjestelmärakenteita ja analysoimaan niiden ominaisuuksia niihin liittyvien parametriarvojen perusteella (B, vaativuustaso 4) A) YDINAINES - B) TÄYDENTÄVÄ TIETÄMYS C) ERITYISTIETÄMYS VAATIVUUSTASO asteikolla (1-6)
5 Harjoituskerran 2 osaamistavoitteet Opetustuokion jälkeen opiskelija Hallitsee yhä paremmin Matlab/Simulink ohjelmiston perustoiminnot ja pystyy rakentamaan omatoimisesti yksinkertaisia simulointimalleja Kykenee selittämään, kuinka paineet muodostuvat hydraulisylinterin kammioissa ja kuinka niiden avulla voidaan määrittää sylinterin hydraulinen nettovoima Pystyy siirtämään hydraulisylinterin kammiopaineen määrittävään kaavan Simulink-ympäristöön Kykenee selittämään mallin avulla erilaisia sylinterin käyttötilanteita Osaa mallintaa hydraulisylinterin ja hitausmassan välisen vuorovaikutuksen (konkreettinen ohjelmointitulos)
6 Simulointi Nesteen ominaisuuksien mallinnus ja simulointi Venttiilien mallinnus ja simulointi Toimilaitteiden mallinnus ja simulointi Hydraulijärjestelmien mallinnus ja simulointi
7 Hydraulijärjestelmien simulointi - muuttujat Oleelliset muuttujat hydraulitekniikassa ovat Tilavuusvirta q [m 3 /s] Paine p [Pa], [N/m 2 ] Kyseiset muuttujat määrittelevät muun muassa hydraulisen tehon P= Dpq (komponentin teho, esim. pumppu, venttiili etc.) Dp paine-ero komponentin yli q tilavuusvirta komponentin läpi
8 Henkilökohtainen harjoitustyö Sylinterijärjestelmä Hydraulisylinteri Proportionaaliventtiili Kuorma (massa) Ohjausjärjestelmä (venttiilin ohjaus)
9 Sylinteri hydrauliikka, muuttujat Kammiopaineet (paineiden aikaderivaatat), opintomoniste s. 75 vuoto vuoto p A x max p B x dx/dt, x Muuttujat q A q B F Input - Kammiotilavuusvirrat - Männän liikenopeus - Männän absoluuttinen asema Output - Kammiopaineet - Männän voima (nettopainevoima)
10 Sylinteri hydrauliikka, parametrit vuoto A B (x max -x) tilavuus kammiossa B x max -x kuvaa nestepatsaan pituutta vuoto x x max Parametrit vakioita(?) A-kammio - B eff efektiivinen puristuskerroin - paine, lämpötila, vapaa ilma(!) ja kammion jousto - V 0A kammion kuollut tilavuus + putkissa oleva neste - A A männän pinta-ala A A x tilavuus kammiossa A x kuvaa nestepatsaan pituutta B-kammio - B eff efektiivinen puristuskerroin - V 0B kammion kuollut tilavuus + putkissa oleva neste - A B männän ja männänvarren pinta-alojen erotus (rengas)
11 Sylinteri hydrauliikka, tilavuudet vuoto A B (x max -x) tilavuus kammiossa B x max -x kuvaa nestepatsaan pituutta x max vuoto Vakio- ja muuttuvat tilavuudet x A-kammio - V 0 kammion kuollut tilavuus + putkissa oleva neste - A A x männän asemasta riippuva lisätilavuus - x on männän absoluuttiasema B-kammio - V 0 kammion kuollut tilavuus + putkissa oleva neste putket - - A B x max B puolen maksimitilavuus (mäntä päädyssä) A B x (rengas)männän syrjäyttämä nestetilavuus B-puolella A A x tilavuus kammiossa A - x on männän absoluuttiasema x kuvaa nestepatsaan pituutta
12 Harjoitustyöpiiri M p/u p A p B p/u x OHJAUS U
13 Järjestelmän simulointi p OUT q OUT q 1IN V q 2IN p 1IN p 2IN Nestetilavuus : ratkaistaan paine, tilavuusvirrat syötteinä Venttiili : ratkaistaan tilavuusvirta, paineet syötteinä Yleinen tapa toteuttaa järjestelmän mallinnus on jakaa se Nestetiloihin (tiloihin liittyy oleellisesti paine) Nestetilojen välisiin komponentteihin ( venttiilit ja pumput, komponentteihin liittyy oleellisesti tilavuusvirta)
14 Vaihe 2 Sylinteri - q A, q B, dx/dt - p A, p B, F Hitausmassa - F - dx/dt, x Harjoitustyöpiiri mallinnuksen in out in out p A näkökulmasta p B F (dv/dt) dx/dt M dx/dt, x q A q B OHJAUS U
15 Järjestelmän rakentuminen tilavuuksista venttiileistä / tilavuusvirtalähteistä toimilaitteista mekaanisista järjestelmistä (ohjauksista) mekaniikka V 1 V 2 pumppu putki venttiili putki venttiili toimilaite
16 Sylinterin nettovoima Hydraulinen voima F= p A A A -p B A B Nettovoimaan vaikuttavat myös tiivistevoimat: - Tiivisteiden taipumiseen liittyvä jousivoima - Liukumiseen liittyvä kitka - Tiivistemalliin palataan myöhemmin!
17 Input: voima kytkentä: sylinterin nettovoima Kuorman malli Output: liiketila (liikenopeus dx/dt ja männän asema x) kytkentä: sylinterin männän liiketila sylinterikammioiden tilavuuden muutos Harjoitustyön tapauksessa kuorma redusoituu hitauskuormaksi (massa). Tällöin liiketila voidaan laskea Newtonin toisen lain pohjalta "Kappaleeseen vaikuttavien voimien summa antaa kappaleelle kiihtyvyyden siten että F = ma missä m = kappaleen massa ja a = kiihtyvyys Mallissa olemme kiinnostuneita kuorman ja sylinterin männän liiketilasta (liikenopeus dx/dt ja männän asema x), joten -Ratkaise ensin kuorman kiihtyvyys a -Integroi kiihtyvyys -> nopeus (nopeuden muutos) -Simuloinnin alussa nopeus= 0 -Integroi nopeus tai kaksoisintegroi kiihtyvyys -> aseman muutos - Simuloinnin alussa asema = x 0 -> ota tämä huomioon, saat kuorman/männän absoluuttisen aseman
18 Hydraulisylinteri lineaarimoottori Nestemäärän lisäys pieneen nestetilavuuteen aiheuttaa voimakkaan paineen kasvun (vahvistus B/V) sekä voiman muutoksen hydraulisylinterissä, joka on eräs tärkeimmistä hydraulitekniikan komponenteista Hyvän dynaamisen suorituskyvyn (nopeat paineen/voiman muutokset) saavuttamiseksi nestetilavuudet on syytä pitää pieninä (ammattislangissa: kuolleet tilavuudet ) q F
19 Lisää paineen generoitumista Nestetilan paine voi muuttua myös suljetun astian tilavuuden muutoksen seurauksena Dp = - B V DV B nesteen puristuskerroin [Pa] V tilavuus täynnä nestettä [m 3 ] DV tilavuusmuutos [m 3 ] Etumerkki?
20 Pohdiskelutehtävä 2 Pintaan kohtisuorasti kohdistuva paine tuottaa voiman, jonka suuruus on F = pa F A pinta-ala [m 2 ] Minkä komponentin/toiminnon kuvassa oleva sylinteri muodostaa, kun männänvarteen kohdistetaan voima (kuvan mukaisesti)? Dp = - B V DV B nesteen puristuskerroin [Pa] V tilavuus täynnä nestettä [m 3 ] DV tilavuusmuutos [m 3 ]
21 Nestejousi Nesteet ovat kokoonpuristumattomia Nestettä (, joka on siis kuitenkin jossain määrin kokoonpuristuvaa) täynnä oleva suljettu sylinteri muodostaa jousen (jousivakio?) Yksinkertainen, mutta tärkeä asia, sillä sylinteri ja massa muodostavat yhdessä jousimassa järjestelmän, jolla on taipumus värähtelyyn ominaistaajudellaan M K
22 Paineen generoitumisen yhtälö - yhdistelmä Hydraulitekniikassa nestetilan paineenmuutoksessa vaikuttavia mekanismeja voivat olla siis a) nestemäärän muutokset tilavuudessa b) nestetilan tilaavuusmuutoksety Paineen generoitumisen kaava voidaan siten esittää esim. näin: dp dt = B V 0 Ø Œ º q - V t ø œ ß Ellman & Linjama: Hydraulijärjestelmien mallinnus ja simulointi, opetusmoniste
23 Pohdiskelutehtävä 3 Minkä hydraulitekniikassa yleisen komponentin voi muodostaa kuvan mukaisesta järjestelmästä? Millä edellytyksillä paine muuttuu sylinterissä? F dp dt = B V 0 Ø Œ º q - V t ø œ ß q
24 Mäntäpumppu Hydraulitekniikassa pumput toimivat yleensä syrjäytysperiaatteella, jolla tarkoitetaan pumpun syrjäytyskammioiden koon jaksollista vaihtelua Paine sylinterissä (pumpussa) kasvaa, mikäli syrjäytyselimen (mäntä) liike pienentää kammiotilavuutta nopeammin kuin mitä neste ehtii poistua kammiosta Yleensä ajatellaan, että pumppu tuottaa tilavuusvirtaa ja paine muodostuu siitä, että virtausta vastustetaan (ventiilit yms.)
25 Lisäpohdittavaa Onko nesteen puristuskerroin oikeasti vakio? Miten puristuskertoimeen vaikuttavat esimerkiksi paine, nesteessä oleva vapaa ilma sekä nesteen lämpötila? Miten lämpötila vaikuttaa paineen muodostumiseen? (mineraliöljy / C hiiteräs / C ) Nesteen tilayhtälö? Mitä suurusluokkaa paineen nousu on hydraulinesteen kokoonpuristumisen seurauksena? Miten sovellat paineen generoitumisen kaavaa esimerkiksi mäntäpumppuun ja nestejouseen?
26 Sylinterimallin testaus Huom! Esimerkkiarvot muuttujille/parametreille Jätä kitkamalli pois! Sylinteri 32/ A A ja A B (katso työtilassa pinta-alojen arvot) B= Pa x 0 =0.5m Lisänestetilavuudet sylinterin päädyissä: 3.2 cm 3 (männän puoli), 2.0 cm 3 (männän varren puoli) Putket d_putki= m ja L_putki= 0.75 m 1. tulpataan sylinterin virtausaukot ja työnnetään männänvarrella nopeudella a)dx/dt =110-3 m/sjab)dx/dt = m/s -> testataan paineiden muutos 10 sekunnin simulaatiolla (etumerkki ja absoluuttiarvot) -> testataan voiman muutos 10 sekunnin simulaatiolla 2. lukitaan männänvarsi (dx/dt= 0) ja 2.1 tuodaan kammioon A tilavuusvirta q A =110-6 m 3 /s 2.2 tuodaan kammioon B tilavuusvirta q B =110-6 m 3 /s -> testataan paineiden muutos 10 sekunnin simulaatiolla (etumerkki ja absoluuttiarvot) -> testataan voiman muutos 10 sekunnin simulaatiolla 3. asetetaan tilavuusvirrat seuraavasti (dx/dt =110-3 m/s) q A = +dx/dt A A q B = -dx/dt A B -> testataan paineiden muutos (etumerkki ja absoluuttiarvot) -> testataan voiman muutos
27 Sylinterimallin testaus Käytä esim. Display-lohkoa signaalien loppuarvojen tarkistamiseksi q_a_testi p_a_lopussa q_a q_b_testi q_a p_a q_b q_b p_b p_a ja p_b v_testi dx/dt F v Sylinteri p_b_lopussa Testi 1a v= 1e-3 Testi 1b v= -1e-3 Testi 2 v= 0 Testi 3 v= 1e-3 1 s Integrator Huom! Jätä kitkamalli pois! delta_x Testi 1a p_a= xxx bar p_b= yyy bar F= zzz kn Testi 1b p_a= xxx bar p_b= yyy bar F= zzz kn F_lopussa Testi 2 p_a= xxx bar p_b= yyy bar F= zzz kn Testi 3 p_a= xxx bar p_b= yyy bar F= zzz kn F_paine
Kon Hydraulijärjestelmien mallintaminen ja simulointi L (3 op)
Kon-4.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Viikkoharjoitukset syksyllä 204 Paikka: Maarintalo, E-sali Aika: perjantaisin klo 0:00-3:00 (4:00) Päivämäärät: Opetushenkilöstö Asko
LisätiedotHydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.
Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen
LisätiedotKon Hydraulijärjestelmien mallintaminen ja simulointi L (3 op)
Kon-4.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Viikkoharjoitukset syksyllä 204 Paikka: Maarintalo, E-sali Aika: perjantaisin klo 0:00-3:00 (4:00) Päivämäärät: Opetushenkilöstö Asko
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
LisätiedotLuku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
LisätiedotKon HYDRAULIIKKA JA PNEUMATIIKKA
Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA 2016 Kurssin tavoitteet Opintojakso antaa yleistiedot hydrauliikan ja pneumatiikan komponenteista sekä niiden toiminnasta osana kokonaisjärjestelmää. Teleskooppi
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
Lisätiedot3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet
3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden
LisätiedotMatemaattisesta mallintamisesta
Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotKon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA
Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA Sähköhydrauliikka Päivän teemat Onko hydrauliikasta muuhunkin kuin silkkaan voimantuottoon? Miten järkeä hydrauliikkaan? Mitä sitten saadaan aikaan ja millaisin
LisätiedotSIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/
SIMULINK 5.0 Harjoitus 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2 Harjoitustehtävä. Tarkastellaan kuvan mukaisen yhden vapausasteen jousi-massa-vaimennin systeemin vaakasuuntaista pakkovärähtelyä,
Lisätiedot= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N
t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää
LisätiedotKon HYDRAULIIKKA JA PNEUMATIIKKA
Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA Hydromekaniikan Piirrosmerkit Johdanto erusteet Päivän teemat Mitä se hydrauliikka oikein on? Missä ja miksi sitä käytetään? Paine, mitä ja miksi? Onko aineesta
LisätiedotLyhyt tutustumiskierros Simulink-ohjelman käyttöön hydrauliikan simuloinnissa
Lyhyt tutustumiskierros Simulink-ohjelman käyttöön hydrauliikan simuloinnissa Matlab käyntiin valikosta Simulink käyntiin Kirjoitetaan simulink tai klikataan Simulink-symbolia Simulink Library
LisätiedotLuento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka
Luento 10 Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit BK60A0100 Hydraulitekniikka 1 Yleistä Toimilaitteen liikenopeus määräytyy sen syrjäytystilavuuden ja sille tuotavan
LisätiedotKon Hydraulijärjestelmät
Kon-41.4040 Hydraulijärjestelmät Hydraulijärjestelmän häviöiden laskenta Oheisten kuvien (2 5) esittämissä järjestelmissä voiman F kuormittamalla sylinterillä tehdään edestakaisia liikkeitä, joiden välillä
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
Lisätiedot4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet
4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan
LisätiedotLuvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
LisätiedotNesteen ominaisuudet ja nestetilavuuden mallinnus
Kon-4.47 Hydraulijärjestelmien mallintaminen ja simulointi Nesteen ominaisuudet ja nestetilavuuden mallinnus Hydrauliikka on tehon siirtoa nesteen välityksellä. Jos yrit ymmärtämään hydrauliikkaa, on sinun
LisätiedotProportionaali- ja servoventtiilit toimivat
Proportionaali- ja servoventtiilit toimivat Suuntaventtiileinä Tilavuusvirran suunnan ohjauksella vaikutetaan toimilaitteiden liikesuuntiin. Paineventtiileinä Paineensäädöllä vaikutetaan toimilaitteista
LisätiedotKon HYDRAULIIKKA JA PNEUMATIIKKA
Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA Alustus Luentorunko (1-4) 1. Miksi pneumatiikkaa 2. Hydrauliikka vs. pneumatiikka 3. Sähkö vs. pneumatiikka 4. Pneumatiikan rajat 5. Fysiikkaa pneumatiikan takana
LisätiedotLuento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
LisätiedotEsim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotKon-41.4040 Hydraulijärjestelmät
Kon-41.4040 Hydraulijärjestelmät Tutkimustehtävä 1 HENKILÖKOHTAISESTI RATKAISTAVA TUTKIMUSTEHTÄVÄ KOOSTUU LABORA- TORIOHARJOITUKSESTA SEKÄ TUTKIMUSKYSYMYKSISTÄ. TÄMÄ DOKUMENTTI SISÄLTÄÄ MOLEMPIEN OSUUKSIEN
LisätiedotLiike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
LisätiedotFYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
LisätiedotSMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE
SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotDYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotMoottorisahan ketjun kytkentä
Moottorisahan ketjun kytkentä Moottorisaha kiihdytetään tyhjäkäynniltä kierrosnopeuteen 9600 r/min n. 120 krt/h. Mikä on teräketjun keskipakoiskytkimen kytkentäaika ja kuinka paljon kytkin lämpenee, kun
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotKJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,
LisätiedotRAK-31000 Statiikka 4 op
RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka
LisätiedotFYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka
FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka Oppilaan nimi: Pisteet: / 77 p. Päiväys: Koealue: kpl 13-18, s. 91-130 1. SUUREET. Täydennä taulukon tiedot. suure suureen tunnus suureen yksikkö matka aika
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
LisätiedotMuunnokset ja mittayksiköt
Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?
LisätiedotPHYS-A3131 Sähkömagnetismi (ENG1) (5 op)
PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit
LisätiedotLuku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.
Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen
LisätiedotJakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotFYSIIKAN HARJOITUSTEHTÄVIÄ
FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on
Lisätiedotg-kentät ja voimat Haarto & Karhunen
g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotMEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta
MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
Lisätiedot2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki
Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
LisätiedotMassakeskipiste Kosketusvoimat
Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
LisätiedotKuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
LisätiedotJakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.
Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
LisätiedotLuento 3: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä
LisätiedotMekatroniikan peruskurssi Luento 1 / 15.1.2013
Lappeenranta University of Technology, Finland Mekatroniikan peruskurssi Luento 1 / 15.1.2013 Rafael Åman LUT/Älykkäiden koneiden laboratorio Tehonsiirto voidaan toteuttaa: Mekaanisesti Hydraulisesti Pneumaattisesti
LisätiedotLiikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
LisätiedotFysiikan perusteet ja pedagogiikka (kertaus)
Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-
LisätiedotHarjoitellaan voimakuvion piirtämistä
Harjoitellaan voimakuvion piirtämistä Milloin ja miksi voimakuvio piirretään? Voimakuvio on keskeinen osa mekaniikan tehtävän ratkaisua, sillä sen avulla hahmotetaan tilanne, esitetään kappaleeseen kohdistuvat
LisätiedotIntegrointialgoritmit molekyylidynamiikassa
Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotKon HYDRAULIIKKA JA PNEUMATIIKKA
Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA Päivän teemat Toimilaitteiden - liikesuunnan ohjaus? - liikenopeuden ohjaus? - voiman ohjaus? Mistä riittävästi voimaa ohjaukseen? Onko venttiileistä vain iloa?
LisätiedotFysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto
Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotLineaarialgebra MATH.1040 / voima
Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotFMT aineenkoetuslaitteet
FMT aineenkoetuslaitteet PC-ohjatut testaussylinterijärjestelmät MATERTEST OY PC-ohjatut servohydrauliset testaussylinterijärjestelmät 1-5000 kn Käyttösovellutukset Testaussylintereitä käytetään säätöä
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
Lisätiedot4. VASTAVENTTIILIN JA PAINEENRAJOITUSVENTTIILIN SEKÄ VASTAPAINEVENTTIILIN KÄYTTÖ hydrlabra4.doc/pdf
4/1 4. VASTAVENTTIILIN JA PAINEENRAJOITUSVENTTIILIN SEKÄ VASTAPAINEVENTTIILIN KÄYTTÖ hydrlabra4.doc/pdf Annettu tehtävä Työn suoritus Tehtävänä on annettujen kytkentäkaavioiden mukaisilla hydraulijärjestelmillä
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
LisätiedotKonventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla
Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa
LisätiedotKon Mekanismiopin perusteet
Kon-16.4001 Mekanismiopin perusteet Kari Tammi Tommi Lintilä Kurssin osasuoritteet Viikkoharjoitukset: 6 kpl 1/3 arvosanasta Harjoitustyö: 2/3 arvosanasta - Molemmat suoritetaan itsenäisesti! Hyväksyttyyn
LisätiedotAaltoliike ajan suhteen:
Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
Lisätiedot10. Kytkentäohje huonetermostaateille
. Kytkentäohje huonetermostaateille TERMOSTAATTIE JA TOIMILAITTEIDE KYTKETÄ JA KYT KE TÄ KO TE LOI HI 2 1 2 2 1 WehoFloor-termostaatti 3222 soveltuvaa kaapelia 3 1, mm 2. joh timet keskusyk sikköön käsikirjassa
LisätiedotDissipatiiviset voimat
Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu
LisätiedotGravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike
Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
LisätiedotLuento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
LisätiedotHarjoitus 5 -- Ratkaisut
Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio oskilloi äärettömän tiheään nollan lähellä. PlotPoints-asetus määrää, kuinka tiheästi Plot-funktio ottaa piirrettävästä funktiosta "näytteitä"
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotKon Simuloinnin Rakentaminen Janne Ojala
Kon 16.4011 Simuloinnin Rakentaminen Janne Ojala Simulointi käytännössä 1/3 Simulaatiomalleja helppo analysoida Ymmärretään ongelmaa paremmin - Opitaan ymmärtämään koneen toimintaa ja siihen vaikuttavia
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
Lisätiedotei jakoventtiileinä. Laipallista venttiiliä M3P...FY on saatavana kahta eri kokoa: laipallinen venttiili DN100
Magneettitoimimoottorilla varustetut moduloivat säätöventtiilit PN kylmä- ja lämminvesilaitoksia varten; varustettu asennon säädöllä ja asennon takaisinkytkennällä MP80FY MP00FY Magneettisella toimimoottorilla
LisätiedotKoneenosien suunnittelu hydrauliikka ja pneumatiikka
Koneenosien suunnittelu hydrauliikka ja pneumatiikka 2018 TkT Jyrki Kajaste KON-C3002 Sisältö Mitä hydrauliikka on? Ominaispiirteitä Tehon ja energian hallinta Paineen muodostuminen tilavuudessa Sovelluksia
LisätiedotTUTKITUSTI PARAS* parasta palvelua ja nopeat toimitukset
TUTKITUSTI PARAS* parasta palvelua ja nopeat toimitukset EMME TARJOA KEPPIÄ VAAN PELKKIÄ PORKKANOITA SALHYDRO:n ammattitaitoinen ja kokenut tiimi palvelee ja lähettää tuotteet nopeasti. Varaston toimituskyky
Lisätiedot