Reologian merkitys polymeerien sulatyöstössä

Koko: px
Aloita esitys sivulta:

Download "Reologian merkitys polymeerien sulatyöstössä"

Transkriptio

1 Reologian merkitys polymeerien sulatyöstössä POLYKO - Polymeeripohjaisten materiaalien käyttöaluekohtaisesti räätälöityjen koulutusmateriaalien tuottaminen Johanna Aho TTY Muovi- ja elastomeeritekniikka

2 Sisältö Johdanto Mitä on reologia? Reologiset virtaustyypit Leikkausvirtaus Venymävirtaus Viskoelastisuus Polymeerien virtauskäyttäytyminen ttä t i Reologian rooli eri prosessointimenetelmissä Ekstruusio Ruiskuvalu Puhallusmuovaus Kalvonpuhallus ja -ekstruusio Reologiset mittaukset prosessoinnin tarpeisiin Sulaindeksin määritys Leikkausviskositeetti Venymäviskositeetti

3 Mitä on reologia? Oppi aineiden virtauksesta ja muodonmuutoksesta (kreik. rheos = virtaus) Yleensä reologialla tarkoitetaan ei- Newtonisten aineiden tutkimusta Aineet jota virtaavat ei-newtonisesti, eli normaalista poikkeavalla tavalla Newtonisten aineiden virtausta tutkii virtausdynamiikka Poikkitieteellinen ala jolla on tärkeä merkitys mm. polymeerien prosessoinnissa, maali- ja liimateollisuudessa, kosmetiikkateollisuudessa ja elintarviketeollisuudessa Tärkein reologinen suure on viskositeetti η, joka kuvaa nesteen kykyä vastustaa virtausta; korkea viskositeetti jäykkä neste Yksikkö Pascalsekunti, Pa s (Ns/m 2 ) Neste Viskositeetti [Pas] lasisula polymeerisulat siirappi 10 2 hunaja 10 1 glyseroli 10 0 vesi 10-3 ilma 10-5

4 Leikkausmuodonmuutos ja leikkausviskositeetti Yksinkertainen leikkaus on tavallisimmin esiintyvä (ja mitattava) kuormitusmuoto virtauksessa Leikkausta voidaan mallintaa pinolla levyjä jotka liukuvat toistensa ohi kuormituksen alaisena Samalla virtauslinjalla ll olevien partikkelien välinen etäisyys ei muutu. Virtaus levyjen välissä ja putkissa; poikkipinta-ala ala pieni suhteessa virtausmatkaan ja vapaita virtauspintoja ei ole F h η s = v(h) A τ & γ γ& = v h v F τ = F A v = virtausnopeus F= kuormitusvoima h = virtauskanavan korkeus A= virtauspoikkipinta-ala γ& γ = leikkausnopeus τ = leikkausjännitys η s = leikkausviskositeetti

5 Virtaus- ja viskositeettikäyrät Virtauskäyrällä tarkoitetaan jännitysleikkausnopeus käyrää Viskositeettikäyrällä esitetään (leikkaus)viskositeetti leikkausnopeuden funktiona tavallisesti logaritmisella asteikolla Lineaarisella asteikolla polymeereille tyypillinen nollaviskositeettialue ei tule esiin selkeästi τ [Pa] γ [s -1 ] η [Pa s] log η [ Pa s] γ [s -1 ] log γ [s -1 ]

6 Ei-Newtoniset ja Newtoniset nesteet leikkauskuormituksessa Newtonisilla nesteillä leikkausjännityksen suhde leikkausnopeuteen on lineaarinen ja riippumaton kuormituksen määrästä tai kestosta Ei-Newtonisilla nesteillä leikkausjännityksen ja leikkausnopeuden suhde riippuu ajasta, kuormitusnopeudesta, ja/tai kuormituksen kestosta ja määrästä τ Virtaus- ja viskositeettikäyriä Newtoninen neste Ei-Newtoninen i leikkausoheneva Leikkausnopeuden kasvaessa aine ohenee eli viskositeetti laskee Ei-Newtoninen leikkauspaksuuntuva Leikkausnopeuden kasvaessa viskositeetti kasvaa Ei-Newtoninen Binghamin plastinen materiaali Aine virtaa viskoosisti vasta kun tietty rajajännitys (myötöraja) on ylitetty sen alapuolella käyttäytyy elastisesti η γ& γ&

7 Venymämuodonmuutos ja venymäviskositeetti F Kun ainetta venytetään, samalla virtauslinjalla olevien partikkelien keskinäinen etäisyys muuttuu Yksinkertainen eli uniaksiaalinen venytys: kuormitus x-suunnassa, dimensiot y- ja z- suunnassa pienenevät Muut venytystyypit planaarinen (venytys x- suunnassa, y-dimensio pysyy vakiona, z- dimensio pienenee) ja biaksiaalinen (venytys x- ja y-suunnassa, z-dimensio pienenee) ε& H = d ln L dt L 0 A L t uniaksiaalinen planaarinen biaksiaalinen z y x η E= σ & ε F L t A ε& σ H η E = venytysvoima = näytteen pituus = aika = venytettävä poikkipinta-ala = Hencky venytysnopeus = vetojännitys = venymäviskositeetti

8 Venymäviskositeetti start-up virtauksessa ja yhteys leikkausviskositeettiin Venymäviskositeetti aina leikkausviskositeettia suurempi Start-up venymävirtaus (uniaksiaalinen kuormitus) tyypilliselle venytyspaksuuntuvalle polymeerille Newtonisille nesteille ηe= 3 ηs Venytys- viskoelastisille aineille tämä suhde jopa 100- paksuuntuminen 1000 Polymeereille start-up- venymäviskositeettikäyrien lineaarisella osalla (viskositeetti ei riipu kuormitusnopeudesta) venymä- ja leikkausviskositeetin suhde: Uniaksiaalinen venytys: η 3η + + E = s + η E lineaarinen kuormitusalue Steady-state + η ( t) E = vakio 3η + ( & γ 0) η s Planaarinen venytys: yy Biaksiaalinen venytys: η 4 η η + + P 1 = s 2η + + P2 = s η 6η + + B = s lim & ε 0 H + + [ η ( t, & ε )] = 3η ( t, & γ 0) E t H s

9 Viskoelastisuus Käyttäytyminen elastisten, kiinteiden aineiden ja viskoosien nesteiden välimaastossa VISKOELASTISUUS Reagointi kuormitukseen: Elastiset aineet: välitön muodonmuutos joka palautuu kun kuormitus poistetaan Viskoosit aineet: palautumaton, ajasta riippuva muodonmuutos; tapahtuu viiveellä kuormituksen alla Viskoelastiset aineet: ajasta riippuva muodonmuutos joka on osittain palautuvaa

10 Viskoelastisuus Kaikki viskoelastiset nesteet ovat ei-newtonisia mutta kaikki ei-newtoniset aineet eivät ole viskoelastisia Viskoelastisuuteen liittyviä ilmiöitä: Suutinpaisuma: Polymeerimolekyylit muistavat aikaisemman olotilansa ja pyrkivät palaamaan aa aa siihen kapeamman a poikkileikkauksen läpi virratessaan Jos poikkipinta ei ole pyörähdyssymmetrinen, myös dimensiot vääristyvät riippuu ajasta, virtausnopeudesta ja lämpötilasta, sekä polymeerin moolimassasta (korkea M w, suurempi suutinpaisuma) Epästabiili virtaus, liian suuri leikkausjännitys: Sulamurtuman eri muodot (shark skin, oskilloiva virtaus, aaltoilu): Vaste pitkäkestoiseen kuormitukseen: Viruminen: Pitkäkestoinen, vakiosuuruinen jännitys aiheuttaa jatkuvaa muodonmuutosta Jännitysrelaksaatio: Polymeeriketjut virtaavat pikku hiljaa materiaaliin kohdistuvan vakiomuodonmuutoksen takia energeettisesti suotuisampaan tilaan

11 Polymeerisulien reologinen käyttäytyminen Polymeerit koostuvat pitkistä molekyyliketjuista jotka ovat sulatilassa toisiinsa kietoutuneina Tästä johtuen polymeerit ovat luonteeltaan viskoelastisia Polymeerit ovat leikkausohenevia; mahdollistaa sulatyöstön Joillain polymeereillä esiintyy venytyspaksuuntumista Joillain polymeereillä, etenkin elastomeereilla tai täyteaineistetuilla polymeereillä, esiintyy virtauksen myötöraja Useissa prosessimenetelmissä esiintyy sekä leikkaus- että venymävirtausta Polymeerien e viskoelastinen e luonne tekee ee niiden käyttäytymisestä monimutkaista ja aiheuttaa useita omituisia virtausilmiötä tehden sulatyöstöstä haastavaa

12 Tyypillinen leikkausviskositeettikäyrä polymeerisulalle Nollaviskositeettialue (1. Newtoninen taso) η= η η o Siirtymäalue parametri a määrittää jyrkkyyden ja λ alkupisteen Leikkausoheneva alue (potenssilakialue), parametri n määrittää kulmakertoimen log η [Pa s] l Koko viskositeettialueen mallintaminen esim. Carreau-Yasuda mallin avulla: [ ] a 1 ( & γ ) a η = η λ 0 + n 1 Potenssilaki: η = Kγ& n 1 Leikkausoheneva neste: n<1 Leikkauspaksuuntuva neste: n>1 Newtoninen neste: n=1 log γ [s -1 ]

13 Tyypilliset leikkausnopeusalueet sulatyöstömenetelmissä Rotaatiovalu Puhallusmuovaus ja lämpömuovaus Ahtopuristus 1000 Putki- ja profiiliekstruusio η [Pa s] 100 Kalvoekstruusio Ruiskuvalu 10 Sulakehruu Pinnoitus γ [s -1 ]

14 Polymeerien venymäviskositeetti Venymäviskositeetti merkittävässä roolissa useissa prosesseissa Polymeerisulan vedettävyys ja sulastabiilius; kyky venyä ohueksi kalvoksi/ filamentiksi Sulalujuus tärkeä kalvoekstruusiossa ja puhallusmuovauksessa Venytyspaksuuntuminen (extension thickening, myös: strain hardening) Tyypillistä pitkäketjuhaaroittuneille polymeereille Tärkeää materiaaleilla, joita käytetään kalvonpuhalluksessa Mahdollistaa venytyksen moninkertaisiin mittoihin alkuperäiseen nähden: kalvonpuhalluksessa vaadittava kuplastabiillius Venytysoheneminen (extension thinning, myös: strain softening) Tyypillistä lineaarisille polymeereille Tärkeää kalvoekstruusiossa: deformaatio uniaksiaalisen ja tasomaisen venytyksen välillä + η E η E Start-up virtaus t ε& H pienenee Steady-state venymäviskositeetti ε& H

15 Polymeerien virtauskäyttäytyminen Muovisulien virtaus korkeasta viskositeetista johtuen (muutamia poikkeuksia lukuun ottamatta) aina laminaarista Varsinaista turbulenssia ei esiinny suuremmillakaan leikkausnopeuksilla Laminaarinen virtaus mahdollistaa esim. monikerrosruiskuvalun ja ekstruusion Leikkausohenevilla polymeereillä korkeampi leikkausnopeus putken seinämillä kuin Newtonisilla nesteillä Virtaus äkkinäisesti muuttuvan poikkipintaalan läpi aiheuttaa pyörteistä sekundäärivirtausta i t useilla polymeereillä (a) Newtoninen neste: parabolimainen virtausprofiili (b, c) Leikkausoheneva neste: tulppamainen virtausprofiili Kuva: Järvelä P, Syrjälä K, Vastela M, Ruiskuvalu, Plastdata Oy, Tampere 2000

16 Virtaus prosessoinnissa Virtauksessa syntyvät jännitykset prosessointitavasta riippuen leikkaus- tai venytysjännitystä yyj y tai usein niiden yhdistelmää Leikkaus voi olla Vetovirtausta (ruuvissa) Painevirtausta (putkissa, jakokanavissa, muotissa) Venytysdeformaatiota esiintyy Uniaksiaalisena (kuidutus, kuristusvirtaus ) Biaksiaalisena (kalvonpuhallus, puhallusmuovaus) Planaarisena (puhallusmuovaus, kalvoekstruusio) Polymeerien viskoelastisesta luonteesta huolimatta prosessoinnissa esiintyvää virtausta pystytään useimmiten mallintamaan riittävällä tarkkuudella käyttäen Newtonisia virtausyhtälöitä Vetovirtaus Painevirtaus

17 Leikkausnopeuden arviointi virtausgeometrioissa Leikkausnopeus vaihtelee voimakkaasti virtauspoikkipinnan geometriasta ja dimensioista riippuen 2R 4Q Q & γ 3 πr Laskenta esimerkiksi ekstruuderin suuttimessa ja ruuvikanavassa, tai ruiskuvalussa portissa, muottionkalossa tai jakokanavistossa voidaan tehdä suhteellisen yksinkertaisia laskukaavoja käyttäen W H γ& 6Q WH 2 Q = tilavuusvirta R i R o γ& 2 π ( R o 6Q + R )( R i o R i )

18 Reologia ekstruusiossa

19 Lähtökohdat Ekstruusio on jatkuvatoiminen prosessi jossa normaalisti ei esiinny vapaita virtauspintoja vaan rajaehdot on määritelty esim. suuttimen ja kalibraattorien geometrian mukaan Viskoelastinen virtaus on sivuroolissa joten Newtonisia virtausmalleja voidaan käyttää mallintamisessa riittävällä tarkkuudella Ekstruuderissa ruuvin ja sylinterin seinämän välinen vetovirtaus kuljettaa sulaa eteenpäin ja suuttimen vastapaine aiheuttaa sitä vastustavan painevirtauksen. Lisäksi on huomioitava takaisinvirtaus ruuvin harjan ja sylinterin seinämän välistä Ekstruusioanalyysiä varten tunnettava Materiaalin virtausominaisuudet (viskoelastisuus, leikkausohenevuus) Virtausnopeus, paine, lämpötila Jotta voidaan saavuttaa.. Ruuvigeometrian ja suuttimen dimensioiden optimointi, Työstöolosuhteiden optimointi raaka-aineen ja sen ominaisuuksien ja optimointi prosessin ja tuotteen kannalta ja sitä kautta arvioida Ekstruuderin maksimaalinen tuotto Ekstruuderin moottorilta vaadittava teho

20 Ruuvi ja suutin Syöttövyöhyke ottaa vastaan granulaatin syöttösuppilosta ja kuljettaa sitä eteenpäin Kompressiovyöhyke kompressoi ja plastisoi i granulaattia sulaksi Annosteluvyöhyke (homogenointivyöhyke) homogenoi sulan ja tuo sen lopullisesti kauttaaltaan oikeaan lämpötilaan Suutin generoi vastapaineen ja antaa muodon ekstrudoitavalle tuotteelle Suutin Annosteluvyöhyke Kompressiovyöhyke Syöttövyöhyke Reologisessa analyysissä tärkeimmät osat tarkastelussa ovat ruuvin annosteluvyöhyke ja suutin. Seuraavassa tarkastellaan tavallista yksiruuviekstruuderia

21 Ekstruusioruuvin geometria

22 Ekstruuderin tuotto yksiruuviekstruuderi Ekstruuderin suorituskykyä voidaan arvioida ominaiskäyrien avulla Ruuvin annosteluvyöhykkeen ominaiskäyrä kertoo vetovirtauksen riippuvuuden suuttimen vastapaineesta Q d on vetovirtaus, kun vastustava paine P=0, eli käytännössä kun ekstruuderissa ei ole kiinni suutinta joka aiheuttaisi vetovirtausta vastustavaa painevirtausta Suuttimen ominaiskäyrä määrittelee suuttimesta aiheutuvan vastapaineen P max on maksimipaine jonka ekstruuderi kykenee generoimaan Q d Ruuvin ominaiskäyrä Ominaiskäyrät lineaarisia, kun virtaustapahtumaa on yksinkertaistettu: Geometriset tekijät, esim. kanavan Suuttimen ominaiskäyrä kaarevuutta ei huomioitu QQ Ekstruuderin toiminnallinen Kitkalämpöä ei huomioitu (isoterminen piste: it tötöl työstöolosuhteet t virtaus) kys. ruuvi/suutin Vuotovirtausta ruuvin harjan ja sylinterin -yhdistelmällä seinämän välistä ei huomioitu Viskositeetti oletettu riippumattomaksi lämpötilasta ja leikkausnopeudesta P P max

23 Ominaiskäyrät yksinkertaistettu tapaus Suutin 1 Q d1 Ruuvi 1 Q Q Ruuvi 2 d2 P Suutin 2 Ekstruuderin tuotto riippuu ruuvi/suutin yhdistelmästä: [Ruuvi 1 + Suutin 1]: paras tuotto, [Ruuvi 1 + Suutin 2]: huonompi tuotto tt kuin [Ruuvi 2 + Suutin 2] Mitä korkeampi ruuvin harja (h), sitä suurempi Q d ja sitä suurempi riippuvuus suuttimen vastapaineesta Suuttimen tarjoama virtausvastus riippuu sen geometriasta Kun otetaan huomioon leikkausohenevuus ja lämpötilariippuvuus, ominaiskäyrät muuttuvat kaareviksi ja niillä voi olla useampia leikkauspisteitä keskenään (= useampia mahdollisia prosessiparametriyhdistelmiä) Myös ruuvin kaikkien vyöhykkeiden huomioonottaminen monimutkaistaa käyriä huomattavasti

24 Ruuvikanavan geometrinen yksinkertaistaminen Ruuvikanava oletetaan leveäksi (W»h), ontoksi, rullaksi kääritystä kaistaleesta muodostuneeksi tilaksi φ V b = πnd V V bz bx = V = V b b cos φ = π ND cos φ sinφ = πnd sinφ N= ruuvin pyörimisnopeus h Todellisuudessa usein tarvitaan korjaus joka ottaa huomioon kanavan äärellisen leveyden ja sen, että ruuvikanavan reunoja kuvaavan kaistaleen päädyt ovat vinot

25 Yksinkertaistusten vaikutus leikkausoheneminen Oletus, että polymeeri käyttäytyy Newtonisesti, johtaa karkeaan yksinkertaistukseen: todellisuudessa kaikki ekstrudoitavat polymeerit ovat voimakkaasti leikkausohenevia Ekstruusiossa esiintyvillä leikkausnopeuksilla viskositeetti voi vaihdella useiden kymmenen potenssien suuruusluokkaa joten ekstruuderin kvantitatiivisen suorituskyvyn yy määrittämisessä leikkausohenemisen huomioiminen on ensiarvoisen tärkeää Mitä leikkausohenevampi neste, sitä pienempi ekstruuderin tuotto annetulla ruuvigeometrialla Myös puhdas kitkavirtaus i t (kun P=0) on pienempi i leikkausohenevalle ll nesteelle 1-dimensionaalinen vetovirtaus V bz riippumaton viskositeetin leikkausnopeusriippuvuudesta, mutta poikittaisvirtaus ei: leikkausvirtaus suunnassa V bx vaikuttaa viskositeettiin koko kanavassa ja vaikuttaa siten kitkavirtaan

26 Ruuvin ominaiskäyrä leikkausoheneva virtaus Ruuvin ominaiskäyrä riippuu materiaalin potenssilaki-indeksistä (n) ja ruuvin kierteen kulmasta (φ) Ominaiskäyrässä huomattava ero kun materiaali muuttuu Newtonisesta yhä jyrkemmin leikkausohenevaksi n= 1 0.2, kuvassa L s =D, eli φ=17.7φ Suutin; ei-newtoninen neste Suuttimen ominaiskäyrä on ei-newtonisten nesteiden tapauksessa kovera Q/ Q d Kun ruuvin ja suuttimen ominaiskäyrät yhdistetään, ekstruuderin toimintapiste ei- Newtonisilla nesteillä siirtyy alempaan paineeseen verrattuna yksinkertaistettuun Newtoniseen analyysiin n=0.2 n=0.4 n=0.6 n=0.8 n=1 P/ P max

27 Leikkausnopeus ruuvikanavassa Oletetaan ruuvikanavassa lineaarinen nopeusjakauma V bz h V= virtausnopeus N= ruuvin pyörimisnopeus D= sylinterin halkaisija L s = ruuvin kiereiden id välinen etäisyys h= ruuvikanavan korkeus & γ = V bz h = π ND cos φ h Usein L s = D φ = 17.7 γ& = π D o N cos( 17.7 ) = h D h N

28 Yksinkertaistusten vaikutus takaisinvirtaus Normaalisti välys ruuvin harjan ja sylinterin seinämän välissä noin kertainen sylinterin halkaisijaan nähden: Ekstruuderin kokonaistuottoon tällä on vähäinen vaikutus; nyrkkisääntönä, kun δ< 4x(0.001D), takaisinvirtausta ei tarvitse ottaa huomioon Energiankulutukseen sillä on sitä vastoin merkittävä vaikutus: takaisinvirtaus lisää ekstruuderilta vaadittavaa tehoa joten sen tarkasta määrityksestä on hyötyä oikeankokoisen voimanlähteen valitsemisessa Polymeerisulan leikkausohenevuudella on huomattava merkitys vuotovirtauksen määrään: potenssilaki-indeksi otetaan huomioon kun lasketaan välyksen aiheuttaman energiankulutuksen suhdetta kokonaisenergiankulutukseen

29 Yksinkertaistusten vaikutus ei-isoterminen isoterminen virtaus Isoterminen virtaus sylinteissä ei todellisuudessa päde: suurin osa ruuvin tehosta muuttuu kitkalämmöksi josta osa poistuu johtamalla sylinterin jäähdytyskierron avulla, mutta osa nostaa sulan lämpötilaa alentaen sen viskositeettia Ei-isoterminen virtaus aiheuttaa yhä enemmän ruuvin ominaiskäyrien epälineaarisuutta Kitkalämmön vaikutus voidaan määrittää laskennallisesti ottamalla huomioon ekstruuderin geometriset tekijät, ruuvin pyörimisnopeuden, sekä sulan reologisen käyttäytymisen y y ja lämmönjohtavuuden Käytännön laskutoimitukset monimutkaisia ja riippuvia asetetuista rajaehdoista, ja yleensä käytetäänkin yksinkertaistettuja ekstruusiomalleja

30 Ekstruuderi uritetulla syöttövyöhykkeellä Edellä esitettiin ominaiskäyrät perinteiselle yksiruuviekstruuderille jolla on sileä syöttövyöhyke Paine generoituu suurimmaksi osaksi ruuvin loppupäässä ja tuotto voimakkaasti riippuva suuttimen vastapaineesta Uritetulla syöttövyöhykkeellä varustetulle pakkosyöttöekstruuderille k ruuvin ominaiskäyrä tästä poikkeava Pääosa paineesta generoidaan jo syöttövyöhykkeellä Tuotto riippumaton suuttimen vastapaineesta ruuvin ominaiskäyrä vakio Syöttö Homogenointi Suutin Ruuvin ominaiskäyrä uritetun syöttövyöhykkeen kanssa Paine Uritettu syöttövyöhyke y y Sileä syöttövyöhyke Q Q d Matka sylinterissä P

31 Ekstruuderin sekoitustehokkuus Sekoitus on yksi ekstruuderin tärkeimmistä funktioista Sekoittuminen voi olla Distributiivista: päätarkoituksena k materiaalin koostumuksen k homogenointi Dispersiivistä: homogenoinnin lisäksi tavoitteena minimoida sekoitettavan komponentin partikkelikoko; usein partikkelien (esim. pigmentit, täyteaineet, ) sekoittaminen matriisiin Laminaarinen leikkaus pääasiallinen distributiivisen sekoittumisen mekanismi polymeerien prosessoinnissa Sekoitustehokkuus riippuu sekoitettavien partikkelien orientaatiosta Tavallinen yksiruuviekstruuderi tehoton sekoitin Sekoitusvyöhyke-elementtien käyttö ruuvissa Kaksiruuviekstruuderit Parempi sekoitustehokkuus kuin yksiruuviekstruuderilla Tuotto-paine suhde ei ole riippuvainen granulaatin ja sulan virtausmekanismista syöttöja kompressiovyöhykkeellä Virtauskuviot huomattavasti monimutkaisempia kuin yksiruuviekstruuderin tapauksessa

32 Sulamurtuma: epästabiili virtaus ekstruusiossa Ekstruusioprofiilissa esiintyviä, virtauksen epästabiiliudesta johtuvia virheitä kutsutaan yleisnimityksellä y sulamurtuma Ilmiö voi vaihdella ekstrudaatin mattapintaisuudesta selvään pinnankarheuteen (hainnahka), ja aina spiraalimaiseen epätasaisuuteen (varsinainen, täydellinen sulamurtuma) Alkaa tietyllä kriittisellä leikkausjännityksellä asettaa rajat tuotannon maksiminopeudelle Kuva: Polymer Engineering/ Polymer Physics, Berlin Institute of Technology

33 Sulamurtuma: epästabiili virtaus ekstruusiossa Sulamurtuman esiintyminen vaihtelee voimakkaasti polymeerilaadusta toiseen; virtausepästabiiliuden määrään ja tyyppiin vaikuttaa Polymeerin kemiallinen luonne Moolimassa ja moolimassajakauma Haaroittuneisuus Suuttimen/ kapillaarin L/D -suhde ja sisäänmenoaukon geometria Suuttimen/ kapillaarin in materiaali Lämpötila Virtausnopeus Yleistä kaikille polymeereille: Syyt: Kriittinen leikkausjännitys suuttimen seinämällä noin 0.1 MPa Tietyllä leikkausjännitysalueella spiraalimainen, säännöllinen, ruuvinomainen murtuma Vuorottainen liukuminen ja tarttuminen seinämää pitkin Äkillinen rajapinnan muutos ulostulossa

34 Suutinpaisuma Polymeerimolekyylit puristuvat ja orientoituvat kapillaarissa tai suuttimessa kuristuvan virtauksen mukaisesti, mutta viskoelastisuudesta johtuen niillä on muisti Ulostulossa suuttimesta tai kapillaarista molekyylit relaksoituvat alkuperäiseen olotilaansa ja sulavirran halkaisija suurenee Suutinpaisumalla on suora yhteys polymeerisulan viskoelastisuuden elastiseen komponenttiin G Halkaisijan suureneminen tapahtuu ajan funktiona ja on polymeerikohtaista, riippuu sulan viskoelastisista ominaisuuksista Pyörähdyssymmetrisellä profiililla suhteelliset dimensiot säilyvät samana, muunlaisilla profiileilla tapahtuu myös dimensioiden vääristymistä Kuva: Rheology Laboratory, University of Toronto Suutinpaisuman määrää voidaan kuvata sulan halkaisijan suhteena suuttimen ulostulon halkaisijaan leikkausnopeuden, suuttimen pituus/halkaisija suhteen, lämpötilan ja ajan funktiona: D / D0 = f ( γ&, L / D, T, t) w Erilaisille suutingeometrioille omat laskukaavansa Newtoniselle nesteelle D/D 0 1.3, polymeerisulille suhde voi olla jopa 2-3

35 Suutinpaisuma Suutinpaisuman kvantitatiivista määritystä hyödynnetään Sulan normaalijännitysten it t määrittämisessä i ä Tietyn suutindesignin tuottaman paisuman ennustamisessa Laskennassa tarvitaan monimutkaisia epälineaarisia perusyhtälöitä kuvaamaan viskoelastisuutta Suutinpaisumaa käytetään myös sulan elastisuuden kvalitatiivisessa määrittämisessä Määritys: Ekstrudaatin halkaisijan mittaus optisesti Ekstruusio samantiheyksiseen öljyyn pienentää virhettä (ei panovoiman aiheuttamaa valumista) Suutinpaisumaa suurentavat: Materiaalista johtuvat tekijät Polymeerisulan moolimassan kasvu Pitkiin ketjuihin painottunut moolimassajakauma Molekyylirakenteesta johtuvat tekijät epäselviä, esim. pitkäketjuhaaroittuneisuus Virtausolosuhteet Suuri leikkausnopeus suuttimen seinällä Lämpötilaero sulan ja suuttimen seinämän välillä (suuttimen jäähdytys) Geometriset tekijät Virtaussuunnassa kapeneva suutinprofiili Suuttimen pieni L/D suhde Kun suutin tarpeeksi pitkä, suutinpaisuman määrä riippumaton leikkausnopeudesta

36 Reologia ruiskuvalussa

37 Lähtökohdat Erätoiminen menetelmä myös hyvin pienten ja monimutkaisten kappaleiden valmistukseen, usein vaatimuksena Korkea pinnanlaatu Lujuus ja jäykkyys Mittapysyvyys Tarkat toleranssit Vaatimusten saavuttamiseksi muotin on täytyttävä kunnolla eikä lopullisessa kappaleessa saa olla liikaa jäännösjännityksiä. Lisäksi tuotantoprosessin pitäisi olla nopea ja kustannuksiltaan alhainen Muovin reologisen käyttäytymisen tunteminen ruiskuvaluprosessissa on erittäin tärkeää jotta onnistuttaisiin Muotti/ materiaaliyhdistelmien valinnassa Prosessiolosuhteiden id räätälöimisessä i ä Jakokanavistojen suunnittelemisessa Ruiskuvalukoneelta vaadittavan kapasiteetin arvioinnissa

38 Prosessiparametrien säätö Sulan lämpötila Lämpötilan nosto lisää virtaavuutta ja myöhentää portin jähmettymistä siten edesauttaen muotin täyttymistä. y Hidastaa jähmeäkerroksen syntymistä y edesauttaa orientaatioiden relaksoitumista pienentää jäännösjännityksiä Toisaalta pidentää sykliaikaa, saattaa aiheuttaa materiaalin tarttumista muottiin ja termistä hajoamista Muotin lämpötila Pitää olla materiaalin jähmettymislämpötilan alapuolella Liian matala muottilämpö nopeuttaa paksumman jähmeäkerroksen muodostumista kasvattaa leikkausjännitystä ja orientaatiota huonot mekaaniset ominaisuudet Ruiskutuspaine Suurentamalla ruiskutuspainetta saadaan sula virtaamaan paremmin (leikkausoheneminen); viskositeetin paineriippuvuus toisilla materiaaleilla kumoaa pienen osan tästä Sulan virratessa kapean portin läpi muottiin, paine saattaa olla jopa yli 100 MPa ja paine vaikuttaa viskositeettiin Korkeasta paineesta johtuen koneelta vaaditaan suurempi sulkuvoima ja materiaali saattaa tarttua muottiin tai muodostaa purseita, sekä aiheuttaa suuria jäännösjännityksiä valmiiseen kappaleeseen

39 Virtaus jakokanavistoissa ja porteissa Tyypillisesti korkea paine ja korkea leikkausnopeus Jokainen virtauspoikkipinta-alan muutos (suuttimet, portit, muuttuva virtausgeometria) aiheuttaa painehäviöitä Tavoite on suunnitella sellainen jakokanavisto joka aiheuttaa mahdollisimman vähän painehäviötä virtausmatkalla samalla niin, että kanavistosta aiheutuva jätteen määrä minimoidaan Pyöreä jakokanava aiheuttaa suhteessa pienimmät painehäviöt, mutta muunmuotoiset kanavat ovat joskus parempia helpomman valmistettavuuden tai valutappien poiston takia Haasteena erityisesti monipesäiset muotit joissa tavoitteena on jokaisen muottipesän täyttyminen tt yhtäaikaisesti i ti Helpoin ratkaisu olisi käyttää identtisiä jakokanavistoja ja symmetrisesti sijoiteltuja muottipesiä, mutta jätteen minimoinnin kannalta tämä ratkaisu on usein epätyydyttävä Kuristusvirtauksessa sulan elastisuus vaikuttaa painehäviöön; vaikutus suurempi materiaaleille joilla on suuri venymäviskositeetti

40 Muottipesien tasapainottaminen Monipesäisen muotin kaikkien pesien yhtäaikainen täyttymisen varmistamiseksi materiaalin viskositeetin avulla voidaan määrittää jakokanaviston dimensiot Viskositeetti putkivirtauksessa leikkausohenevaa; n ja K määritetään potenssilaista Painehäviö putkivirtauksessa p 2KL 3n + 1 = Q R n π R Δ 3 n Tilavuusvirran jokaiseen muottipesään oltava yhtä suuri (identtiset muottipesät) jotta ne täyttyisivät yhtäaikaisesti Jakokanavien halkaisija mitoitetaan lähinnä ruiskutuspistettä pienemmäksi kuin kauempana niin että painehäviö jokaisessa muottipesässä sama Ym. esitys olettaa isotermisen virtaustilanteen Q= tilavuusvirta R= jakokanavan säde n= potenssilaki-indeksi i k i K= potenssilakivakio

41 Virtaus muotissa Muottikanavassa leikkausvirtaus (painevirtaus) dominoi Sularintamassa virtaus on suihkulähdemäistä; tässä myös venytysvirtausta joka aiheuttaa seinämän ä suuntaista t orientaatiota ti t Muotin seinämät alhaisemmassa lämpötilassa kuin sula: ei-isoterminen virtaus Sula jähmettyy seiniltä alkaen muodostaen kappaleeseen voimakkaammin orientoituneen nahan (skin) ja vähemmän orientoituneen ytimen (core) Kuva: Järvelä P, Syrjälä K, Vastela M, Ruiskuvalu, Plastdata Oy, Tampere 2000

42 Epästabiilius suihkulähdevirtauksessa Sulan viskoelastisuus voi aiheuttaa pyörteistä epästabiiliutta suihkulähdevirtauksen sularintamassa Aiheuttaa heikentynyttä ttä pinnanlaatua; epätasaista pintakiiltävyyttä, heijastuvuutta, nk. virtausjälkiä tai tiikeriraitoja Liian nopea ruiskutus täyttymisen alkuvaiheessa: laminaarisen suihkulähdemäisen virtauksen sijaan muovi suihkuaa muottipesään aiheuttaen heikentynyttä lujuutta ja pintavirheitä valmistettavaan kappaleeseen Portti Kuva: Hirano K, Suetsugu Y, Kanai T. J. Appl. Polym. Sci. Vol.104, 1 Pages:

43 Virtaus muotin täyttymisen loppuvaiheessa Ruiskutuksen loppuvaiheessa prosessi muuttuu nopeusohjatusta paineohjatuksi Vältetään suuret painepiikit muotin ollessa jo lähes täynnä Muotin täydellinen täyttyminen jälkipaineella Yleisesti polymeerisulia voidaan käsitellä kokoonpuristumattomina nesteinä, mutta ruiskuvalussa paine on niin suuri että sillä on vaikutusta Viskositeetin paineriippuvuus tärkeämpi muotin täyttymisen loppuvaiheessa ja pakkausvaiheessa kuin ruiskutuksen k alussa Viskositeetin voimakas kasvu paineen funktiona saattaa aiheuttaa paineen tarpeen kasvun (virtausta lisättävä) kappaleen täyttymisen varmistamiseksi Täyttö nopeusohjattu Paineprofiili flmuottipesässä täyttymisen ja jälkipainevaiheen aikana Paine muottipe esässä Jälkitäyttö paineohjattu Portin jähmettyminen jälkipaine ei enää vaikuta Aika

44 Reologia puhallusmuovauksessa

45 Lähtökohdat Aihion valmistaminen ekstruusiolla (ekstruusiopuhallusmuovaus) Aihion paisuminen suuttimesta: evaluointi isotermisen leikkausvirtauksen avulla Aihion valuminen: uniaksiaalinen venyminen Aihion puhaltaminen: sekoitus planaarista ja biaksiaalista venytystä Aihion valmistaminen ruiskuvalamalla (venytyspuhallusmuovaus) Aihion valmistukseen pätevät samat reologiset olosuhteet kuin normaalissa ruiskuvalussa Ennen muotoonpuhallusta aihio lämmitetään uudelleen kumimaiseen tilaan jossa se on venytettävissä mutta ei täysin sula Kun tuotteen pituus/ halkaisija suhde suuri, puhaltamisen aikana venytystä voidaan avustaa pituussuunnassa mekaanisesti i tuurnalla Aihion valmistusvaiheessa virtaus leikkausvirtaus vallitseva deformaatiotyyppi Varsinainen muotoonpuhallettu tuote saadaan aikaan biaksiaalisen ja planaarisen venytyksen avulla

46 Ekstruusiopuhallusmuovaus: aihion paisuminen Suuttimessa virtaus pääasiassa leikkaustyyppistä Aihion paisuminen rengassuuttimessa ei voida täysin ennustaa polymeerin molekyylirakenteen perusteella erittäin herkkä suuttimen muodolle: laajentuvat ja supistuvat osat aiheuttavat molekyylien venymistä Myös ekstruusionopeus ja aika vaikuttavat suutinpaisumaa kompensoidaan pitkällä suuttimella joka toisaalta aiheuttaa leikkausjännitysten takia aksiaalista orientoitumista rengasmaisesta muodosta johtuen suutinpaisuman kuvaamiseen tarvitaan kaksi eri parametria: B B D H D h p p / D / h 0 0 Suutinpaisuman tarkka evaluointi edellyttää mittausta samankaltaisella suutingeometrialla ja prosessiparametreilla kuin varsinaisessa prosessissa Kuva: Dealy JM, Wissbrunn, Melt Rheology and its Role in Plastcis Processing, Kluwer Academic Publishers, Dordrecht, 1999

47 Ekstruusiopuhallusmuovaus: aihion valuminen Aihion valuminen painovoiman vaikutuksesta (sagging) Newtonisilla materiaaleilla valumista voisi kontrolloida yksinkertaisti kasvattamalla sulan viskositeettia Myös polymeereillä viskositeetin kasvattaminen auttaa, mutta viskoelastisuus tekee ongelmasta monimutkaisemman Valumisen määrä riippuu aihion pituudesta, ekstruusionopeudesta ja ajasta, ja polymeerin viskositeetista alhaisella jännitystasolla Kun ekstruusioaika on pitkä polymeerin molekyylien relaksaatioaikaan verrattuna, viskoosi virtaus hallitseva mekanismi, ja lyhyellä ekstruusioajalla elastinen deformaatio määräävä tekijä Pitkillä aihioiden valmistuksessa ekstruusioaika pidempi: viskoosi virtaus hallitsee, lyhyillä aihioilla elastisuus tärkeä tekijä Jos valuminen on vähäistä, valtaosa siitä tapahtuu aihion keskivaiheella, ja sen määrää voidaan arvioida suureella ρ glt / 2η ρ = sulan tiheys g = normaaliputoamiskiihtyvyys L = aihion pituus t = ekstruusioaika η = viskositeetti ko. ekstruusionopeudella suutin paisuminen aihio valuminen

48 Ekstruusiopuhallusmuovaus: aihion valuminen Valumista on yritetty evaluoida virumiskäyttäytymisen ja start-up venymäviskositeetin avulla, todellisuudessa jännitys ja venymä muuttuvat ajan funktiona, joten kumpikaan tapa ei anna täysin oikeaa arviota Luotettava menetelmä valuman ennustamiseen puuttuu; empiirisiä valuma vs. aika mittauksia käytetään aihion valuvuuden arviointiin Valuminen ja paisuminen yhdessä: aihionvalmistuksen mallinnus reologisesta näkökulmasta hvyin haasteellista Aihion pituus vain aihion paisuminen aihion ekstruusio Aika aihion paisuminen ja valuminen vain valuminen

49 Ekstruusiopuhallusmuovaus: aihion venyttäminen Aihion täyttäminen ilmalla Aihio venytetään varsinaiseen mittaansa ilman avulla: sekoitus planaarista ja biaksiaalista venytystä Venymäohenevilla materiaaleilla voi esiintyä epästabiiliutta ja aihion epätasaista pullahtamista venytysvaiheessa etenkin jos muotin halkaisijan suhde aihion halkaisijaan on liian suuri Tasainen täyttyminen venytyspaksuuntuvilla materiaaleilla: epätasaisesti syntyvissä ohuemmissa kohdissa venytyksen aikaansaama lujittuminen kompensoi pienempää paksuutta ja sula muualla muotissa ehtii saavuttaa saman paksuuden Useat puhallusmuovausmateriaalit alun perin ruiskuvaluun tarkoitettuja, ja niiden alhainen viskositeetti aiheuttaa ongelmia (liiallinen valuminen, repeäminen puhallusvaiheessa) joita on kompensoitu muuttamalla koneen konstruktiota ja lisäämällä avustavia prosessivaiheita kuten esitäyttö ilmalla Helpompaa ja järkevämpää on kuitenkin muokata polymeerin viskositeettia korkeammaksi alhaisilla venytysnopeuksilla muokkaamalla sen moolimassajakaumaa, seostamalla, käyttämällä ko-monomeerejä, osittaisella ristisilloituksella tai lisäaineistuksella

50 Venytyspuhallusmuovaus Aihio ruiskuvaletaan etukäteen ja kuumennetaan ennen muotoonpuhallusta uudelleen sopivaan lämpötilaan, kumimaiseen tilaan ei aihion valumista tai suutinpaisumaa Muotoonpuhalluksen onnistumisessa oikean lämpötilan ja lämmitysajan valinta olennaista Voimakas molekyyliorientaatio vaaditaan: suurin osa venytystyön tuloksesta tulisi olla elastista venymää, ja kitkalämpenemisen osuus pidettävä pienenä Esimerkiksi polyeteenitereftalaatille (PET, yleisin polymeeri venytyspuhallusmuovauksessa) tämän saavuttamiseksi vaadittava lämpötilaväli hyvin kapea: C prosessointi-ikkunaa ikk voidaan laajentaa komonomeereilla ja pehmittimillä, mutta nämä voivat myös heikentää mekaanisia ominaisuuksia

51 Reologia kalvonvalmistuksessa Kalvonpuhallus Kalvoekstruusio

52 Kalvonpuhallus Lähtökohdat Kalvonpuhalluksessa polymeerisula ekstrudoidaan rengassuuttimen läpi ja puhalletaan biaksiaalisesti orientoimalla tunnelimaiseksi kalvoksi avulla jäähdyttäen syntyvää kalvoa samanaikaisesti Tärkeimmät kalvosta määritettävät dimensiot ovat putkimaisen kalvon leveys litistettynä ja kalvon seinämäpaksuus Kaupallisissa prosesseissa tavoitteena mahdollisimman suuri tuotto (nopea syöttö/ vetonopeus) niin että halutut ominaisuudet säilyvät ja prosessi pysyy stabiilina Kun stabiiliuden rajat ylittyvät joko toinen tai molemmat em. dimensioista alkavat vaihdella sattumanvaraisesti Onnistunut prosessi edellyttää ekstruusionopeuden, vetonopeuden ja puhallusvenytyksen monimutkaisen kombinaation, sekä lämpötilan kontrollointia Ei-isoterminen, i i viskoelastinen i virtaustilanne il Biaksiaalista ja planaarista venytystä sekä (suuttimessa) leikkausvirtausta Suuttimen ulostulosta kalvon jähmettymislinjaan asti venymävirtaus vallitseva deformaatiotyyppi o

53 Kalvonpuhalluksessa käytettävät polymeerit Kalvonpuhalluksessa LDPE LLDPE (lineaarinen LDPE) ja HDPE käytetyimpiä materiaaleja Jatkuvuusyhtälö kalvonpuhalluksessa: Q = 2πRHV Q = ekstruusionopeus R = kuplan säde H = kalvon paksuus V = vetonopeus Viskositeetti huomioidaan lämpötilan, kiteytymisasteen ja deformaationopeuden funktiona: η( Π d, T, X ) = A = η exp( E / RT 0 Aexp( E / R + GX ) Π E = aktivaatioenergia i X = kiteisyysaste G = (kokeellinen) kiteytymisvakio Π d = deformaationopeustensori 0 ) ( n d 1) / 2 Polymeerin pieni potenssilaki-indeksi ja alhainen aktivaatioenergia viinilasimainen kupla, suuri n ja korkea E asteittain laajeneva kupla LDPE: kuplanmuoto tasaisesti laajeneva, HDPE: viinilasin muotoinen kupla parhaan LDPE HDPE stabiiliuden saavuttamiseksi, LLDPE: näiden välimuoto

54 Epästabiilius kalvonpuhallusprosessissa Epästabiilius voi ilmetä metastabiiliutena, kuplaepästabiiliutena, kierteisenä epästabiiliutena tai vetoresonanssina Liian suuri puhallussuhde: vetoresonanssi Suuri puhallussuhde ja alhainen vetonopeus: kierteinen epästabiilius Kierteinen epästabiilius metastabiililus Kuplaepästabiilius liittyy läheisesti polymeerin reologiaan Viskositeetin voimakas lämpötilariippuvuus parantaa stabiiliutta (viskositeetin säätely lämpötilaa muuttamalla helpompaa) Venymäviskositeetti: venytyspaksuuntuvat materiaalit stabiilimpia biaksiaalisessa venytyksessä kuin venytysohenevat vetoresonanssi kuplaepästabiilius erilaisia muotoja Kuplan stabiilius: LDPE>LLDPE>HDPE

55 Kalvoekstruusio Lähtökohdat Kalvoekstruusio (kalvonvalu) T-mallisella suuttimella yleinen menetelmä puolivalmistelevyjen (esim. lämpömuovausta varten) ja biaksiaalisesti orientoitujen kalvojen valmistuksessa Muovisula ekstrudoidaan rakomaisesta suuttimesta ja kalvoraina valssataan, jäähdytetään ja kerätään pyörivien telojen avulla Reologiaan liittyviä ongelmia valussa kalvon kuroutuminen paksumman listan muodostuminen rainan reunoille vetoresonanssi kalvon repeäminen tai puhkeaminen

56 Kalvoekstruusion ongelmat: kuroutuminen Raina kapenee vedossa vain suuttimen reunalla vedon suuntaa vastustavia normaalivoimia sen jälkeen vapaa virtauspinta kuroutuman syntyminen helpottuu Ongelma erityisesti pinnoituksessa alhainen viskositeetti ja korkea lämpötila pahentavat ongelmaa mitä leveämpi suutin, sitä suurempi suhteellinen e kurouma suuri suutinpaisuma vähentää kuroutumaa Yleisesti: mitä korkeampi kuroutuvuus materiaalilla on, sitä parempi venytettävyys: venytys voidaan tehdä suuremmalla nopeudella (esim. sulakehruussa) kurouma raina suutin kurouma

57 Kalvoekstruusion ongelmat: reunalistan muodostuminen suutinpaisuma ja pintajännitys (vain alhaisen viskositeetin pinnoitteiden ekstruusiossa) vaikuttavat ilmiöön pääsyy lienee reunan vapaa virtauspinta joka aiheuttaa erilaisen jännityskentän kuin rainan keskellä: reunalla ainoa normaalijännitys aiheutuu normaali-ilmanpaineesta Rainan reunoilla deformaatio likimäärin uniaksiaalista (vapaa virtauspinta), keskellä planaarista: Kalvonpaksuus planaarisessa venytyksessä keskellä rainaa h = h R 0 ( V 0 / V R ) Fluidielementin halkaisija uniaksiaalisessa venytyksessä d = h V / R 0 0 V R Reunalistan paksuus / rainan paksuus: d R = h R V R V 0 V 0 = nopeus suuttimen ulostulossa V R = vetotelan nopeus V R /V 0 = vetosuhde h 0 = kalvonpaksuus suuttimen ulostulossa vetosuunta reunalista

58 Kalvoekstruusion ongelmat: vetoresonanssi Jaksottaista vaihtelua (minkälaisen tahansa) ekstruusioprofiilin poikkipinta-alassa kun sitä kelataan suuttimelta tietyn kriittisen rajan ylittävällä vetosuhteella (V R / V 0 ) Aiheuttaa epätasaista t paksuutta ja saattaa johtaa rainan repeytymiseen esiintyy myös Newtonilla nesteillä (kriittinen V R / V 0 20) Kriittinen vetosuhde pienenee kun sulan lujuus kasvaa sulan lujuus kuvastaa venytysvirtauksessa syntyvän vetojännityksen suuruutta polyeteenille levyekstruusiossa raportoitu kriittinen vetosuhde n. 35 lineaarisille polyeteeneille vakavampi ongelma kuin haaroittuneille

59 Reologiset mittaukset

60 Reologiset mittaukset prosessoinnin tarpeisiin Reologiset ominaisuudet erittäin herkkiä muutoksille moolimassassa ja moolimassajakaumassa Sitä vastoin termiset ominaisuudet, jotka ovat myös tärkeitä prosessoinnissa, riippuvat molekyylien kemiallisesta rakenteesta ja eivät juuri vaihtele saman polymeerin eri laatujen/ erien välillä Valmistaja ilmoittaa usein vain polymeerin sulaindeksin, mikä ei välttämättä anna tarpeeksi tietoa virtausominaisuuksista koko sulatyöstöprosessia ajatellen Jos halutaan saada tarkkaa tietoa η [Pa s] Kaksi eri LDPE laatua: toisella kapeampi, toisella leveämpi moolimassajakauma polymeerin virtausominaisuuksista prosessissa, viskositeettimittaukset pitäisi suorittaa aina uudelle raaka-aine-erälle: myös saman laadun sisällä eri erien välillä voi olla eroja Yleensä mitataan leikkausviskositeetti Joskus venymäviskositeetti oleellisempi prosessin mallinnuksen kannalta γ [s -1 ]

61 Sulaindeksilaite Yksinkertaisin virtaavuuden mitta saadaan määrittämällä sulaindeksi (MFI, MFR): + Edullinen & yksinkertainen mittauslaite + Helppo tutkita (yksi lukuarvo) + Havaitsee hyvin moolimassamuutokset (soveltuu täten hyvin laadunvalvontaan) - Vain yksi piste ei kerro mitään viskositeettikäyrän muodosta - Mittaus tapahtuu yleensä pienillä leikkausnopeuksilla - Lisäinformaatiota on saatavissa suorittamalla mittaukset kahdella eri painolla (esim ja 21.6 kg)

62 Kapillaarireometri Kapillaarireometrimittaukset yleisimmät sulatyöstömenetelmiä varten tehtäviä reologisia mittauksia Polymeerisula ajetaan männän avulla sylinteristä kapillaarin läpi ja sen aiheuttama paine mitataan Myös suuret leikkausnopeudet; tyypillisesti n s -1 Suurehkot näytemäärät Mittaus myös korotetussa paineessa Pienillä nopeuksilla mitattava paine alhainen ei kovin tarkka menetelmä P

63 Rotaatioreometri Rotaatioreometrilla voidaan mitata tarkasti viskositeettia ja muita reologisia ominaisuuksia Näytteeseen kohdistetaan oskilloivaa tai rotaatiokuormitusta ja sen aiheuttama voima mitataan (leikkauskontrolloitu mittaus) Tai näytteeseen kohdistetaan määritelty jännitys ja mitataan sen aiheuttama muodonmuutos (jännityskontrolloitu mittaus) Pienet leikkausnopeudet ja alhaiset oskillointitaajuudet Soveltuu pienille näytemäärille Erilaisia geometrioita valittavissa näytteen koostumuksen ja viskositeetin mukaan; levy- ja kartiogeometriat viskoosimmille, kuppigeometriat juoksevammille nesteille kartio-levy levy-levy kuppigeometria i

64 Venymäviskositeetin mittaus Venymäviskositeetin mittaus antaa tarkkaa tietoa materiaalin molekyylirakenteesta Yleensä mitataan uniaksiaalista venytystä, esim. Sentmanat Extensional Rheometer (SER) Polymeeriliuskaa venytetään pyörivien rullien välissä ja siihen tarvittava voima ja liuskan venymä mitataan Likimääräiset menetelmät: laskenta kuristusvirtauksesta (esim. normaalit kapillaarireometrimittaukset) Cogswell tai Binding -menetelmällä Oletuksena, että leikkaus- ja venymädeformaatio voidaan erottaa toisistaan Venymäviskositeetti lasketaan kuristusvirtauksessa tapahtuvan painehäviön perusteella kulmapyörteet Sisäänvirtauspainehäviö ΔL ϕ 0 L 0 Tunnelimainen virtaus keskellä Sulan venyminen

65 Lähteitä Dealy JM, Larson RG, Structure and Rheology of Molten Polymers From Rheology to Flow Behavior and Back Again, Hanser Publishers, Munich, 2006 Dealy JM, Wissbrunn, Melt Rheology and its Role in Plastcis Processing, Kluwer Academic Publishers, Dordrecht, 1999 Järvelä P, Syrjälä K, Vastela M, Ruiskuvalu, Plastdata Oy, Tampere 2000 Morrison FA, Understanding Rheology, Oxford University Press, New York, Progelhof RC, Throne JL, Polymer Engineering Principles Properties, Processes, Tests for Design, Hanser Publishers, Munich, 1993 Toshitaka K, Campbell, GA (Eds.), Film Processing, Hanser Publishers, Munich, 1999

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

MUOVIN TYÖSTÖ HYVÄ TIETÄÄ MUOVISTA MUOTTIPUHALLUS, EKSTRUUSIO, KALVOPUHALLUS OSA 10

MUOVIN TYÖSTÖ HYVÄ TIETÄÄ MUOVISTA MUOTTIPUHALLUS, EKSTRUUSIO, KALVOPUHALLUS OSA 10 HYVÄ TIETÄÄ MUOVISTA OSA 10 MuoviPlast-lehti jatkaa tässä numerossa 10-osaista artikkelisarjaa Hyvä Tietää Muovista. Siinä esitellään perustietoa tavallisimmista muoveista, kuten valtamuovit, tekniset

Lisätiedot

Kaasuavusteinen ruiskuvalu

Kaasuavusteinen ruiskuvalu Kaasuavusteinen ruiskuvalu School of Technology and Management, Polytechnic Institute of Leiria Käännetty ja tarkistettu teksti: Tuula Höök Tampereen teknillinen yliopisto Kaasuavusteinen ruiskuvalu on

Lisätiedot

Nestekidemuovit (LCP)

Nestekidemuovit (LCP) Nestekidemuovit (LCP) Tampereen teknillinen yliopisto Sanna Nykänen Nestekidemuovit voidaan luokitella kiteisiksi erikoismuoveiksi, jotka ovat suhteellisen kalliita materiaaleja. Niiden luokitteluperiaate

Lisätiedot

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p). 3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa

Lisätiedot

MUOVIT VAATETUSTEKNIIKASSA 31.3.2010

MUOVIT VAATETUSTEKNIIKASSA 31.3.2010 MUOVIT VAATETUSTEKNIIKASSA 31.3.2010 SISÄLLYSLUETTELO 3. MUOVITUOTTEIDEN ERI VALMISTUSTEKNIIKAT 3.1 Yleistä muovituotteiden valmistuksesta 3.2 Kalvojen valmistus 3.2.1 Yleistä kalvojen valmistuksesta 3.2.2

Lisätiedot

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

KOTELOIDEN VALMISTUSMENETELMÄT JA NIIHIN LIITTYVÄT SUUNNITTELUOHJEET

KOTELOIDEN VALMISTUSMENETELMÄT JA NIIHIN LIITTYVÄT SUUNNITTELUOHJEET KOTELOIDEN VALMISTUSMENETELMÄT JA NIIHIN LIITTYVÄT SUUNNITTELUOHJEET TkT Harri Eskelinen Elektroniikkasuunnittelijan ei tarvitse osata itse valmistaa koteloita, mutta mitä enemmän tietää valmistusmenetelmistä

Lisätiedot

Viikon aiheena putkivirtaukset

Viikon aiheena putkivirtaukset Viikon aiheena putkivirtaukset Tänään keskitytään putkivirtausten luonteeseen ja keskeisiin käsitteisiin Seuraavalla kerralla putkivirtausongelmien ratkaisemisesta Putkivirtausten käytännön relevanssi

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

Virtaus ruiskutusventtiilin reiästä

Virtaus ruiskutusventtiilin reiästä Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-

Lisätiedot

Mitä on huomioitava kaasupäästöjen virtausmittauksissa

Mitä on huomioitava kaasupäästöjen virtausmittauksissa Mitä on huomioitava kaasupäästöjen virtausmittauksissa Luotettavuutta päästökauppaan liittyviin mittauksiin 21.8.2006 Paula Juuti 2 Kaupattavien päästöjen määrittäminen Toistaiseksi CO2-päästömäärät perustuvat

Lisätiedot

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 2

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 2 Ruiskuvalumuotin kanavisto 2 Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat Ruiskuvalumuotin täyttäminen CAD työkalut harjoituksessa Ruiskuvalumuotin

Lisätiedot

Polymeerien käyttäytyminen ja reologia

Polymeerien käyttäytyminen ja reologia Polymeerien käyttäytyminen ja reologia 1 Luennon sisältö Johdanto aiheeseen Polymeerirakenteiden tarkastelua Polymeerirakenteet liuoksessa Polymeerirakenteet kiinteässä Reologiset ilmiöt Reologian mittausmenetelmät

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 1

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 1 http://www.valuatlas.net ValuAtlas & CAE DS 2007 Muotinsuunnitteluharjoitukset Ruiskuvalumuotin kanavisto 1 Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat

Lisätiedot

Laskuharjoitus 2 Ratkaisut

Laskuharjoitus 2 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Liite F: laskuesimerkkejä

Liite F: laskuesimerkkejä Liite F: laskuesimerkkejä 1 Lämpövirta astiasta Astiasta ympäristöön siirtyvää lämpövirtaa ei voida arvioida vain astian seinämien lämmönjohtavuuksilla sillä ilma seinämä ja maali seinämä -rajapinnoilla

Lisätiedot

Ruiskuvalumuotin jäähdytys, simulointiesimerkki

Ruiskuvalumuotin jäähdytys, simulointiesimerkki Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän

Lisätiedot

Luento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka

Luento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka Luento 10 Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit BK60A0100 Hydraulitekniikka 1 Yleistä Toimilaitteen liikenopeus määräytyy sen syrjäytystilavuuden ja sille tuotavan

Lisätiedot

Chapter 1. Preliminary concepts

Chapter 1. Preliminary concepts Chapter 1 Preliminary concepts osaa kuvata Reynoldsin luvun vaikutuksia virtaukseen osaa kuvata virtauksen kannalta keskeiset aineominaisuudet ja tietää tai osaa päätellä näiden yksiköt osaa tarvittaessa

Lisätiedot

http://www.valuatlas.fi ValuAtlas Kestomuottivalun suunnittelu Tuula Höök, Sanna Nykänen

http://www.valuatlas.fi ValuAtlas Kestomuottivalun suunnittelu Tuula Höök, Sanna Nykänen Ruiskuvalu Sanna Nykänen Tampereen teknillinen yliopisto, 2009 Tuula Höök Tekstin muokkaus: Valimoinstituutti 2015 Materiaalit Ruiskuvalumenetelmä on tarkoitettu ensisijaisesti polymeerimateriaalien prosessointiin.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit. Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)

Lisätiedot

Pyörivän sähkökoneen jäähdytys

Pyörivän sähkökoneen jäähdytys Pyörivän sähkökoneen jäähdytys Sallittu lämpenemä määrää koneen tehon (nimellispiste) ämmön- ja aineensiirto sähkökoneessa on huomattavasti monimutkaisempi ja vaikeammin hallittava tehtävä koneen magneettipiirin

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

Hydrauliikka: kooste teoriasta ja käsitteistä

Hydrauliikka: kooste teoriasta ja käsitteistä ENY-C003 / S-05 Hydrauliikka: kooste teoriasta ja käsitteistä Sovelletussa hydrodynamiikassa eli hydrauliikassa käsitellään veden virtausta putkissa ja avouomissa sekä maaperässä. Käsitteitä Rataviiva,

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Termoplastiset polyesterit: Polyeteenitereftelaatti

Termoplastiset polyesterit: Polyeteenitereftelaatti Termoplastiset polyesterit: Polyeteenitereftelaatti (PET) ja polybuteenitereftelaatti (PBT) Tampereen teknillinen yliopisto Sanna Nykänen Polyeteenitereftelaatti (PET) Polyeteenitereftelaatti on eniten

Lisätiedot

CHEM-A1410 Materiaalitieteen perusteet

CHEM-A1410 Materiaalitieteen perusteet CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin

Lisätiedot

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi? Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot

Hydrologia. Pohjaveden esiintyminen ja käyttö

Hydrologia. Pohjaveden esiintyminen ja käyttö Hydrologia Timo Huttula L8 Pohjavedet Pohjaveden esiintyminen ja käyttö Pohjavettä n. 60 % mannerten vesistä. 50% matalaa (syvyys < 800 m) ja loput yli 800 m syvyydessä Suomessa pohjavesivarat noin 50

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World

Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World 1 Luento 5 10..017 Viskoosit nesteet Laminaarinen virtaus Turbulenssi Reynoldsin luku Pienten Reynoldsin lukujen maailma Kitkallinen virtaus

Lisätiedot

Periaatteet. ValuAtlas Muotin valmistus Tuula Höök. Tuula Höök Tampereen teknillinen yliopisto

Periaatteet. ValuAtlas Muotin valmistus Tuula Höök. Tuula Höök Tampereen teknillinen yliopisto Periaatteet Tuula Höök Tampereen teknillinen yliopisto Onnistunut muotin suunnittelu tapahtuu muotin valmistajan, valuyrityksen ja valettavan tuotteen suunnittelijan välisenä yhteistyönä. Yhteistyön käytännön

Lisätiedot

Kuva 2. Lankasahauksen periaate.

Kuva 2. Lankasahauksen periaate. Lankasahaus Tampereen teknillinen yliopisto Tuula Höök Lankasahaus perustuu samaan periaatteeseen kuin uppokipinätyöstökin. Kaikissa kipinätyöstömenetelmissä työstötapahtuman peruselementit ovat kipinätyöstöneste,

Lisätiedot

Ruiskuvalumuotin kuumakanavistot

Ruiskuvalumuotin kuumakanavistot Ruiskuvalumuotin kuumakanavistot School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök Tampereen teknillinen yliopisto Kanaviston tehtävänä on johtaa ruiskuvalukoneen

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

Demo 5, maanantaina 5.10.2009 RATKAISUT

Demo 5, maanantaina 5.10.2009 RATKAISUT Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen

Lisätiedot

Luento 16: Fluidien mekaniikka

Luento 16: Fluidien mekaniikka Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla

Lisätiedot

Polymeerimateriaalien perusteet osa 3 31.4.2010

Polymeerimateriaalien perusteet osa 3 31.4.2010 Polymeerimateriaalien perusteet osa 3 31.4.2010 Polymeerimateriaalien valintaan vaikuttavat tekijät elektroniikkatuotteissa 16. Polymeerimateriaalien prosessointi Polymeerimateriaalien prosessointi Polymeerimateriaalien

Lisätiedot

Kolme lineaaristen polyamidien valmistusmenetelmistä on kaupallisesti merkittäviä:

Kolme lineaaristen polyamidien valmistusmenetelmistä on kaupallisesti merkittäviä: POLYAMIDIT (PA) Tampereen teknillinen yliopisto Sanna Nykänen Yleistä Polyamidit ovat eniten käytettyjä teknisiä muoveja. Esimerkkinä yleisesti tunnettu nylon luokitellaan kemiallisesti polyamidiksi (PA66).

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

18. Muotin täyttöjärjestelmä

18. Muotin täyttöjärjestelmä 18. Muotin täyttöjärjestelmä Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Kanavistoa, jota pitkin sula metalli virtaa muottionteloon, kutsutaan muotin täyttöjärjestelmäksi. Täyttämisen ohella sillä

Lisätiedot

a) ruiskuvalamalla kierre suoraan kappaleeseen kierremeistin avulla b) asettamalla kappaleeseen kierteistetty metalli insertti c) lastuamalla

a) ruiskuvalamalla kierre suoraan kappaleeseen kierremeistin avulla b) asettamalla kappaleeseen kierteistetty metalli insertti c) lastuamalla Kierteet Technical University of Gabrovo Yordanka Atanasova Käännös: Sanna Nykänen, Tampereen teknillinen yliopisto Muovituotteeseen voidaan valmistaa kierteitä kolmella tavalla: a) ruiskuvalamalla kierre

Lisätiedot

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,

Lisätiedot

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

Kiteisyys ja amorfisuus CHEM-C2400 Materiaalit sidoksesta rakenteeseen

Kiteisyys ja amorfisuus CHEM-C2400 Materiaalit sidoksesta rakenteeseen Kiteisyys ja amorfisuus CHEM-C2400 Materiaalit sidoksesta rakenteeseen Pirjo Pietikäinen Crystalline Solids and Amorphous Solids https://www.youtube.com/watch?v=4nzv0zvdm5c 1 Johdanto Silloittumattoman

Lisätiedot

heating wedge = kuumakiila liitettävät materiaalit hot air = kuuma ilma hot air tape welding = kuuma ilma teippaus ultrasonic = ultraääni

heating wedge = kuumakiila liitettävät materiaalit hot air = kuuma ilma hot air tape welding = kuuma ilma teippaus ultrasonic = ultraääni PFAFF tuotevalikoimassa on teknisten tekstiilien ja suodattimien valmistamiseen tarkoitettuja automaatteja. Pfaff rakentaa myös räätälöityjä ratkaisuja. heating wedge = kuumakiila liitettävät materiaalit

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet

11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet 11. Dimensioanalyysi KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten yksittäisen virtaustapauksen tuloksia voidaan yleistää tarkastelemalla ilmiöön liittyvien suureiden yksiköitä? Motivointi: dimensioanalyysin

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

33. Valimohiekkojen kuljetuslaitteet

33. Valimohiekkojen kuljetuslaitteet 33. Valimohiekkojen kuljetuslaitteet Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto 33.1 Hihnakuljettimet Hihnakuljettimet ovat yleisimpiä valimohiekkojen siirtoon käytettävissä kuljetintyypeistä.

Lisätiedot

12. Erilaiset liitoskohdat ja risteykset

12. Erilaiset liitoskohdat ja risteykset 12. Erilaiset liitoskohdat ja risteykset Pekka Niemi Tampereen ammattiopisto Liitoskohdat ja risteykset aiheuttavat valukappaleen rakenteelle monia vaatimuksia mm. tiiveyden ja jännitysten syntymisen estämisessä.

Lisätiedot

Paperinjalostus 30.3.2015

Paperinjalostus 30.3.2015 Paperinjalostus 30.3.2015 Paperinjalostus, mitä se on? Paperin jatkojalostamista uusiksi tuotteiksi Työn tekemistä lisätään paperin arvoa/ominaisuuksia; Painatus tai lakkaus Toinen paperi, alumiini, verkko,

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu.

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu. Tehtävä 1 Kuvan keskipakopumppu pumppaa vettä (ρ = 998 kg/m 3 ) tilavuusvirralla 180 l/s. Pumpun pesän korkeus on mm. Oletetaan, että sisäänvirtauksessa absoluuttisella nopeudella ei ole tangentiaalista

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Halton Zen Circle ZCI - syrjäyttävä tuloilmalaite

Halton Zen Circle ZCI - syrjäyttävä tuloilmalaite Halton Zen Circle ZCI - syrjäyttävä tuloilmalaite Laaja ilmavirran säätöalue Tasainen ilmavirran virtauskuvio saadaan aikaan pienillä rei'illä, jotka muodostavat optimaaliset virtausolosuhteet hajottimen

Lisätiedot

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34 SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku

Lisätiedot

Muovimateriaali kutistuu ja aiheuttaa painetta sekä kitkavoimia keernan ja kappaleen välille.

Muovimateriaali kutistuu ja aiheuttaa painetta sekä kitkavoimia keernan ja kappaleen välille. Päästöt Tampereen teknillinen yliopisto Sanna Nykänen Ruiskuvalettavissa kappaleissa on lähes aina tarpeellista käyttää päästöjä. Päästökulmat helpottavat kappaleen ulostyöntöä muotista. Jos ruiskuvalukappale

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Nestepisaran höyrystymistutkimus I vaihe

Nestepisaran höyrystymistutkimus I vaihe Nestepisaran höyrystymistutkimus A. Peltola, ampereen teknillinen yliopisto, 14.1.2010 Dipoli, Otaniemi, Espoo (U) NESEPISARAN HÖYRYSYMISUKIMUS HAC FLAME Sisältö: Päämäärä Lähtötilanne Koereaktori Höyrystymislämpötila

Lisätiedot

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50 BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Runkotyyppi F700 F800 F950 F957 F958 Runkoleveys ja toleranssi (mm) ,5 R11 R11

Runkotyyppi F700 F800 F950 F957 F958 Runkoleveys ja toleranssi (mm) ,5 R11 R11 Scanian runkosarja Scanian runkosarja Scanian runkosarja koostuu seuraavista runkotyypeistä: Runkotyyppi F700 F800 F950 F957 F958 Runkoleveys ja toleranssi (mm) 766 +1 768 +1 771 +1 768 +1 770 +1-1 -1-1

Lisätiedot

Ruiskuvalukappaleen syöttökohta

Ruiskuvalukappaleen syöttökohta Ruiskuvalukappaleen syöttökohta Technical University of Gabrovo Hristo Hristov Tampereen teknillinen yliopisto Tuula Höök Ruiskuvalukappaleen suunnittelijan on tärkeää huomioida kohta, josta muovi tullaan

Lisätiedot

Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA

Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TYÖN TAVOITE Tavoitteena on ymmärtää aineen kimmoisuuteen liittyviä käsitteitä sekä aineen lämpölaajenemista. Sovelluksena

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Ruiskuvalumuotin testaaminen ja simulointi 1

Ruiskuvalumuotin testaaminen ja simulointi 1 Ruiskuvalumuotin testaaminen ja simulointi School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök Tampereen teknillinen yliopisto Kuten lähteissä [1] ja [2] on mainittu,

Lisätiedot

Kiviaineksen tekniset laatuominaisuudet. Pirjo Kuula TTY/Maa- ja pohjarakenteet

Kiviaineksen tekniset laatuominaisuudet. Pirjo Kuula TTY/Maa- ja pohjarakenteet Kiviaineksen tekniset laatuominaisuudet Pirjo Kuula TTY/Maa- ja pohjarakenteet Sisältö Kysymyksiä Mitä varten kiviainestuotteita valmistetaan? Mitä kiviaineksen laatu tarkoittaa? Miten ja miksi kiviaineksen

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

2. Valukappaleiden suunnittelu mallikustannusten kannalta

2. Valukappaleiden suunnittelu mallikustannusten kannalta 2. Valukappaleiden suunnittelu mallikustannusten kannalta Pekka Niemi Tampereen ammattiopisto 2.1. Valukappaleiden muotoilu Valitse kappaleelle sellaiset muodot, jotka on helppo valmistaa mallipajojen

Lisätiedot

Betonirakenteiden suunnittelussa käytettävää betonin lujuutta kutsutaan suunnittelu- eli nimellislujuudeksi f ck (aiemmin ns. K-lujuus).

Betonirakenteiden suunnittelussa käytettävää betonin lujuutta kutsutaan suunnittelu- eli nimellislujuudeksi f ck (aiemmin ns. K-lujuus). 1 Betonirakenteiden suunnittelussa käytettävää betonin lujuutta kutsutaan suunnittelu- eli nimellislujuudeksi f ck (aiemmin ns. K-lujuus). Betonirakenteiden suunnittelussa käytettävä betonin nimellislujuus

Lisätiedot

Ruiskuvalumuotin kanavisto 2

Ruiskuvalumuotin kanavisto 2 Ruiskuvalumuotin kanavisto 2 Juho Taipale, Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat Ruiskuvalumuotin täyttäminen CAD työkalut harjoituksessa Ruiskuvalumuotin

Lisätiedot