Johdatus L A TEXiin. 10. Matemaattisen tekstin kirjoittamisesta. Matemaattisten tieteiden laitos

Koko: px
Aloita esitys sivulta:

Download "Johdatus L A TEXiin. 10. Matemaattisen tekstin kirjoittamisesta. Matemaattisten tieteiden laitos"

Transkriptio

1 Johdatus L A TEXiin 10. Matemaattisen tekstin kirjoittamisesta Matemaattisten tieteiden laitos

2 Matemaattisesta tekstistä I Matemaattisella tekstillä tarkoitetaan tavallista (suomenkielisistä virkkeistä koostuvaa) tekstiä, joka sisältää matemaattisia ilmaisuja ja merkintöjä.

3 Matemaattisesta tekstistä I Matemaattisella tekstillä tarkoitetaan tavallista (suomenkielisistä virkkeistä koostuvaa) tekstiä, joka sisältää matemaattisia ilmaisuja ja merkintöjä. Matematiikka ei siis elä tyhjiössä vaan on aina osa virkettä, joka alkaa isolla alkukirjaimella ja päättyy pisteeseen. Ei siis irrallisia kaavoja tai laskuja!

4 Matemaattisesta tekstistä I Matemaattisella tekstillä tarkoitetaan tavallista (suomenkielisistä virkkeistä koostuvaa) tekstiä, joka sisältää matemaattisia ilmaisuja ja merkintöjä. Matematiikka ei siis elä tyhjiössä vaan on aina osa virkettä, joka alkaa isolla alkukirjaimella ja päättyy pisteeseen. Ei siis irrallisia kaavoja tai laskuja! Lisäksi, pieninkin matemaattinen ilmaisu tulee laittaa matematiikkatiloihin. Esim. Funktio $F$ on funktion $f$ integraalifunktio. Funktio F on funktion f integraalifunktio.

5 Matemaattisesta tekstistä I Matemaattisella tekstillä tarkoitetaan tavallista (suomenkielisistä virkkeistä koostuvaa) tekstiä, joka sisältää matemaattisia ilmaisuja ja merkintöjä. Matematiikka ei siis elä tyhjiössä vaan on aina osa virkettä, joka alkaa isolla alkukirjaimella ja päättyy pisteeseen. Ei siis irrallisia kaavoja tai laskuja! Lisäksi, pieninkin matemaattinen ilmaisu tulee laittaa matematiikkatiloihin. Esim. Funktio $F$ on funktion $f$ integraalifunktio. Funktio F on funktion f integraalifunktio. Symboleiden taivutusta sijapäätteillä tulisi välttää. Kirjoita siis mieluummin "funktion f", kuin "f:n". Taivuta siis symboliin liittyvää substantiivia (tämä pistää samalla miettimään sanoman merkitystä).

6 Matemaattisesta tekstistä II Kaava tai muu matematiikka sijoitetaan yleensä rivimatematiikkatilaan $...$

7 Matemaattisesta tekstistä II Kaava tai muu matematiikka sijoitetaan yleensä rivimatematiikkatilaan $...$ Näyttömatematiikkatilaa (esim. $$...$$, \[...\]) käytetään, jos kaava on

8 Matemaattisesta tekstistä II Kaava tai muu matematiikka sijoitetaan yleensä rivimatematiikkatilaan $...$ Näyttömatematiikkatilaa (esim. $$...$$, \[...\]) käytetään, jos kaava on paljon tilaa vievä erityisen tärkeä viittaamista ja siten numerointia vaativa.

9 Matemaattisesta tekstistä II Kaava tai muu matematiikka sijoitetaan yleensä rivimatematiikkatilaan $...$ Näyttömatematiikkatilaa (esim. $$...$$, \[...\]) käytetään, jos kaava on paljon tilaa vievä erityisen tärkeä viittaamista ja siten numerointia vaativa. Viittaamattomia kaavoja ei (ole tarpeen) numeroida.

10 Matemaattisesta tekstistä II Kaava tai muu matematiikka sijoitetaan yleensä rivimatematiikkatilaan $...$ Näyttömatematiikkatilaa (esim. $$...$$, \[...\]) käytetään, jos kaava on paljon tilaa vievä erityisen tärkeä viittaamista ja siten numerointia vaativa. Viittaamattomia kaavoja ei (ole tarpeen) numeroida. Viitattaessa kirjoitelman osaan kyseinen osa tulee kirjoittaa isolla alkukirjaimella. Esim. Todistimme Luvun 3 Lauseessa 3.1.1, että...

11 Matemaattisesta tekstistä II Kaava tai muu matematiikka sijoitetaan yleensä rivimatematiikkatilaan $...$ Näyttömatematiikkatilaa (esim. $$...$$, \[...\]) käytetään, jos kaava on paljon tilaa vievä erityisen tärkeä viittaamista ja siten numerointia vaativa. Viittaamattomia kaavoja ei (ole tarpeen) numeroida. Viitattaessa kirjoitelman osaan kyseinen osa tulee kirjoittaa isolla alkukirjaimella. Esim. Todistimme Luvun 3 Lauseessa 3.1.1, että... Kaksoispisteen käyttö on harvoin tarpeen. Vrt. Tästä nähdään: Tästä nähdään, että (a + b) 2 = a 2 + 2ab + b 2. (a + b) 2 = a 2 + 2ab + b 2.

12 Matemaattisesta tekstistä III Virkettä (tai mielellään lausettakaan) ei saa aloittaa symbolilla, kaavasta tai yhtälöstä puhumattakaan. Aloita lause matematiikkaa kuvaavalla substantiivilla.

13 Matemaattisesta tekstistä III Virkettä (tai mielellään lausettakaan) ei saa aloittaa symbolilla, kaavasta tai yhtälöstä puhumattakaan. Aloita lause matematiikkaa kuvaavalla substantiivilla. Poikkeuksena vain lyhyet ja ytimekkäät ilmaisut kuten Lause 12. D(f + g) = Df + Dg.

14 Matemaattisesta tekstistä III Virkettä (tai mielellään lausettakaan) ei saa aloittaa symbolilla, kaavasta tai yhtälöstä puhumattakaan. Aloita lause matematiikkaa kuvaavalla substantiivilla. Poikkeuksena vain lyhyet ja ytimekkäät ilmaisut kuten Lause 12. D(f + g) = Df + Dg. Symboleita kuten,, tai ei saa käyttää pikakirjoitusmerkintöinä.

15 Matemaattisesta tekstistä III Virkettä (tai mielellään lausettakaan) ei saa aloittaa symbolilla, kaavasta tai yhtälöstä puhumattakaan. Aloita lause matematiikkaa kuvaavalla substantiivilla. Poikkeuksena vain lyhyet ja ytimekkäät ilmaisut kuten Lause 12. D(f + g) = Df + Dg. Symboleita kuten,, tai ei saa käyttää pikakirjoitusmerkintöinä. Ne kuuluvat liitutaululle ja ei-muodollisiin muistiinpanoihin.

16 Matemaattisesta tekstistä III Virkettä (tai mielellään lausettakaan) ei saa aloittaa symbolilla, kaavasta tai yhtälöstä puhumattakaan. Aloita lause matematiikkaa kuvaavalla substantiivilla. Poikkeuksena vain lyhyet ja ytimekkäät ilmaisut kuten Lause 12. D(f + g) = Df + Dg. Symboleita kuten,, tai ei saa käyttää pikakirjoitusmerkintöinä. Ne kuuluvat liitutaululle ja ei-muodollisiin muistiinpanoihin. Logiikassa näitä kuitenkin tarvitaan.

17 Matemaattisesta tekstistä III Virkettä (tai mielellään lausettakaan) ei saa aloittaa symbolilla, kaavasta tai yhtälöstä puhumattakaan. Aloita lause matematiikkaa kuvaavalla substantiivilla. Poikkeuksena vain lyhyet ja ytimekkäät ilmaisut kuten Lause 12. D(f + g) = Df + Dg. Symboleita kuten,, tai ei saa käyttää pikakirjoitusmerkintöinä. Ne kuuluvat liitutaululle ja ei-muodollisiin muistiinpanoihin. Logiikassa näitä kuitenkin tarvitaan. Tavallisessa asiatekstissä ne korvataan suomen kielen ilmaisuilla kuten: kaikilla, jokaisella on olemassa Jos..., niin..., Tästä seuraa, että... jos ja vain jos, Tämä on yhtäpitävää sen kanssa, että...

18 Matemaattisesta tekstistä IV Esimerkkejä: Lukuteoria I, Lineaarialgebra I

19 Matemaattisesta tekstistä IV Esimerkkejä: Lukuteoria I, Lineaarialgebra I Uudet käsitteet yleensä korostetaan (\emph{}). Lihavoinnin tai alleviivauksen käyttäminen ei ole suositeltavaa.

20 Matemaattisesta tekstistä IV Esimerkkejä: Lukuteoria I, Lineaarialgebra I Uudet käsitteet yleensä korostetaan (\emph{}). Lihavoinnin tai alleviivauksen käyttäminen ei ole suositeltavaa. Vältä pitkiä ja monimutkaisia lauserakenteita, joissa syy ja seuraus jäävät epäselviksi. Katkaise sanomasi mieluummin pisteellä useammaksi lyhyemmäksi (ja ymmärrettävämmäksi) virkkeeksi. Tämä on matematiikassa erityisen tärkeää.

21 Matemaattisesta tekstistä IV Esimerkkejä: Lukuteoria I, Lineaarialgebra I Uudet käsitteet yleensä korostetaan (\emph{}). Lihavoinnin tai alleviivauksen käyttäminen ei ole suositeltavaa. Vältä pitkiä ja monimutkaisia lauserakenteita, joissa syy ja seuraus jäävät epäselviksi. Katkaise sanomasi mieluummin pisteellä useammaksi lyhyemmäksi (ja ymmärrettävämmäksi) virkkeeksi. Tämä on matematiikassa erityisen tärkeää. Tarkista aina (ääneen) lukemalla onko virke kaikkine ilmaisuineen oikein ja ymmärrettävästi muodostettu.

22 Matemaattisesta tekstistä IV Esimerkkejä: Lukuteoria I, Lineaarialgebra I Uudet käsitteet yleensä korostetaan (\emph{}). Lihavoinnin tai alleviivauksen käyttäminen ei ole suositeltavaa. Vältä pitkiä ja monimutkaisia lauserakenteita, joissa syy ja seuraus jäävät epäselviksi. Katkaise sanomasi mieluummin pisteellä useammaksi lyhyemmäksi (ja ymmärrettävämmäksi) virkkeeksi. Tämä on matematiikassa erityisen tärkeää. Tarkista aina (ääneen) lukemalla onko virke kaikkine ilmaisuineen oikein ja ymmärrettävästi muodostettu. Latoessa syntyvät virheet ja varoitukset kannattaa korjata mahdollisimman varhaisessa vaiheessa, jolloin niiden löytäminen on helpompaa. Korjaaminen kannattaa aloittaa ensimmäisestä virheestä; usein se jopa poistaa lukuisia muita virheilmoituksia kerralla.

23 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa).

24 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa.

25 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää

26 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!)

27 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!) muuttamalla ilmaisua toisin sanankääntein

28 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!) muuttamalla ilmaisua toisin sanankääntein auttamalla tavutusta käsin lisäämällä \- sopiviin paikkoihin (esim. ta\-vu\-tus\-ta)

29 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!) muuttamalla ilmaisua toisin sanankääntein auttamalla tavutusta käsin lisäämällä \- sopiviin paikkoihin (esim. ta\-vu\-tus\-ta) laittamalla pitkät kaavat omalle kaavariville

30 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!) muuttamalla ilmaisua toisin sanankääntein auttamalla tavutusta käsin lisäämällä \- sopiviin paikkoihin (esim. ta\-vu\-tus\-ta) laittamalla pitkät kaavat omalle kaavariville Rivityksen voi puolestaan estää

31 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!) muuttamalla ilmaisua toisin sanankääntein auttamalla tavutusta käsin lisäämällä \- sopiviin paikkoihin (esim. ta\-vu\-tus\-ta) laittamalla pitkät kaavat omalle kaavariville Rivityksen voi puolestaan estää laatikoimalla palan tekstiä: \mbox{tämä ei rivity}.

32 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!) muuttamalla ilmaisua toisin sanankääntein auttamalla tavutusta käsin lisäämällä \- sopiviin paikkoihin (esim. ta\-vu\-tus\-ta) laittamalla pitkät kaavat omalle kaavariville Rivityksen voi puolestaan estää laatikoimalla palan tekstiä: \mbox{tämä ei rivity}. matematiikkatilassa ympäröimällä ilmaisun aaltosuluilla: ${a+b+c+d+e}$.

33 Lopuksi Kirjoittajan kannattaa lähes aina luottaa L A TEXin tuottamaan muotoiluun (kunhan loogiset rakenteet ovat ensin kunnossa). Turhia rivin ja kappaleenvaihtoja tulee välttää! Niitä käytetään kuten muutoinkin suomen kielessä ilman matematiikkaa. Esim. rivimatematiikkatilassa olevaa ilmaisua ei tule siirrellä pakotetuilla rivinvaihdoilla tms. toiseen paikkaan tai keskittää Ylipitkiä rivejä (Bad Box(es), Overfull \hbox) voi siistiä mm. (mutta vasta viimeistelyvaiheessa!) muuttamalla ilmaisua toisin sanankääntein auttamalla tavutusta käsin lisäämällä \- sopiviin paikkoihin (esim. ta\-vu\-tus\-ta) laittamalla pitkät kaavat omalle kaavariville Rivityksen voi puolestaan estää laatikoimalla palan tekstiä: \mbox{tämä ei rivity}. matematiikkatilassa ympäröimällä ilmaisun aaltosuluilla: ${a+b+c+d+e}$.

MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1

MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 PEKKA SALMI Tämä dokumentti on johdatus matemaattisten termien kirjoittamiseen L A TEXilla. Tarkoituksena on esitellä yksinkertaisia matemaattisia konstruktioita

Lisätiedot

Johdatus L A TEXiin. 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju. Matemaattiset tieteet Johdatus L A TEXiin 5. Ristiviittauksista, monirivisistä kaavoista ja vähän muustakin Markus Harju Matemaattiset tieteet a Ristiviittauksista I Jos johonkin kirjoitelman osioon, yhtälöön tai kaavaan halutaan

Lisätiedot

KAAVAT. Sisällysluettelo

KAAVAT. Sisällysluettelo Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Työn osat 5-9 muodostavat varsinaisen sisällön.

Työn osat 5-9 muodostavat varsinaisen sisällön. 5 Projektityö onkin hyvä suunnitella siten, että työ on mielekkäästi jaettavissa osiin kandidaatintöiden kirjoittamista ajatellen. Projektityön yhteydessä tehtävien kandidaatintöiden arvostelua ja muotoseikkoja

Lisätiedot

Rakenteiset päättelyketjut ja avoin lähdekoodi

Rakenteiset päättelyketjut ja avoin lähdekoodi Rakenteiset päättelyketjut ja avoin lähdekoodi Mia Peltomäki Kupittaan lukio ja Turun yliopiston IT-laitos http://crest.abo.fi /Imped Virtuaalikoulupäivät 24. marraskuuta 2009 1 Taustaa Todistukset muodostavat

Lisätiedot

Matematiikan kirjoittamisesta

Matematiikan kirjoittamisesta Matematiikan kirjoittamisesta Asiasisältö Tärkeintä kaikessa on, että kaiken minkä kirjoitat, niin myös itse ymmärrät. Toisin sanoen asiasisällön on vastattava lukijan pohjatietoja. Tekstin täytyy olla

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Integraalifunktio. Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5

Integraalifunktio. Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5 Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5 Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? Derivaatta a) 3x 2 Funktio

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Sangen lyhyt L A T E X-johdatus

Sangen lyhyt L A T E X-johdatus Sangen lyhyt L A T E X-johdatus Lari Koponen ja Eetu Ahonen 23.1.2013 Koulutuksen tavoitteet Koulutuksen jälkeen pystyy kirjoittamaan työselostuksen L A T E X:illa, eli Dokumentin rakenne tutuksi Tekstin

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD)

TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD) TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD) Ohjelmointikäytännöt 21/3/11 Mikko Vuorinen Metropolia Ammattikorkeakoulu 1 Sisältö 1) Mitä on hyvä koodi? 2) Ohjelmointikäytäntöjen merkitys? 3) Koodin asettelu

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

5.1 Semanttisten puiden muodostaminen

5.1 Semanttisten puiden muodostaminen Luku 5 SEMNTTISET PUUT 51 Semanttisten puiden muodostaminen Esimerkki 80 Tarkastellaan kysymystä, onko kaava = (( p 0 p 1 ) (p 1 p 2 )) toteutuva Tätä voidaan tutkia päättelemällä semanttisesti seuraavaan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:

FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: LOGIIKKA 1 Mitä logiikka on? päättelyn tiede o oppi muodollisesti pätevästä päättelystä 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: sisältö, merkitys: onko jokin premissi

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet Johdatus L A TEXiin 6. Omat komennot ja lauseympäristöt Markus Harju Matemaattiset tieteet Omat komennot I a L A TEXin valmiiden komentojen lisäksi kirjoittaja voi itse määritellä omia komentojaan. Tämä

Lisätiedot

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa kirjoitustaito. Kokeet järjestetään eri päivinä: esimerkiksi tänä

Lisätiedot

C-ohjelmoinnin peruskurssi. Pasi Sarolahti

C-ohjelmoinnin peruskurssi. Pasi Sarolahti C! C-ohjelmoinnin peruskurssi Pasi Sarolahti Mitä haluan oppia C-kurssilla? ja miksi? Tutustu lähimpään naapuriin Keskustelkaa miksi halusitte / jouduitte tulemaan kurssille 3 minuuttia è kootaan vastauksia

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 28.2.2011 1 / 46 Ohjelmointiprojektin vaiheet 1. Määrittely 2. Ohjelman suunnittelu (ohjelman rakenne ja ohjelman

Lisätiedot

Työvälineistä komentoihin

Työvälineistä komentoihin Työvälineistä komentoihin Miten GeoGebralla piirretään funktioita? Kohtasitko ongelmia GeoGebran käytössä? Millaisia? Kohtaisitko tilanteita, joissa jonkin funktion piirtäminen GeoGebralla ei onnistunutkaan?

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa. Radiaanit Kulmia mitataan matematiikassa paitsi asteissa, myös radiaaneissa. Radiaanien taustaideana on, että kun kulmaa α asetetaan yksikköympyrään, kulmien kylkien välille muodostuu ympyrän kehälle kaari

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

LAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

TEHTÄVÄN NIMI YHDELLE TAI USEAMMALLE RIVILLE FONTTIKOKO 24 Tarvittaessa alaotsikko fonttikoko 20

TEHTÄVÄN NIMI YHDELLE TAI USEAMMALLE RIVILLE FONTTIKOKO 24 Tarvittaessa alaotsikko fonttikoko 20 Etunimi Sukunimi fonttikoko 16 Ryhmätunnus TEHTÄVÄN NIMI YHDELLE TAI USEAMMALLE RIVILLE FONTTIKOKO 24 Tarvittaessa alaotsikko fonttikoko 20 Tehtävätyyppi Koulutusohjelma fonttikoko 16 Elokuu 2010 SISÄLTÖ

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Smart Board lukion lyhyen matematiikan opetuksessa

Smart Board lukion lyhyen matematiikan opetuksessa Smart Board lukion lyhyen matematiikan opetuksessa Haasteita opettajalle lukion lyhyen matematiikan opetuksessa ovat havainnollistaminen ja riittämätön aika. Oppitunnin aikana opettaja joutuu usein palamaan

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet Tunnus, varattu sana, kommentti Muuttuja, alkeistietotyyppi, merkkijono, literaalivakio, nimetty vakio Tiedon merkkipohjainen tulostaminen 1 Tunnus Java tunnus Java-kirjain Java-numero

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

Mat-1.C Matemaattiset ohjelmistot

Mat-1.C Matemaattiset ohjelmistot Mat-.C Matemaattiset ohjelmistot Luento ma 9.3.0 $z; Error, (in rtable/product) invalid arguments.z; z C z C z3 3 C z4 4 C z5 5.Tr z ; z C z C z3 3 C z4 4 C z5 5 ; Error, (in rtable/power) eponentiation

Lisätiedot

Verkkokirjoittaminen. Verkkolukeminen

Verkkokirjoittaminen. Verkkolukeminen 0 Nopeaa silmäilyä: Pääotsikot, kuvat, kuvatekstit, väliotsikot, linkit, luettelot, korostukset. 0 Hitaampaa kuin paperilla olevan tekstin lukeminen 0 F-tyyppinen lukeminen Verkkolukeminen Verkkokirjoittaminen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461

UUSI KIRJA / UUDEHKO KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461 JALASJÄRVEN LUKIO 1.-3. VUOSIKURSSI Kauppilantie 1 UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461 Kirjoja on mahdollisuus kierrättää,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Tasogeometriaa GeoGebran piirtoalue ja työvälineet

Tasogeometriaa GeoGebran piirtoalue ja työvälineet Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ (ja MITTAA) a) jana toinen jana, jonka pituus on 3 b) kulma toinen kulma, jonka

Lisätiedot

Luova opettaja, luova oppilas matematiikan tunneilla

Luova opettaja, luova oppilas matematiikan tunneilla Luova opettaja, luova oppilas matematiikan tunneilla ASKELEITA LUOVUUTEEN - Euroopan luovuuden ja innovoinnin teemavuoden 2009 päätösseminaari Anni Lampinen konsultoiva opettaja, Espoon Matikkamaa www.espoonmatikkamaa.fi

Lisätiedot

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin

Lisätiedot

ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6

ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6 VIMPELIN LUKIO OPPIKIRJAT LV. 2015-2016 ÄIDINKIELI ISBN KUSTANTAJA LUOKKA KURSSI Särmä, suomen kieli ja 9789511234364 OTAVA 1-3 1-6 kirjallisuus Särmä, tehtäviä 1 9789511237211 OTAVA 1 1 Särmä, tehtäviä

Lisätiedot

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos Johdatus L A TEXiin 9. Sivun mitat, ulkoasu ja kalvot Matemaattisten tieteiden laitos Sivun mitoista I L A TEXissa kaikki sivuasetukset (marginaalit, tekstin leveys, jne.) ovat mittoja Keskeisimmät mitat

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Pääluvun tekstin jälkeen tuleva alaotsikko erotetaan kahdella (2) enterin painalluksella,väliin jää siis yksi tyhjä rivi.

Pääluvun tekstin jälkeen tuleva alaotsikko erotetaan kahdella (2) enterin painalluksella,väliin jää siis yksi tyhjä rivi. KIRJALLISEN TYÖN ULKOASU JA LÄHTEIDEN MERKITSEMINEN Tämä ohje on tehty käytettäväksi kasvatustieteiden tiedekunnan opinnoissa tehtäviin kirjallisiin töihin. Töiden ohjaajilla voi kuitenkin olla omia toivomuksiaan

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/4+^2 3 4+ 2 Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +^2 3 + 4 2 Kopioi

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

Tarvitseeko informaatioteknologia matematiikkaa?

Tarvitseeko informaatioteknologia matematiikkaa? Tarvitseeko informaatioteknologia matematiikkaa? Oulun yliopisto Matemaattisten tieteiden laitos 1 Kyllä kai IT matematiikkaa tarvitsee!? IT ja muu korkea teknologia on nimenomaan matemaattista teknologiaa.

Lisätiedot

UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461

UUSI KIRJA / UUDEHKO KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461 JALASJÄRVEN LUKIO 1.-3. VUOSIKURSSI Kauppilantie 1 UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461 Kirjoja on mahdollisuus kierrättää,

Lisätiedot

Opas matemaattisen tekstin kirjoittamiseen

Opas matemaattisen tekstin kirjoittamiseen Opas matemaattisen tekstin kirjoittamiseen Tuomas Nurmi, Henri Pesonen ja Heikki Ruskeepää Matematiikan ja tilastotieteen laitos Turun yliopisto 1 Matemaattinen teksti Hyvän matematiikkaa sisältävän tekstin

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain

Lisätiedot

11.4. Context-free kielet 1 / 17

11.4. Context-free kielet 1 / 17 11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä

Lisätiedot

Ohje tutkielman tekemiseen

Ohje tutkielman tekemiseen Sauvon koulukeskus 2011 Ohje tutkielman tekemiseen Aiheen valinta Etsi materiaalia Valitse itseäsi kiinnostava aihe. Sovi opettajan kanssa aiheen rajaus. Pyydä opettajalta tutkielmapassiin merkintä aiheen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

KAITAAN LUKION OPPIKIRJAT 2014 2015

KAITAAN LUKION OPPIKIRJAT 2014 2015 KAITAAN LUKION OPPIKIRJAT 2014 2015 O = Otava E = Edita K = Kustannus Oy KK = Kustannuskiila SP = Sanoma Pro SKS = Suomal.kirjall.seura *Oppikirjat voi hankkia perinteisinä kirjoina tai sähköisinä oppikirjoina*

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 16.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 16.9.2015 1 / 26 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Tietorakenteet (syksy 2013)

Tietorakenteet (syksy 2013) Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten

Lisätiedot

K AITAAN LUKION OPPIKIRJAT 2015 2016

K AITAAN LUKION OPPIKIRJAT 2015 2016 K AITAAN LUKION OPPIKIRJAT 2015 2016 O = Otava E = Edita K = Kustannus Oy KK = Kustannuskiila SP = Sanoma Pro SKS = Suomal.kirjall.seura *Oppikirjat voi hankkia perinteisinä kirjoina tai sähköisinä oppikirjoina*

Lisätiedot

Yhdyssana suomen kielessä ja puheessa

Yhdyssana suomen kielessä ja puheessa Yhdyssana suomen kielessä ja puheessa Tommi Nieminen Jyväskylän yliopisto Anna Lantee Tampereen yliopisto 37. Kielitieteen päivät Helsingissä 20. 22.5.2010 Yhdyssanan ortografian historia yhdyssanan käsite

Lisätiedot

Johdatus L A TEXiin. Dept. of Mathematical Sciences. Tunti 1: Alkeet. Markus Harju, markus.harju at oulu.fi, M207

Johdatus L A TEXiin. Dept. of Mathematical Sciences. Tunti 1: Alkeet. Markus Harju, markus.harju at oulu.fi, M207 Johdatus L A TEXiin Tunti 1: Alkeet Markus Harju, markus.harju at oulu.fi, M207 Dept. of Mathematical Sciences Kurssista Tarkoitus: johdattaa opiskelija L A TEX-ladontaohjelman käyttöön, jotta hän kykenee

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos Johdatus L A TEXiin 9. Sivun mitat, ulkoasu ja kalvot Matemaattisten tieteiden laitos Sivun mitoista I L A TEXissa kaikki sivuasetukset (marginaalit, tekstin leveys, jne.) ovat mittoja Sivun mitoista I

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Taulukkolaskennan perusteet Taulukkolaskentaohjelmat

Taulukkolaskennan perusteet Taulukkolaskentaohjelmat Taulukkolaskennan perusteet Taulukkolaskentaohjelmat MS Excel ja LO Calc H6: Lomakkeen solujen visuaalisten ja sisältöominaisuuksien käsittely ja soluviittausten perusteet Taulukkolaskennan perusteita

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot