Kokonaislukuoptimointimallinnus projektiportfolion valinnasa

Koko: px
Aloita esitys sivulta:

Download "Kokonaislukuoptimointimallinnus projektiportfolion valinnasa"

Transkriptio

1 Kokonaislukuoptimointimallinnus projektiportfolion valinnasa Mat Optimointiopin seminaari kevät 2011 Lähteet: Brown & Dell & Newman: Optimizing Military Capital Planning Pachamanova: Introducing Integer Modeling with Excel Solver

2 Kokonaislukuoptimoinnin historiaa Yhdysvaltain armeija edelläkävijöitä lineaarisen ohjelmoinnin kehittämisessä toisen maailmansodan jälkeen Tarve suunnitella valtavan budjetin tehokas käyttö Eroja armeijan ja siviilimaailman välillä: Armeijalla ei veroja, poistoja, taseita, tuottolaskelmia jne. Toisaalta erittäin pitkä suunnitteluhorisontti ja paljon erikoisia sääntöjä Kuitenkin erittäin paljon yhteneväisyyksiä ja siten opittavaa malleista: verosuojan yms. lisääminen on vain tekninen toimenpide

3 Lineaarisuudesta Lineaarisuus helpottaa optimointitehtävän ratkaisemista ja takaa globaalin optimiratkaisun löytymisen useimmissa tapauksissa (esimerkiksi Simplex-menetelmällä) Excelin Solver on kätevä apuväline, sillä se sisältää Simplextoiminnon: kaikki tämän esitelmän esimerkit on ratkaistu sitä käyttäen Normaalissa Excelin käytössä hyödylliset IF-funktiot eivät toimi Simplex-menetelmän kanssa Muuttujien keskenään kertomista tulisi myös välttää (tulee vastaan ainakin synergialaskuissa), sillä useimmissa tapauksissa on olemassa lineaarinen keino toimittaa sama asia

4 Lähtökohta: Knapsack-ongelma a viittaa yksittäisen vaihtoehdon indeksiin

5 Lähtökohta: Knapsack-ongelma Olet ostamassa aseita kotisi turvaksi ja pohdiskelet, mitkä pyssyt valitsisit, kun budjettirajoitteesi on 3000 dollaria Hinta (k$) Hyöty VALINTA Aseet RK-62 1,5 1,3 0 AK-47 0,7 1,0 1 M-16 1,4 1,4 0 M-231 FPW 1,8 1,9 1 Valituksi tulee yksi AK-47 ja yksi M-231 TOTAL 2,5 2,9 Budjettirajoite 3,0 Budjettia ei saa ylittää Haluat maksimoida hyödyn eli vaikkapa pelotevaikutuksen

6 Määrän lisääminen Valinnasta aiheutuva kiinteä hyöty Kunkin lisäyksikön tuoma muuttuva hyöty Kiinteä kustannus Muuttuva (yksikkö)kustannus

7 Määrän lisääminen Armeijan asebudjetti on 500 tuhatta dollaria, mitkä aseet sen kannattaa hankkia? Kiinteä hinta (k$) Yksikköhinta (k$) Kiinteä hyöty Yksikköhyöty VALINTA MÄÄRÄ Aseet RK-62 15,0 1,5 1,3 0, AK-47 10,0 0,7 1,0 0, M-16 20,0 1,4 1,4 0, M-231 FPW 25,0 1,8 1,9 0, TOTAL ,6 18,38 Kokonaishyöty 23,98 Kokonaiskustannus 500 Kokonaisbudjetti 500 Nyt sekä hyödyt että kustannukset koostuvat kiinteästä ja muuttuvasta osasta Koska kiinteä hyöty on niin edullista, jokaista asetta ostetaan

8 Määrän rajoittaminen Jos valitaan vaihtoehto a, on tilattava vähintään minimierän suuruinen määrä

9 Määrän rajoittaminen Aseiden toimittajat kykenevät myymään tulevana vuonna vain seuraavan suuruisia eriä Kiinteä hinta (k$) Yksikköhinta (k$) Kiinteä hyöty Yksikköhyöty Minimierä Maksimierä VALINTA MÄÄRÄ Alaraja Yläraja Aseet RK-62 15,0 1,5 1,3 0, AK-47 10,0 0,7 1,0 0, M-16 20,0 1,4 1,4 0, M-231 FPW 25,0 1,8 1,9 0, TOTAL ,9 18,6 Kokonaishyöty 21,5 Kokonaiskustannus 499 Kokonaisbudjetti 500 Käytännön toteutus Nyt ratkaisu ottaa Excelin Solveria eräkoot huomion varten: VALINTA*minimierä

10 Erilliset budjetit Budjettiin c kohdistettu hinta

11 Ajoneuvokustannukset 4490 Ajoneuvobudjetti 4500 Erilliset budjetit Havainnollisuuden vuoksi kukin erä kohdistetaan vain yhteen budjettiin Kiinteä hinta (k$) Yksikköhinta (k$) Kiinteä hyöty Yksikköhyöty Minimierä Maksimierä VALINTA MÄÄRÄ Aseet RK-62 15,0 1,5 1,3 0, AK-47 10,0 0,7 1,0 0, M-16 20,0 1,4 1,4 0, M-231 FPW 25,0 1,8 1,9 0, Ajoneuvot 0 0 Humvee 25,0 50, M1 Abrams 120,0 250, KrAZ 20,0 45, T ,0 225, TOTAL ,9 429,6 Kokonaiskustannus 4989 Kokonaishyöty 572,5 Kokonaisbudjetti 5000 Asekustannukset 499 Asebudjetti 500 Erilliset budjetit aseille ja ajoneuvoille Kun kukin kustannus allokoidaan vain yhteen budjettiin, kyseessä on käytännössä kaksi erillistä tehtävää

12 Päätösten väliset riippuvuudet Päätökset ovat usein toisistaan tavalla tai toisella riippuvia Joitain yleisiä riippuvuuksia: valitse enintään, täsmälleen tai vähintään k vaihtoehtoa tästä ryhmästä vaihtoehto x pitää valita, jotta voisit toteuttaa jonkin ryhmän A valinnoista jos valitset jonkin vaihtoehdon ryhmästä A, tulee valita vähintään yksi vaihtoehto ryhmästä B Esimerkiksi: aseisiin tulee ostaa ammuksia, vieläpä oikeanlaisia

13 Päätösten väliset riippuvuudet Aseisiin on hankittava ammuksia oikea määrä oikeaa laatua Venäjä myy KrAZeja vain T-72-asiakkaille Kaksi eri toimittajaa, erilaiset hyöty- ja kustannusprofiilit VALINTA MÄÄRÄ 7.62? Määrä 5.56? Määrä Aseet RK AK M M-231 FPW Ammukset A B NATO Ajoneuvot 0 0 Humvee 1 15 M1 Abrams 0 0 KrAZ 1 29 T Asetetaan KrAZin valinta pienemmäksi tai yhtäsuureksi kuin T-72:n valinta A B Vaaditaan, että: - jos valitaan ase, valitaan siihen ammuksia (B A) - ammuslaatikkoja on tilattava yhtä monta kuin aseita Valintamuuttuja kerrottu kahdella, jotta asetettu rajoitus toimii, vaikka molemmat 7.62-kaliiberiset valittaisiin

14 Synergiat päätösten välillä

15 Synergiat päätösten välillä Ajoneuvojen hankintaan liittyy poliittisia hyötyjä ja haittoja Suurvallat suosivat omien vaihtoehtojensa yhdistämistä eivätkä pidä siitä, jos ostaa molemmilta BOTH on lineaariseen malliin lisätty liikkuva muuttuja, joka täyttää edellisellä kalvolla olevat ehdot Ajoneuvot 1 Humvee 2 M1 Abrams 3 KrAZ 4 T-72 Synergiat (kiinteitä) BOTH Toteutuneet synergiat (kiinteitä) BOTH? a a' S(a) S(a') S(a)+S(a') Synergioiden takia ostetaan enää KrAZeja ja T-72:ia

16 Monijaksoinen päätöshorisontti Tänä vuonna käytössä = ensi vuonna käytössä + tämän vuoden poistot Vuonna y käyttöön otettujen yksiköiden määrä vuonna y+1

17 Monijaksoinen päätöshorisontti Kiinteä hinta (k$) Yksikköhinta (k$) Kiinteä hyöty / tilaus Yksikköhyöty / käyttökausi Minimierä / kausi Maksimierä / kausi Käyttöikä Ajoneuvot KrAZ 20,0 45, T-72 50,0 225, Kokonaishyöty 2394 Vuosi Vuosibudjetti Kokonaiskustannus Vuosibudjetti ei saa ylittyä Ajoneuvot poistetaan rivistä käyttöiän päätyttyä KrAZ VALINTA MÄÄRÄ MIN MAX Yksikköjä käytössä Hyöty Kustannus Modifikaatio: joka vuosi päätetään erikseen, ostetaanko vai ei T-72 VALINTA MÄÄRÄ MIN MAX Yksikköjä käytössä Hyöty Kustannus Esitelmä Koponen 0 0 0

18 Kumulatiivinen budjetti

19 Kumulatiivinen budjetti Kiinteä hinta (k$) Yksikköhinta (k$) Kiinteä hyöty / tilaus Yksikköhyöty / käyttökausi Minimierä / kausi Maksimierä / kausi Käyttöikä Ajoneuvot KrAZ 20,0 45, T-72 50,0 225, Kokonaishyöty 2494 Vuosi Kumulatiivinen budjetti Vuosibudjetti Kumulatiivinen kustannus Kokonaiskustannus Kumulatiivinen budjetti ei saa ylittyä Budjetti tulee käytettyä paremmin KrAZ VALINTA MÄÄRÄ MIN MAX Yksikköjä käytössä Hyöty Kustannus T-72 VALINTA MÄÄRÄ MIN MAX Yksikköjä käytössä Hyöty Esitelmä Koponen Kustannus

20 Joustava budjetti Oikeassa maailmassa pieni, hyvin perusteltu budjetinylitys käy järkeen, jos täällä saavutettava hyöty on suuri Tätä varten voidaan määritellä haittatermi, joka rankaisee budjetista poikkeamisen Mikäli malli on ei-lineaarinen jo valmiiksi, voi haittatermin määritellä esimerkiksi poikkeaman neliön avulla Myös haittatermistä voidaan tehdä kumulatiivinen

21 Kiinteä hinta (k$) Joustava budjetti Yksikköhinta (k$) Kiinteä hyöty / tilaus Yksikköhyöty / käyttökausi Minimierä / kausi Maksimierä / kausi Käyttöikä Ajoneuvot KrAZ 20,0 45, T-72 50,0 225, Kokonaishyöty 2323 Vuosi Vuosibudjetti Kokonaiskustannus Erotus budjettiin Erotus budjettiin ABS(Ero budjettiin) Sakkotermin kerroin 1 (tässä irrelevantti, koska lähemmäs budjettia ei voi päästä) Sakko Malli sakottaa myös alituksista KrAZ VALINTA MÄÄRÄ MIN MAX Yksikköjä käytössä Hyöty Kustannus Sallii budjetin ylitykset, mikäli saavutettu hyöty voittaa sakkotermin Nämä rivit ovat itseisarvon lineaarista toteutusta varten T-72 VALINTA MÄÄRÄ MIN MAX Yksikköjä käytössä Hyöty Kustannus

22 Päätösten aikariippuvuudet Valittavat projektit voivat riippua toisistaan ajallisesti, esim.: Projekti B1 (alkaa vuonna y ja loppuu vuonna y ) voidaan toteuttaa vain silloin, kun projekti A (y y) on käynnissä Tässä VALINTAmuuttuja ei ole vuosittainen, vaan kertoo, valitaanko jokin projekti ylipäänsä Rajoitusehdot y y y y sekä VALINTA a VALINTA a Projekti B2 (y y ) voidaan toteuttaa projektin A alkamisen jälkeen Rajoitusehdot y y sekä VALINTA a VALINTA a Projekti B3 (y y ) voidaan toteuttaa vain tasan projektin A loppuessa Rajoitusehdot y = y sekä VALINTA a VALINTA a Jos mikä tahansa ryhmän Ω projekteista mahdollistaa projektin a toteuttamisen, jälkimmäinen ehto on: VALINTA a VALINTA a a Ω

23 Päätösten aikariippuvuudet Ehdot edellisellä kalvolla A B1 A B2 A B3 y y

24 Muita sovelluksia Systeemin osien muutoksia tilasta toiseen voidaan kuvata binäärimuuttujalla, joka muistuttaa tilansiirtomatriisin solua Päivitetyn suunnitelman eroa vanhaan voidaan rajoittaa, tämä pienentää suurista muutoksista aiheutuvaa haittaa Koska suunnitteluhorisontin loppupuoli on vähintäänkin epävarma, lopputilan määrittäminen etukäteen johtaa erilaisiin ongelmiin horisontin lopussa ( end effects ). Voidaan osittain kiertää pidentämällä suunnitteluhorisonttia huomattavasti raportoitavaa loppua pidemmälle Hyötyjen (ja haittojen) diskonttaaminen nopeuttaa mallin laskemista ja painottaa aiempia, varmempia tapahtumia. Tuottaa parempia lyhyen aikavälin suunnitelmia, kun kaukaisen tulevaisuuden epävarmoilla hyödyillä on vain pieni painoarvo

25 Kotitehtävä: Ilma- ja merisodankäynnin hankinnat Kuvat: Wikipedia

26 Tehtävä 1: Hävittäjähankinnat Keskikokoinen länsimainen valtio pohtii, millaisia hävittäjiä ostaisi viiden miljardin US-dollarin budjetillaan Liitteenä olevasta Excel-taulukosta löytyy kunkin hävittäjän sekä ohjusvaihtoehtojen ominaisuudet: Kiinteä hinta: Järjestelmän valinnasta aiheutuva kiinteä kustannus (tilauskulut & huolto-organisaation perustaminen) Yksikköhinta: Yhden yksikön (lentokone/ohjus) hinta Kiinteä hyöty: Hankitun asejärjestelmän pelotevaikutus Yksikköhyöty: Kunkin asejärjestelmän yksikön tuoma lisäpelote (myös ensimmäisellä hankitulla yksiköllä) Minimi- ja maksimierät: Asejärjestelmää on tilattava vähintään tietty määrä ja toisaalta myyvät valtiot rajoittavat toimitusmääriä

27 Tehtävä 1: Hävittäjähankinnat Yhteen hävittäjään on hankittava tasan 4 kappaletta siihen sopivia ohjuksia (lisäohjuksista ei ole hyötyä ja jos ohjuksia on vähemmän, hävittäjän hyöty putoaa dramaattisesti) Amerikkalaisiin hävittäjiin (a=1,2) sopii vain AIM-ohjukset ja venäläisiin (a=3,4) vain Vympelin ohjukset Lisäksi, jos hankkii kahta eri hävittäjää samalta suurvallalta, tämä pitää valtiotasi liittolaisenaan (USA vahvemmin kuin Venäjä, kts. taulukko) Jos hankit hävittäjiä molemmilta suurvalloilta, maailmanpoliittinen asemasi heikkenee huomattavasti (kts. taulukko) Vinkki: käytä synergioita määrittäessäsi synergiakalvojen kaavoja näin mallisi pysyy lineaarisena (tämä vaatii BOTH-muuttujan määrittämistä Solverin muuttujaksi) Synergiat (kiinteitä)

28 Tehtävä 1: Hävittäjähankinnat Kohta a: Kuinka monta (ja mitä) hävittäjää ja ohjusta on optimaalista ostaa? Mikä on tällöin hyötyfunktion arvo? Kohta b: Entä ilman synergioita? (Tässä kannattaa yksinkertaisesti korvata synergiataulukon luvut nollilla ja ajaa optimointimalli uudelleen) Mallin tulee olla lineaarinen ja se tulee ratkaista lineaarisella menetelmällä (esim. Solverin Simplex LP -algoritmilla) Excelissä on korostettu solut, jotka täyttämällä malli on havainnollisimmin ratkaistavissa Exceliä ei ole pakko käyttää Palautus sähköpostilla liitä mukaan myös käyttämäsi tiedosto (Excel, Matlab tms ).

29 Tehtävä 2: Merisodankäynnin hankinnat Valtiosi haluaa ostaa myös laivoja ja sukellusveneitä. Tiukan karsinnan jälkeen on päädytty yhteen hävittäjä- ja yhteen sukellusvenetyyppiin Excelistä löytyy kummankin sodankäynnin välineen tiedot: Kiinteä hinta on nyt tilauskohtainen hinta (tilauskulut) Yksikköhinta on edelleen yhden yksikön hankintakustannus, käyttökustannuksia ei huomioida Tilauksella on kiinteä, tilausvuonna realisoituva hyöty: muut maat näkevät, kun päivität armeijasi kalustoa Yksikköhyöty aiheutuu kustakin käytössä olevasta yksiköstä kausittain siihen asti, että yksikkö poistetaan käytöstä Minimi- ja maksimierät ovat kausikohtaisia Asejärjestelmillä on käyttöikä, jonka jälkeen ne poistetaan käytöstä (esimerkiksi vuonna 2010 hankittu sukellusvene ei ole enää käytössä vuonna 2050)

30 Tehtävä 2: Merisodankäynnin hankinnat Kohta a: Miten hankinnat jaksottuvat, kun vuosibudjetit eivät saa ylittyä? Kohta b: Miten hankinnat jaksottuvat, jos budjetti on kumulatiivinen (eli edellisiltä vuosilta jääneet varat voi käyttää tulevien vuosien hankinnoissa)? Mallin tulee olla lineaarinen ja se tulee ratkaista lineaarisella menetelmällä (esim. Solverin Simplex LP -algoritmilla) Excelissä on korostettu solut, jotka täyttämällä malli on havainnollisimmin ratkaistavissa Exceliä ei ole pakko käyttää Palautus sähköpostilla liitä mukaan myös käyttämäsi tiedosto (Excel, Matlab tms ).

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Kotitehtävän 1 ratkaisu Kotitehtävä Kirkwood, G. W., 1997. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets,

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Projektiportfolion valinta

Projektiportfolion valinta Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Demo 1: Branch & Bound

Demo 1: Branch & Bound MS-C05 Optimoinnin perusteet Malliratkaisut 7 Ehtamo Demo : Branch & Bound Ratkaise lineaarinen kokonaislukuoptimointitehtävä käyttämällä Branch & Boundalgoritmia. max x + x s.e. x + 4x 9 5x + x 9 x Z

Lisätiedot

Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla

Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Robust portfolio modeling (RPM) epätäydellisellä hintainformaatiolla ja projektiriippuvuuksilla Mat-2.4142 Optimointiopin seminaari kevät 2011 Lähde: Liesiö, J., Mild, P., Salo, A., 2008. Robust portfolio

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Luento 7: Kokonaislukuoptimointi

Luento 7: Kokonaislukuoptimointi Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus

Lisätiedot

Esimerkkejä kokonaislukuoptimointiongelmista

Esimerkkejä kokonaislukuoptimointiongelmista Esimerkkejä kokonaislukuoptimointiongelmista (eli mitä kaikkea kokonaisluvuilla voi mallintaa) 27. marraskuuta 2013 Pääoman budjetointiongelma Kulut Projekti Vuosi 1 Vuosi 2 Vuosi 3 Tuotto 1 5 1 8 20 2

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:

Lisätiedot

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus

Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Luento 7: Kokonaislukuoptimointi

Luento 7: Kokonaislukuoptimointi Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Varastonhallinnan optimointi

Varastonhallinnan optimointi Varastonhallinnan optimointi Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.6.215 Peruskysymykset Kuinka paljon tilataan? Milloin tilataan? 2 (46) Kustannuksia Tavaran hinta Varastointikustannukset

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä

Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa

Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen

Lisätiedot

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 9. harjoitus - ratkaisut 1. a) Viivahakutehtävä pisteessä x suuntaan d on missä min f(x + λd), λ f(x + λd) = (x

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu

Lisätiedot

Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen

Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Johdatus verkkoteoriaan luento Netspace

Johdatus verkkoteoriaan luento Netspace Johdatus verkkoteoriaan luento 3.4.18 Netspace Matriisioperaatio suunnatuissa verkoissa Taustoitusta verkkoteorian ulkopuolelta ennen kuljetusalgoritmia LP-ongelma yleisesti LP = linear programming =

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine Vaasan yliopiston julkaisuja 97 5 DETERMINANTIT Ch:Determ Sec:DetDef 5.1 Determinantti Tämä kappale jakautuu kolmeen alakappaleeseen. Ensimmäisessä alakappaleessa määrittelemme kaksi- ja kolmiriviset determinantit.

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (24.4.2014) Tehtävä 1 Kuva 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Korko Mela-laskelmissa

Korko Mela-laskelmissa juha.lappi.sjk@gmail.com Taksaattoriklubin kevätseminaari 9.4.09 Korko tule mukaan Mela-laskelmiin neljässä eri merkityksessä: Tavoitefunktion korkoprosentti Uudistamisen ja harvennusten läpimitta- ja

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi Johdantoluento (22.1.2008) Nikolaj Tatti ntatti@cc.hut.fi Johdantoluento Kurssijärjestelyt ja vaatimukset. Kurssin sisällöstä. Hyvä esitelmä

Lisätiedot

Informaation arvo. Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät

Informaation arvo. Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät 259 Informaation arvo Öljykenttään myydään porausoikeuksia, palstoja on n kappaletta, mutta vain yhdessä niistä on C euron edestä öljyä Yhden palstan hinta on C/n euroa Seismologi tarjoaa yritykselle tutkimustietoa

Lisätiedot

Mat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut

Mat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut Projektien valintapäätöksiä voidaan pyrkiä tekemään esimerkiksi hyöty-kustannus-suhteen (so. tuottojen nykyarvo per kustannusten nykyarvo) tai nettonykyarvon (so. tuottojen nykyarvo - kustannusten nykyarvo)

Lisätiedot

Demo 1: Excelin Solver -liitännäinen

Demo 1: Excelin Solver -liitännäinen MS-C2105 Optimoinnin perusteet Malliratkaisut 1 Ehtamo Demo 1: Excelin Solver -liitännäinen Ratkaise tehtävä käyttäen Excelin Solveria. max 3x 1 + x 2 s.e. 2x 1 + 5x 2 8 4x 1 + 2x 2 5 x 1, x 2 0 Ratkaisu

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Taulukkolaskenta (30 pistettä)

Taulukkolaskenta (30 pistettä) Taulukkolaskenta (30 pistettä) Yleistä Tehtävässä käsitellään koiranäyttelyn budjettia varten tehtyä Excel -työkirjaa. Käytä kaavan kopiointia ja kiinteitä viittauksia aina kun mahdollista. Käytettävät

Lisätiedot

Kaksi sovellusta robustien päätössuositusten tuottamisesta

Kaksi sovellusta robustien päätössuositusten tuottamisesta Esitelmä 12 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Kaksi sovellusta robustien päätössuositusten tuottamisesta Antti Toppila 2.3.2011 Esitelmä 12 Antti Toppila sivu 2/19 Optimointiopin

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Metsätila-arvio ja metsäsuunnitelma sukupolvenvaihdoksen suunnittelussa

Metsätila-arvio ja metsäsuunnitelma sukupolvenvaihdoksen suunnittelussa Metsätila-arvio ja metsäsuunnitelma sukupolvenvaihdoksen suunnittelussa 1 Puheenaiheena tänään Ajantasainen metsäsuunnitelma Luopujan apuväline Jatkajan työkalu Metsätila-arvio Metsän arvon määritys verottajaa

Lisätiedot

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (14.4.2015) Tehtävä 1 Figure 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

Uusien keksintöjen kannustimet

Uusien keksintöjen kannustimet Uusien keksintöjen kannustimet Ville Koskenvuo 9.4.2003 Optimointiopin seminaari Kevät 2003 / 1 Päivän agenda 1. luento: Uusien keksintöjen kannustimet ja patenttikisat (Koskenvuo) 2. luento: Uusien keksintöjen

Lisätiedot

Additiivinen arvofunktio projektiportfolion valinnassa

Additiivinen arvofunktio projektiportfolion valinnassa Esitelmä 5 Antti Toppila sivu 1/19 Optimointiopin seminaari Kevät 2011 Additiivinen arvofunktio projektiportfolion valinnassa Antti Toppila 2.2.2011 Esitelmä 5 Antti Toppila sivu 2/19 Optimointiopin seminaari

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = = Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 4

MS-C2105 Optimoinnin perusteet Malliratkaisut 4 MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot