:il. c) putoamismatka 45 sekunnin aikana. c) Miten jarrutusmatka muuttuu a)-kohdan arvosta, jos nopeus 72kmlh puolittuu?

Koko: px
Aloita esitys sivulta:

Download ":il. c) putoamismatka 45 sekunnin aikana. c) Miten jarrutusmatka muuttuu a)-kohdan arvosta, jos nopeus 72kmlh puolittuu?"

Transkriptio

1 FYSKKA (FY4.2): 4. KURSS: Liikkeen ait våsraa KuurEEN $) rehrävään il KOE 21.1t.20L3 1. Linnun lentonopeus alussa on 64 km/h. Lintu kiihdyttää nopeuttaan tasaisesti kiihtyvyydellä 2,3 mf s2l-,8 sekunnin ajan. a) Laske linnun loppunopeus kiihdytyksen jälkeen. b) Kuinka pitkän matkan lintu kulkee kiihdytyksen aikana? c) Lintu pienentää kiihdytyksessä saavuttamaansa a)-kohdan nopeutta tasaisesti hidastuvuu della -2,4 m/s2. Kuinka kauan kuluu aikaa, kunnes lintu pysähtyy? 2. Laskuvarjohyppääjän nopeus muuttui ajan funktiona vapaan pudotuksen aikana alla olevan kuvaajan osoittamalla tavalla. Määritä kuvaajan avulla laskuvarjohyppääjän a) kiihtyvyys hetkellä t = 10 s b) kiihtyvyys hetkellä t = 30 s. c) putoamismatka 45 sekunnin aikana. ltt T,ås å{i :il 3 il* 5* 7r] Pyöräilijän nopeus 17 metriä korkean mäen päällä on 16 km/h. d, Mäen pituus on 130 m ja pyörän ja pyöräilijän kokonaismassa on 85 kg. Pyöräilijä tulee vapaasti polkematta mäkeä alas. Liikettä vastustavien \ voimien suuruus mäessä on 62 N. Laske pyöräilijän nopeuden suuruus mäen alla Auton massa on 21,000 kg ja nopeus 72km/h. Auto pysäytetään tasaisella tiellä, jossa renkaiden ja tien välinen kitkakerroin on 0,40. a) Kuinka pitkä matka vähintään tarvitaan auton pysäyttämiseksi? b) Kuinka suuri on jarrutusmatka liukkaammalla tiellä, jossa kitkakerroin on 0,20? c) Miten jarrutusmatka muuttuu a)-kohdan arvosta, jos nopeus 72kmlh puolittuu? 5. Pallo, jonka massa on 0,20 kg, osuu lattiaan nopeudella 5,4 mf sja se pomppaa ylöspäin nopeudella 5,2 m/s. a) Laske pallojen liikemäärä ennen ja jälkeen lattiaan törmäystä. b) Laske pallon liikemäärän muutos. l" f j...'.i. i'- v.,? i:.. t:.::{.;l,,t ',tir : i:ä KÄÄNNii l

2 6. Henkilöauto ja kuorma-auto törmäävät toisiinsa suoralla tiellä ja takertuvat toisiinsa kiinni. Henkilöauton massa on 1250 kg ja nopeus 85 km/h. Kuorma-auton massa on kg ja nopeus 65 km/h. a) Millä nopeudella ja mihin suuntaan autot liikkuvat toisiinsa tarttuneina hetitörmäyksen jälkeen? b) Laske autojen yhteinen liike-energia ennen törmäystä ja törmäyksen jälkeen. c) Kuinka monta prosenttia autojen yhteisestä liike-energiasta säilyy törmäyksessä? 7. Varastomies työntää lattiaa pitkin vakionopeudella laatikkoa, jonka massa on 25 kg. Laatikon ja vaa kasuoran lattian väli nen i u ku kitkakerroin on 0,18. Kappaletta liikuttavan työntävän voiman F suunta on kuvan 1 mukainen. Kuvassa 2 on esitetty laatikon voimakuvio eli laatikkoon vaikuttavat voimat. Kuva 1. Laatikon työntö. Kuva 2. Laatikon voimakuvio. F, a) b) Nimeä laatikkoon vaikuttavat voimat ja esitä laatikon liikeyhtälöt komponenttimuodossa x- ja y-suunnassa. Laske työntävän voiman F suuruus, kun laatikko liikkou vakionopeudella.

3 rli li lr FYtttKKA (rv4-t..r*riat.-rut lrl l tl q Fv RJ\r/ j,ro e illi.li ll * Å. tl- &OltJ ea! t]) -;-- 'uo +ot 61 rh J- u,,3 *. ZrG -( - '\) = 21, 7 tllt...? Ä{ ' {4,år 9',[t) r = _t_ 1i, t 64 6 r* ö m. d,1 at ---,,?;.F å å,3 ; 35,71efn,Y 36m, : A fr (rnd' F es F1 ^"lo P ev»e nj np 'k : tt"} = a uf: 11 r,?qp Y g_ 716 g+- l. AVU LLA 2t,?ta-P r n/\r?a J-- 1+'t 77,84 r s - f, P"'.r

4 &. J.tÖ llo t G ea^ F,r &rrl /= Y{. f t NTÅ'-Å ur Na ll lr-'ä = at 1) = l?rp?.= är?$ 0,5 lt O lrf 4o J* rb SQ öal /rf+ -l7,tg 36 (n + 2 l: i '-l li il i -+ ', - " - ---j

5 \i C c') l+e rk llrm Ai lc, tf-f ryvyw f^ DAl,.t N Af O P tv.f l<l Va a.l zt Rr/ *r:tftkla*t; N.t K Ur,r ra t< jl t rl &'Å '- tu l7n{ 6 Ar rl (r,, lr #,) L rt. r T,tza t = lot P t r r? RerÅ,X rv k U vtn-l ÅLd Ko,* r/rn nj ^ ry qs r' rå ö ]- raån ts ct.å kilc.ff fff f rrå, 'ltn. Jn {tss, A # \ /\J l<tthttvyy,r q (to;1 = å f1r - at =2-1r, c( c{ fl,0s) : dt) 2i fl- \)6J /{-s år t rhf{} b ***t, x å, 13 r"1 rl.!, \J4 ) $r. rt.etrå

6 !,&) a(ao'r) r,fr- \./ re. Kod^ k a Yvvrl^.r^LLe Eo t+raån ZCe c) 11 AT-lra TaAAAAN (t,u)-kyyr-ntnåå* / f lf,rod,r/å ffirjlgy4 - r-{.f/17* -4+^Y4- rr,{vrerxitv 4YYYf ry - re L*+ÅÅ; lb-uutu; il loff f4trk^a taf -5,.= fom - l<c,<}arnl.fl^ rzuvtv'tå; SAYPL \.* ot^evv"urå (r fvar-tlcf^tft): lakfl A r l<,r vxtr trå 0s * { r" futahr r-{ ^rtsa Att-.-ar"{a d^/ 5s 4f s FvrvtvtN ( A rn t* &. C /1e \) \ \J -.Jv t, g t lsoclrn = l{ f Ln.:F-ffi-_:_- t;^.rr,t4 t1.trt ^Å

7 t-, o f)= [7rn 11 = 16 knlh { =, l?or l?o fr, (l] z O'4' _l F = -69N r4r= 3 Ne &e(a pe Rt^^:.C.' t-4 trr fir-*"j f _o {- l:.' t t/v = rn ru* *f- n7h+w,-t b+ K + fnvh *VV =.'),r i_ U _,.->> 6-74-lO (1=o) $ rnu2 it. ärn.\a D.= DL = 1}=å

8 / t-r=t/*+ tlh+2w rl o (l VM % = t/\" + *Ah + 3E Yovr:n (r= _ GA^/),,.; {(#?)'* 7'?rnlf-. lynt + J' (*e en)-boy, # {tfl 1;; 12,?? el f (+t b*l h) *m,f *W T.tt hf=-.tf T'r<t W.sff, L o r. vsfr{ lcv r r Fr M Vv =.- 6å A/. 30lfn + *7h +W.= jnnte : {-n" cr... 1 D: rr"f +mah tw b^= bl* tr= + (-).1.' =» l- 7rn L( zl:yi"*ryh t: w) rn ryyltt*tl!3y rn ry [i,f 1l,E! rn +r-f rr] f#fru e rir.u z1g,n (t= e xv) s JlvG -.o

9 it * -1r",,b - 1» =,0 l M ö fr/= = rn7 tä= 7t h,,p': or ' o h a) t- Z \)-e - t4 r<a M ll t<a Fv 6M R G t AP Rl'^'t f G t-q?-q, Q --9 F; +Fr={-w= tr;+r; c:x)l?oj <^ \f^ A l< ^rv o z-a-l A f t N N +LL^ Fr lt Hvul-v [A r i.); nzu rv trr? - Fr J/ efveggt^{'eet;^/-16 {rt) ca.< f1 vooon \^r -s tri q.+ F.{ F \Ar s 4F* KtTl.avorH,^N s Alrlc6- ener W; l-i0 h*k,-q ( r> å r',?f AÅre ) T?ke rrä r> 6r zr tv /*f V vt0r.f

10 - 'r Fr,J = -+rn- s / /Gs P(nqS s /$ ob +- t 0 - å /rt å J*arav1-vrt<tYt-A n4 u-a- 'l) å o * rn bol ;/a rn3 '*1rå Ao "? /4M3 J/4 R evtvr H a l: R^ Vo DA^ Al.l d HT4 / Y Y#r T/\$r4 l rej]:.,!-t ) 4A -rtv{a N LttFFee,nl Avvtt{,' q : {s= \t+ fn $ttr" oa/ v4^ 'sto (r).,,= u, + o't (9 o: J= å r"j (E uo + ^t, år; t, r1 rytl '1r -= o =7v Al :,/4 r'l A s lj_ [r) r6ar ry

11 -r: - 1ro' q nl* +}_ 2a _ åq (o /+r/r0 tv L il lc e y,,1),{ f-ö V* a l<r t,/uf-rna.f,fa \-7=fna./ NllN A=-2 rn ttj- råh,q' yl+rå dö ru GJ_. - - _Uo... å 2- (-E_\ v m/ i,\åm *? \ s-- "1,f rn :' til -lö /u 7*/*3 { lff, J,t G,?v i-vrr P,-t \- Fa

12 f-t J^ f- trur\{ \ 3/6 -f/ L 2" Of?O-?S t# lrn x ai,7e gln,(t) ("- - - å C- raa * ra?4* å-*f.1 e E -Rr3 tr:_r -?L ö /3 i= 9.,f c,p.fo,gg6itn -f"r la»rn ) 'lro ---8, j tr, s; -=,(*å!rl-, e,r.? C --.r + '&- J A eevry F{ JOJ NOPCVJ.*L 'lnl =- 1va : * - A,/l 7 el A i- Sa,?(tt n å: /Jrn lv k,ir P l $ferr/ e {*A'fAA^// ( v Tcr rt1/u r, lil :;,;i nn "-{, *-oj^ ALt&{reeät- *&v o.f fa 5lrn

13 /T) - w 0 rfl l<le*ån rhvjlc.t 4, s ry - ft b Pallo, jonka massa on 0,20 kg, osuu lattiaan nopeudella 5,4 mls ja se pomppaa ylöspäin nopeudella 5,2 m/s. a) Laske pallon liikemäärä ennen ja jälkeen lattiaan törmäystä. b) Laske pallon liikemäärän muutos. Ratkaisu m=0,20kg, vu=5,4m s, v1= 5,2mls, a) Piirretään tilannetta havainnoilistava nen suunta alaspäin. P^=?, Pt =?.' Lp=? _+,il '1:h..,!'# r.;#ffi kuva ja valitaan positiivii. Pallon liikemäärä alussa on pu = miu,)okaskalaarimuodossa on Pu= ffivn= 0,20 kg. 5,4 * =,,0* + = t,t$ Positiivinen tulos tarkoittaa, että liikemäärä on so'nitun positiivisen suunnan suuntainen, siis alaspäin kuvassa. Pallon liikemäärä lopussa on pr = mir,)okaskalaarimuodossa on p,: m{-v1)= 0,20 kg. (-s,z!)= -1,04 kgm = -t,o kg-. SSS Negatiivinen tulos tarkoittaa, että liikemäärä lopussa on ylöspäin. Lukuarvoltaan liikemäärä on pienentynyt, koska liikemäärää on "siirtynyt" lattiaan. tr) Liikemäärän muutos on di = Pt- P^. Skalaarirnuodossa liikemäärän mtiutos on ap=h*pu Vastaus a) Pallon liikemäärä alussa on 1,1 kgm/s alaspäin ja lopussa 1,0 kgmis ylöspäin. b) Liikemäärän muutos on1,l kgm/s ylöspäin.

14 @ v r' a) ri{yr/n.b, - ö'plcf"vf,rrv,f s.rå(-lå7 yr nhoro N rör r*l.äyvl ul" *. -.<-- * M -->> fr,* tlå t*rct\ 85 r h L tt t.e,<,itå eä (/Å Å LvJ0a ft** 'la.ä = fr,\ + ma\ bi 2;000 k? 6 Fån h E luyy '. ' L oloujora ä (r,* fro) lå fn (**l) + fr*t^ G (fi, r nolu fiv roj ^/ Y flte r M e/v t{a re uj rä R,', ÅvF J e N JÅ te e.n :( /*ert ) p\: i-l = f\t f- qj + rneu.l fqr + fnl (-ot#) te- 1\ t a3oao\

15 /L( /'.{ t: Ä \ å6 f o 7 t21 w 1rt? a7? g?å3 # 4 ill s7 + kvocrrå-, vrdn fl " LFu Peei rr N \r/ v N r/^a/,gs ^vtujeev r ) e N rven/ rö,ertävc ri: / F j nn\= +- å **** tfr \\ F*, = o,s-te s-o h " (#S)i 0,. flj taah. ffi #)^ Fkl = 4a2:*7(3,317 J.* tc??sa3j tr-.= 4tt-lo6J = 4,t l"r..j *Ft e) rb' Rn,av rr fnl J Ä LEeefv LP*t E s å (m,+ fra) ^^ tr?--t Er*ÄY 3o6Y3å5J,i 3,1-106J Fr, = 3, l HJ

16 () ut-oj elv Y HrelJ e-rrrt Ll tre; pve 8* ^ G r a{ -a tå t LY y Tt; F H Ä'YF, e.fr/a F L Eg. 3 06s 3*5 J å- 0,74 SS Fp, * asz 163 J t; fr 7s '/, l*t t t - en e 6 r^{' r,t 7t l. rå lev Y f iip HÅ'Y r efcä Flvo nt q * Ko N rr^r.f^ Va t e^?v H e Rrr^ ru Yäs 1ä3 (5 * f.tfe r- ä'l N S fi L^ Artt Y rrra å o N fltr, *l + wtt\ra = (*,* t\]"u,lå = ffi,9 r* fy1* ^ fnr t" {*a \.>e,u -t&{i-?ryh'f5? lå 0h -F ff oua\

17 Ratka isu Laatikon massa on m : 25kg, jatason jalaatikon välinen liukukitkakerroin on # : 0,18. Voiman suuntavaakatasoon nähden on o : 35". a) Laatikkoon vaikuttavat voimat ovatpglq1, kitkl 4,, tukivoima t j"."tåirä *i*" F. Laatikko liikkuu vakionopeudella 7. Sijoitetaan F, ja N edelliseenyhtdlöön, jolloin saadaan Fcosc-p(Fsinc*G):3 Fcosa - Fpsina - FG :0 F(cosc-psina):Wg - pmg cos0 - lrslne Sijoitetaan tunnetut arvot yhtälöön. F_ 0, kg.9,8l cos35" - 0,i8'sin35" = 61,6629 N = 62 N F* : Fcosa Fr : Fsina Dynamiikan peruslain mukaan -= l : ma. Laatikko liikkuu vakionopeudella, joten sen kiihtyvyys on nolla ja F:F+G+N+F;:0. 0 Ratkaistaan ensin tukivoima N /-suunnan yhtälöstä N:Fr*G. Sijoitetaan F, }: Fsina * G. Koskakitkavoima{, : FN, saadaan x-suunnassa yhtåilö { - pn:0.

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

L. Maan ia Auringon vetovoiman yhtäsuuruus

L. Maan ia Auringon vetovoiman yhtäsuuruus GRAVTAATOKENTT EN TASAPA NOKOHTA: Tehtävä RATKASU L. Maan a Aurngon vetovoman yhtäsuuruus Kunka kauas Maasta avaruusluotan on vetävä, otta Aurngon jaa Maan vetovomat tasapanottasvat tosensa el avaruusalukseen

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o

Lisätiedot

4rrr. PYSwvYoesrÄ. 0809-cPR-1115. Tarvasjoen Teräsovi Oy Junnaronkatu 16 24100 Salo SE RTI FI KAATTI TUOTTEE N SUORITUSTASON EN 12101-2:2003

4rrr. PYSwvYoesrÄ. 0809-cPR-1115. Tarvasjoen Teräsovi Oy Junnaronkatu 16 24100 Salo SE RTI FI KAATTI TUOTTEE N SUORITUSTASON EN 12101-2:2003 4rrr VTT XPRT SRVCS Y llmeu ls r 0809 VTT XPRT SRVCS Y P 1001.02044\TT S RT KAATT TUTT SURTUSTAS PYSwvYesrÄ 0809PR1115 urpn prlmenn j neuvsn seuksen : 305/201 1 (rkennusueseus el CPR), jk n nneu mlskuun

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08.

-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08. Maanmttauslats Page 1 f 1 -d;'$ d{ee lr a ;{*.v {:; rtl } dr r/ r ) a 4 a p ;,.r.1 l s, Karttatulste Tulstettu 22.08.2014 Tulsteen keskpsteen krdnaatt (ETRS-TM3SFlN): N: 6998249 E: 379849 Tulse e le mttatarkka.

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

NÄKYMÄ TURVESUONKADUN JA LIELAHDENKADUN RISTEYKSESTÄ MAANKÄYTTÖSUUNNITELMA TEIVAALANTIELLE LIELAHTEEN LUONNOS ARKKITEHDIT A3 OY

NÄKYMÄ TURVESUONKADUN JA LIELAHDENKADUN RISTEYKSESTÄ MAANKÄYTTÖSUUNNITELMA TEIVAALANTIELLE LIELAHTEEN LUONNOS ARKKITEHDIT A3 OY NÄKYMÄ TURVESUNKADUN JA LELAHDENKADUN RSTEYKSESTÄ MAANKÄYTTÖSUUNNTELMA TEVAALANTELLE LELAHTEEN LUNNS.. ARKKTEHDT A Y ,,,,,, :,, Pelv o,,,,,,,,,,,,,,,,,,,, :,,,,,,,, :,,,,,,, Pol Pl,,,, K,, :,,, :,,,,,,,

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 "i

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 i Tampereen kesäyliopisto, kevät 20 1 5 Thlousmatematiikan perusteet, orrr s ro30 L. harjoitus, (la 12.11.2015) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin þnää ja paperia käyttäen. Anna vastaukset

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Väestö- ja asuntolaskenta Folk- och bostadsräkningen Population and Housing Census

Väestö- ja asuntolaskenta Folk- och bostadsräkningen Population and Housing Census Suomen virallinen tilasto Finlands officiella Statistik Official Statistics of Finland VI C:106 Väestö- ja asuntolaskenta Folk- och bostadsräkningen Population and Housing Census 1980 Osa XV Del XV Volume

Lisätiedot

SAMMONKATU SAMMONKATU JAAKON- SARVI- KATU SARVIJAAKONKATU 1: Kalevanrinteen katujen yleissuunnitelma, Liite 3 Asemapiirros 1/4

SAMMONKATU SAMMONKATU JAAKON- SARVI- KATU SARVIJAAKONKATU 1: Kalevanrinteen katujen yleissuunnitelma, Liite 3 Asemapiirros 1/4 KTOS L:\PROJEKTT_2012\1510001046 KLEVRTEE KTUJE YS\14_TULOKSET\3.KTUJE YLESSUUTELM\DWG\KLEVRE YS.DWG Tulostettu: 26.6.2013 n- JO KELLR- SR- JKO- KTU SMMOKTU PYSÄKÖT KORTTEL 4 +100,60 KSPHT 1/2 BUS (varaus)

Lisätiedot

1 Pöytäkirja Avaa haku

1 Pöytäkirja Avaa haku D yn as t y t i et o pa l ve l u Sivu 1 / 9 Poistuminen ( Toimielimet 1 Jätelautakunta 1 Pöytäkirja 17.12.2013 Avaa haku 1 Jätelautakunta Pöytäkirja 17.12.2013 Pykälä 15 Edellinen asia 1Seuraava asia M

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Hiukkaskoko maks. 5 µm. Mäntään kohdistuvan voiman mittapaine 6,3 bar. Materiaalit:

Hiukkaskoko maks. 5 µm. Mäntään kohdistuvan voiman mittapaine 6,3 bar. Materiaalit: 1 Käyttöpaine min./max. 2 bar / 8 bar Ympäristölämpötila min./maks. -10 C / +60 C Keski Paineilma Hiukkaskoko maks. 5 µm Paineilman öljypitoisuus 0 mg/m³ - 1 mg/m³ Mäntään kohdistuvan voiman mittapaine

Lisätiedot

1. Kaikki kaatuu, sortuu August Forsman (Koskimies)

1. Kaikki kaatuu, sortuu August Forsman (Koskimies) olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen

Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen Kaupunginhallitus 139 31.03.2014 Kaupunginhallitus 271 16.06.2014 Kaupunginhallitus 511 15.12.2014 Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen 877/10.03.02/2013

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

KESKUSTA - KAMPPI KÄYTTÄJÄKYSELY

KESKUSTA - KAMPPI KÄYTTÄJÄKYSELY FCG P O HELSINGIN AUPUNI ESUSTA - APPI ÄYTTÄJÄYSELY Yhv j jhääö 0100-D1194 31.12.2008 FCG P O Yhv j jhääö 1 (16) Hg 31.12.2008 - m ääjä 0100-D1194 SISÄLLYSLUETTELO 1 YLEISTÄ... 2 2 YSELY... 2 2.1 Vj d...

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Koulutoimen henkilöstörakenne

Koulutoimen henkilöstörakenne Koulutoimen henkilöstörakenne 11.11.2016 Virka/toimi Toimen/viran nimike Toimisto V 1 koulutusjohtaja T 2 toimistosihteeri T 3 toimistosihteeri V0033 4 koulukuraattori T 5 koulupsykologi Yhtenäiskoulu,

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Nokkavipuliittimet NOKKAVIPUL. UROS SK DN25 HST NOKKAVIPUL. UROS SK DN32 HST NOKKAVIPUL. UROS SK DN40 HST NOKKAVIPUL.

Nokkavipuliittimet NOKKAVIPUL. UROS SK DN25 HST NOKKAVIPUL. UROS SK DN32 HST NOKKAVIPUL. UROS SK DN40 HST NOKKAVIPUL. Nokkavipuliittimet NOKKAVIPUL. UROS SK DN25 HST 2977044 A; PF64 NOKKAVIPUL. UROS SK DN32 HST 2977045 A; NX93 NOKKAVIPUL. UROS SK DN40 HST 2977046 A; RU35 NOKKAVIPUL. UROS SK DN50 HST 2977047 A; SL33 NOKKAVIPUL.

Lisätiedot

Tentissä sallitut apuvälineet - lqmät, kumit jne. - taskulaskin - lukion kaavakokoelma tms. + Laplace taulut

Tentissä sallitut apuvälineet - lqmät, kumit jne. - taskulaskin - lukion kaavakokoelma tms. + Laplace taulut 5-81.312 Tehoelekroniikan komponeni Teni 1.3.28, kello 13... 16, sali Sl Papereihin - sukunimi ja eunime - opiskelijanumero - kouluusohjelma. J. Niiranen 1 (5) Tenissä salliu apuvälinee - lqmä, kumi jne.

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

KUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS)

KUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS) KUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS) Selvitys V. Luhon vuonna 958 suorittamasta kaivauksesta kivikautisella asuinpaikalla Tuija Wallenius 989 Vuonna 958 Ville Luho suoritti tutkimuksia

Lisätiedot

NIKKILÄN SYDÄMEN LAAJENTAMINEN VAIHE 2 MAANTASOKERROS 1/ / ARK - house

NIKKILÄN SYDÄMEN LAAJENTAMINEN VAIHE 2 MAANTASOKERROS 1/ / ARK - house tk, J e, hu p rr, Ä, 9,,, Ä Ä Ä 9,, 9 h vut tk k D uk, C lut, kpk C tr, rv tr C9, y e yv tt t rv lkr tl lut e pll t-k-hu kek u v pt + C C tr C9 tr lut C, C C, yp + phu te kt kpl bet uur rv gr ttpe t +

Lisätiedot

HÄMEENLINNAN VERKATEHDAS, PAVILJONKI ALUSTAVA LUONNOS VE-2

HÄMEENLINNAN VERKATEHDAS, PAVILJONKI ALUSTAVA LUONNOS VE-2 HÄ VRKHD, PVJK V V-2 JK RKKHD Y P R 3 J 1 H K P + 3 5 8 ( ) 9 2 5 2 2 7 F + 3 5 8 ( ) 9 2 5 2 2 7 1 WWWJKF V 5 K R V 4 R P V 395 84 36 425 V 6 D 45 615 R 6 63 25 3 6 65 67 HPH 66 PÄ Ä Ä 69 JK V 3 6 7 7

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =. Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Lappeenrannan Ilmailuyhdistys

Lappeenrannan Ilmailuyhdistys Lappeenrannan Ilmailuyhdistys Tapahtuman tuloksia, moottoripyörät Kierroksia: 396 Osallistujia: 328 Autot Moottoripyörät Kaikki Ajoneuvo Lähtöaika Aika 400 (s) Nopeus (km/h) Valmistaja Malli Tyyppi Selitys

Lisätiedot

SUODATIN- PATRUUNAT MASINO-HYDROSTO KEY OY

SUODATIN- PATRUUNAT MASINO-HYDROSTO KEY OY 1 SUODATIN- PATRUUNAT 2006 10 MASINO- KEY OY 2 Masino-Hydrosto key Oy toimittaa suodatusjärjestelmiä, suodattimia ja patruunoita hydrauli- ja kiertovoitelujärjestelmiin, kompressoreihin, ilmalle, vedelle

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

LEIVOTAAN YHDESSÄ. Kuvat: Jutta Valtonen

LEIVOTAAN YHDESSÄ. Kuvat: Jutta Valtonen LEIVOTAAN YHDESSÄ Susanna Koistinen Miia Laho Kuvat: Jutta Valtonen SI-SÄL-LYS E-SI-VAL-MIS-TE-LUT... 2 PE-RUS-RE-SEP-TIT KAU-RA-KEK-SIT... 5 SUK-LAA-KEK-SIT... 7 MAR-JA-PII-RAK-KA... 9 MUF-FIN-IT...

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Tilinpäätöksen rekisteröinti Registrering av bokslut

Tilinpäätöksen rekisteröinti Registrering av bokslut PATENTTI- JA REKITERIALLITU PATENT- OC REGITERTYRELEN Tilinpäätöksen rekisteröinti Registrering av bkslut Kaupparekisteri andelsregistret Verhallinnsta saapuneet tiedt Uppgifter inkmna från skatteförvaltningen

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen ---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Integraalilaskenta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Integraalilaskenta (MAA Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin. MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä

Lisätiedot

5 NOUSIAINEN. > 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db. Vt 8 ja kt 40 Raisio. LIITE Maanteiden meluselvitys 2012

5 NOUSIAINEN. > 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db. Vt 8 ja kt 40 Raisio. LIITE Maanteiden meluselvitys 2012 Mets-Sy Tm Nuhj Tm Lets Kerttu Tmmst Ru lttyl Petterpe lt Pr Krvett Thv NTALI Völ Kerr Mj trt Vrppee seutu Vlulut Pellper Lu Jr Nur Vsr r Ie V Kr Ks K Ih Upl v Plus Aury l Per Vt 8 j t 0 Rs PrlAsureus

Lisätiedot

/",rfu?+/ Á),^rs 05.ii3.2015. /t=9

/,rfu?+/ Á),^rs 05.ii3.2015. /t=9 /t=9 /",rfu?+/ Á),^rs 05.ii3.2015 Ylöjärven kunnalle 4.l.20ts Tampereen kaupunkiseudun joukkoliikennettä ollaan yhdistämässä koko Tampereen kaupunkiseutua kattavaksi yksiköksi EU:n palvelusopimusasetuksen

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Sotela 158 Valmistelija: talouspäällikkö Paavo Posti, puh. 03-849 4215, etunimi.sukunimi@heinola.fi

Sotela 158 Valmistelija: talouspäällikkö Paavo Posti, puh. 03-849 4215, etunimi.sukunimi@heinola.fi Sosiaali- ja terveyslautakunta 158 17.11.2015 Kaupunginhallitus 315 07.12.2015 Etevan kuntayhtymän perussopimuksen muutokset 1764/00.04.01/2012 Sotela 158 Valmistelija: talouspäällikkö Paavo Posti, puh.

Lisätiedot

Oikaisu päätökseen kiinteistöjen Sirola RN:o 28:6 ja RN:o 28:24 myynnistä Vaarankylän kyläyhdistykselle

Oikaisu päätökseen kiinteistöjen Sirola RN:o 28:6 ja RN:o 28:24 myynnistä Vaarankylän kyläyhdistykselle Kunnanhallitus 46 25.02.2014 Kunnanhallitus 76 24.03.2014 Kunnanhallitus 126 13.05.2014 Oikaisu päätökseen kiinteistöjen Sirola RN:o 28:6 ja RN:o 28:24 myynnistä Vaarankylän kyläyhdistykselle 135/1/2013

Lisätiedot

Aineet, tarvikkeet ja tavarat

Aineet, tarvikkeet ja tavarat Ulkoinen/S i säinen 1.r_.2L5 31.8.2].5 Sivu l- 5. L.2]-5 2]-5 215 l_-8 ToUeutuma 2r_4 l--8 5 Tekninen lautakunta TUTJOSLASKELMA TueE ja avustukset TOTMINTATUOTOT TOIMINTAKUI UT HenkiLösivukulut Henki 1östökul-ut

Lisätiedot

V a a liv o itto. H a a s ta tte lu Suomen S o sia lid e m o k ra a tissa 18/

V a a liv o itto. H a a s ta tte lu Suomen S o sia lid e m o k ra a tissa 18/ V a a liv o itto. H a a s ta tte lu Suomen S o sia lid e m o k ra a tissa 18/7 1933. PUOLUE Et'. MI VAALIVOITTO YLITTI ROHKEE i MATKIN ODOTUKSET. Jos v a a lit o l i s i to im ite ttu vuosi s i t t e n,

Lisätiedot

KARTTALEHTI 11/21. 147/2 Vääräjärvi KARTTALEHTI 17/21 KARTTALEHTI 5/21 KARTTALEHTI 9/21 KARTTALEHTI 10/21. 119 Karijärvi KARTTALEHTI 1/21

KARTTALEHTI 11/21. 147/2 Vääräjärvi KARTTALEHTI 17/21 KARTTALEHTI 5/21 KARTTALEHTI 9/21 KARTTALEHTI 10/21. 119 Karijärvi KARTTALEHTI 1/21 ETELÄ- JA LÄNSIOSA Karttalehti 1/21. kohteet,, ja Karttalehti 2/21. kohteet, ja Karttalehti 3/21.kohde 106 Karttalehti 4/21.kohteet,, ja Karttalehti 5/21.kohteet kohde Karttalehti 6/21.kohteet ja Karttalehti

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

Ammattiluokitus Classification of occupations

Ammattiluokitus Classification of occupations K äsikirjoja H andböcker H andbooks N ro 14 Uusittu laitos Revised edition Ammattiluokitus Classification of occupations 1987 HELSIN KI 1987 Tilastokeskus Statistikcentralen Central Statistical Office

Lisätiedot

Kokonaisuudessaan toimialan nettomenot arvioidaan ylittävän talous ar vion ilman hankkeita

Kokonaisuudessaan toimialan nettomenot arvioidaan ylittävän talous ar vion ilman hankkeita Kasvun ja oppimisen 74 13.10.2016 laukun Kaupunginhallitus 256 31.10.2016 Kasvun ja oppimisen toimialan lisämääräraha KASVOPPI 13.10.2016 74 lousarviomääräysten mukaan laukuna on informoiva siten, et tä

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Kirjainkiemurat - mallisivu (c)

Kirjainkiemurat - mallisivu (c) Aa Ii Uu Ss Aa Ii Uu Ss SII-LIN VII-LI-KUP-PI I-sot, pie-net kir-jai-met, sii-li neu-voo aak-ko-set. Roh-ke-as-ti mu-kaan vaan, kaik-ki kyl-lä op-pi-vat! Ss Har-joit-te-le kir-jai-mi-a li-sää vih-koo-si.

Lisätiedot

Hiukkaskoko maks. 5 µm. Mäntään kohdistuvan voiman mittapaine 6,3 bar. Materiaalit:

Hiukkaskoko maks. 5 µm. Mäntään kohdistuvan voiman mittapaine 6,3 bar. Materiaalit: 1 Käyttöpaine min./max. 2 bar / 8 bar Ympäristölämpötila min./maks. -10 C / +60 C Keski Paineilma Hiukkaskoko maks. 5 µm Paineilman öljypitoisuus 0 mg/m³ - 1 mg/m³ Mäntään kohdistuvan voiman mittapaine

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

TEKNISET TIEDOT. ISO 6432 minisylinterit Ø 8-40 mm

TEKNISET TIEDOT. ISO 6432 minisylinterit Ø 8-40 mm ISO 6432 minisylinterit Ø 8-40 mm Univerin minisylinterien kehitystyöhön on hyödynnetty vuosien tutkimustyö ja tuotekehityksen saavutukset. Tuloksena on luotettava tuote, joka soveltuu kaikkein vaativimmankin

Lisätiedot

KAUDEN AVAUSRAVIT TORSTAINA KLO 18.30

KAUDEN AVAUSRAVIT TORSTAINA KLO 18.30 KAUDEN AVAUSRAVIT TORSTAINA 21.5.2015 KLO 18.30 Ratanumero 35 1/2015 Pääsyliput 5 ohjelman hinta 2 KO E LÄH TÖ Oranssi-Musta 2 Yhdistetty tasoitusajo 21 00 m Klo 1 7.30 N U O RE T-LÄH TÖ Ruskea-Valkoinen

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x

Lisätiedot