1. Fysiikka ja mittaaminen

Koko: px
Aloita esitys sivulta:

Download "1. Fysiikka ja mittaaminen"

Transkriptio

1 1. Fysiikka ja mittaaminen

2 1.1 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt pelkästään ajattelemalla Aristoteles auktoriteettina keskiajalle asti Galileo Galilei ja Isaac Newton aloittivat kokeellisen tutkimuksen

3 Fysiikan tehtäväksi voidaan määritellä aineen ja säteilyn ominaisuuksien sekä niiden keskinäisten vuorovaikutuksien tutkiminen. Fysiikka tutkii kaikkien luonnonilmiöiden yhteisiä peruslakeja. Luonnontutkimuksen perustiede, jolle tekniikankin sovellukset pohjautuvat

4 Tietomäärän kasvaessa fysiikasta on erotettu muita tieteitä Tähtitiede (astronomia) Ilmatiede (meteorologia) Geologia Aerodynamiikka Lujuusoppi

5 Fysiikan jako Mekaniikka Termofysiikka Sähkö- ja magnetismioppi Aalto-oppi Kvanttifysiikka (atomi- ja ydinfysiikka) Klassinen fysiikka (1800-luvun lopulle) Moderni fysiikka (suhteellisuusteoria ja kvanttiteoria)

6 Fysikaalinen ajattelutapa Havaintojen tekeminen Järjestelmällisten kokeiden tekeminen (vain yhtä muuttujaa kerrallaan) Mallin laatiminen Mallin testaus Lopullinen teoria Eksaktitiede (voidaan esittää matemaattisesti)

7 1.2 Suure ja mittayksikköjärjestelmät Suure on ainemäärän, kappaleen tai tapahtuman mitattavissa tai määritettävissä (laskettavissa) oleva ominaisuus Suure = lukuarvo yksikkö Yksikkö on sovittu vertailuarvo

8 Suure- ja mittayksikköjärjestelmä Perussuureet Perusyksiköt Muut suureet ja yksiköt johdetaan edellisistä Johdannaissuureet Johdannaisyksiköt Kerrannaisia käyttämällä 10 n -kertojia

9 SI-järjestelmä Perussuureet ja -yksiköt Perussuure SI-Perusyksikkö Nimi Tunnus Nimi Tunnus pituus l metri m massa m kilogramma kg aika t sekunti s sähkövirta I ampeeri A termodynaaminen lämpötila T kelvin K ainemäärä n mooli mol valovoima I kandela cd

10 Johdannaisyksiköt Johdannaissuure SI-johdannaisyksikkö Nimi Tunnus Erityisnimi Tunnus Yksikön esitys tasokulma α, β, radiaani rad 1 rad = 1 m/m = 1 avaruuskulma Ω, ω steradiaani sr 1 sr = 1 m 2 /m 2 = 1 taajuus f, ν hertsi Hz 1 Hz = 1 s -1 voima F, G newton N 1 N = 1 kg m/s 2 paine p pascal Pa 1 Pa = 1 N/m 2 jännitys σ, τ energia, työ, lämpömäärä E, W, Q joule J 1 J = 1 N m teho, säteilyvirta P, Φ watti W 1 W = 1 J/s sähkövaraus, sähkömäärä Q coulombi C 1 C = 1 A s

11 Johdannaissuure SI-johdannaisyksikkö Nimi Tunnus Erityisnimi Tunnus Yksikön esitys sähköpotentiaali, potentiaaliero, jännite, sähkömotorinen voima V, ΔV, U, E voltti V 1 V = 1 W/A kapasitanssi C faradi F 1 F = 1 C/V resistanssi R ohmi Ω 1 Ω = 1 V/A konduktanssi G siemens S 1 S = 1 Ω -1 magneettivuo Φ weber Wb 1 Wb = 1 V s magneettivuon tiheys B tesla T 1 T = 1 Wb/m 2 induktanssi L henry H 1 H = 1 Wb/A celsiuslämpötila t, ϑ celsiusaste C 1 C = 1 K (lämpötilaerolle) valovirta Φ lumen lm 1 lm = 1 cd sr valaistusvoimakkuus E luksi lx 1 lx = 1 lm/m 2

12 Johdannaissuure SI-johdannaisyksikkö Nimi Tunnus Erityisnimi Tunnus Yksikön esitys aktiivisuus (radioaktiivisen näytteen) A becquerel Bq 1 Bq = 1 s -1 absorboitunut annos, kerma, absorptioannosindeksi D, K gray Gy 1 Gy = 1 J/kg ekvivalenttiannos, ekvivalenttiannosindeksi H sievert Sv 1 Sv = 1 J/kg

13 Muut yksiköt, joita voidaan käyttää Suure Yksikkö Nimi Tunnus Määritelmä aika minuutti min 1 min = 60 s tunti h 1 h = 60 min vuorokausi d 1 d = 24 h tasokulma aste 1 = (π/180) rad minuutti 1 = (1/60) sekunti 1 = (1/60) tilavuus litra l, L 1 L = 1 dm 3 massa tonni t 1 t = 10 3 kg

14 SI-yksiköt, jotka on saatu kokeellisesti Suure Yksikkö Nimi Tunnus Määritelmä energia elektronivoltti ev Elektronivoltti on se liikeenergia, jonka elektroni saa läpäistessään tyhjiössä voltin suuruisen potentiaalieron: 1 ev 1, J massa atomimassayksikkö u Atomimassayksikkö on 1/12 12 C-hiiliatomin massasta: 1 u 1, kg

15 Kerrannaisyksiköt Suuria tai pieniä lukuja käytettäessä Huom! Kilogrammassa on jo etuliite kilo Kerroin Etuliite Nimi Tunnus jotta Y tsetta Z eksa E peta P tera T 10 9 giga G 10 6 mega M 10 3 kilo k 10 2 hehto h 10 1 deka da Kerroin Nimi Etuliite Tunnus 10-1 desi d 10-2 sentti c 10-3 milli m 10-6 mikro µ 10-9 nano n piko p femto f atto a tsepto z jokto y

16 Yksikkötarkastelu Yksikkötarkastelussa selvitetään suureiden yksiköiden perusteella onko yhtälö mahdollinen Tarkastetaan onko merkkien =, - ja + välisillä osilla sama yksikkö Esim. Tarkasta yksikkötarkastelulla onko suureyhtälö mahdollinen. teho = voima kiihtyvyys ( P = Fa )

17 Tarkista yksikkötarkastelulla ovatko yhtälöt mahdollisia pituus = nopeus aika ( l = vt ) teho = työ aika ( P = Wt ) energia = ½ massa nopeus² ( E = ½mv² )

18 Kirjoitus- ja käyttöohjeita Kerroin valitaan niin, että lukuarvo on välillä 0, Etuliite valitaan niin, että edellinen toteutuu 10 eksponentti yleensä 3 jaollinen Yksiköiden tunnukset pystykirjaimilla Suureet kursiivilla

19 Muunna eksponenttimuotoon ja etuliitteelliseen muotoon 0, m m m K 0, K 0,00174 Km kg 0, g

20 1.3 Merkitsevät numerot Luvun alussa olevat nollat eivät ole merkitseviä ,00045 Luvun lopussa olevat nollat ovat merkitseviä, jos niitä on desimaalipilkun jälkeen 5,3400 Kokonaisluvun lopussa olevien nollien merkitsevyys on epäselvää ,

21 Mikä on merkitsevien numeroiden määrä? 1,2304 0,0034 0, ,30 34,00

22 Lukujen katkaisu Jos ensimmäinen pois jätettävä numero on Pienempi kuin 5, niin ei tehdä korotusta Suurempi kuin 5 tai 5, jonka perässä on nollasta poikkeava desimaali, niin tehdään korotus 5, jonka perässä ei ole nollasta poikkeavaa desimaalia, niin pyöristetään lähimpään parilliseen numeroon

23 Katkaise luvut sadasosan tarkkuuteen 0,234 23,567 0,0080 5,505 9,055 0,00125

24 Kun kerrotaan tai jaetaan eri suureita keskenään, lopputuloksen merkitsevien numeroiden määrä on sama kuin sen suuren merkitsevien numeroiden määrä, missä niitä on vähiten. 3,25 m 0,0042 m = 0,01365 m 2 0,014 m 2

25 Yhteen- ja vähennyslaskussa tulos ilmaistaan niin monella desimaalilla kuin niitä on vähiten desimaaleja sisältävässä luvussa. 23,0 m + 0,253 m = 23,253 m 23,3 m

26 Laske ja ilmoita oikealla tarkkuudella 12 kg + 4,3 kg 24,34 s + 3,66 s 16,7 m 8,3 m 2,3 m/s 12,5 s 25,2 m 39,8 m (135 m) (4,50 s) (24,6 m²) (3,7 m)

27 Laskutehtävien suoritusohjeita Varaa riittävästi tilaa Kokoa annetut lähtötiedot suorituspaperiin ja muunna SI-yksiköiksi sekä kerrannaiset kymmenen potensseiksi Tunnista mistä aihealueesta on kyse Mieti tehtävän looginen ratkaisu Mieti onko voimassa jokin säilymislaki

28 Tee tarpeelliset piirrokset Tilannekuva vapaakappalekuva Johda riittävästi perustellen suureyhtälö, josta kysytty suure ratkaistaan Alleviivaa loppuyhtälö Laske sekä lukuarvoilla että yksiköillä Tarkista, että vastaus on fysikaalisesti mielekäs Lopputulos selkeästi ja oikeassa muodossa Tarkista, että olet vastannut kysymykseen

29 TIIVISTETTYNÄ Pyri selkeään ja systemaattiseen esitykseen. Harjoitustehtävien ratkaiseminen on hyvä keino insinöörimäisen ajattelutavan kehittämiseen. Samalla voit todeta omat tiedot ja taidot.

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Julkaistu Helsingissä 8 päivänä joulukuuta 2014. 1015/2014 Valtioneuvoston asetus. mittayksiköistä. Annettu Helsingissä 4 päivänä joulukuuta 2014

Julkaistu Helsingissä 8 päivänä joulukuuta 2014. 1015/2014 Valtioneuvoston asetus. mittayksiköistä. Annettu Helsingissä 4 päivänä joulukuuta 2014 SUOMEN SÄÄDÖSKOKOELMA Julkaistu Helsingissä 8 päivänä joulukuuta 2014 1015/2014 Valtioneuvoston asetus mittayksiköistä Annettu Helsingissä 4 päivänä joulukuuta 2014 Valtioneuvoston päätöksen mukaisesti

Lisätiedot

STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ

STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ HEI OPISKELIJA! Tämä opas on tehty Hei muistuttamaan opiskelija! standardisoinnin tärkeydestä ja kertomaan Oletko huomannut, että maailma toimii standardien avulla?

Lisätiedot

11915/08 VHK,HKE/tan DG C I A

11915/08 VHK,HKE/tan DG C I A EUROOPAN UNIONIN NEUVOSTO Bryssel, 9. lokakuuta 2008 (OR. en) 11915/08 Toimielinten välinen asia: 2007/0187 (COD) MI 257 ENT 180 CONSOM 92 CODEC 978 SÄÄDÖKSET JA MUUT VÄLINEET Asia: Neuvoston hyväksymä

Lisätiedot

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14 Yksikkömuunnokset Pituus pinta-ala ja tilavuus lördag 8 februari 4 SI-järjestelmän perussuureet ja yksiköt Suure Suureen tunnus Perusyksikkö Yksikön lyhenne Määritelmä Lähde: Mittatekniikan keskus MIKES

Lisätiedot

EUROOPAN YHTEISÖJEN KOMISSIO. Ehdotus EUROOPAN PARLAMENTIN JA NEUVOSTON DIREKTIIVIKSI

EUROOPAN YHTEISÖJEN KOMISSIO. Ehdotus EUROOPAN PARLAMENTIN JA NEUVOSTON DIREKTIIVIKSI EUROOPAN YHTEISÖJEN KOMISSIO Bryssel 27.9.2010 KOM(2010) 507 lopullinen 2010/0260 (COD) C7-0287/10 Ehdotus EUROOPAN PARLAMENTIN JA NEUVOSTON DIREKTIIVIKSI mittayksikköjä koskevan jäsenvaltioiden lainsäädännön

Lisätiedot

Tämä asiakirja on ainoastaan dokumentointitarkoituksiin. Toimielimet eivät vastaa sen sisällöstä.

Tämä asiakirja on ainoastaan dokumentointitarkoituksiin. Toimielimet eivät vastaa sen sisällöstä. 1980L0181 FI 27.05.2009 004.001 1 Tämä asiakirja on ainoastaan dokumentointitarkoituksiin. Toimielimet eivät vastaa sen sisällöstä. B NEUVOSTON DIREKTIIVI, annettu 20 päivänä joulukuuta 1979, mittayksikköjä

Lisätiedot

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units OPAS Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units Sisällys Esipuhe....3 1 Kansainvälinen mittayksikköjärjestelmä SI...4 2 Suure ja yksikkö....5 3 ISQ-suurejärjestelmä

Lisätiedot

Mittayksikköjä koskevan jäsenvaltioiden lainsäädännön lähentäminen ***I

Mittayksikköjä koskevan jäsenvaltioiden lainsäädännön lähentäminen ***I P7_TA(2011)0209 Mittayksikköjä koskevan jäsenvaltioiden lainsäädännön lähentäminen ***I Euroopan parlamentin lainsäädäntöpäätöslauselma 11. toukokuuta 2011 ehdotuksesta Euroopan parlamentin ja neuvoston

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Luento 1 / SMG-1100 Piirianalyysi I Risto Mikkonen

Luento 1 / SMG-1100 Piirianalyysi I Risto Mikkonen SMG-1100 Piirianalyysi I Luento 1 / 12 1 SMG-1100 Piirianalyysi I Viikot 22-24 (27.5. 14.6.) Luennot Harjoitukset ma, ti, ke, to 16-19 S2 pe 11-14 S2 ti 28.5. ja ke 29.5. SC 105B pe 14.6. SC 105B, SH 311

Lisätiedot

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT:

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT: 1 HUOLTOMATEMATIIKKA 1, SISÄLTÖ 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

Tervetuloa. S Mittaustekniikan perusteet A S Mittaustekniikan perusteet Y. Pe 14:15-15:45 E111-salissa. Mittaustekniikan perusteet

Tervetuloa. S Mittaustekniikan perusteet A S Mittaustekniikan perusteet Y. Pe 14:15-15:45 E111-salissa. Mittaustekniikan perusteet Mittaustekniikan perusteet Luennot ja tiedotus S-108.1010 Mittaustekniikan perusteet A S-108.1020 Mittaustekniikan perusteet Y Pe 14:15-15:45 E111-salissa Tervetuloa Luennot TkT Maija Ojanen-Saloranta

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden

Lisätiedot

Luento 1. 1 SMG-1100 Piirianalyysi I

Luento 1. 1 SMG-1100 Piirianalyysi I SMG-1100 Piirianalyysi I Luento 1 1 SMG-1100 Piirianalyysi I I + II periodi Luennot Harjoitukset ti 8 10 S4 ma 10 12 TB 110 pe 9 10 S4 ti 12 14 TC 161 Risto Mikkonen, SC 312 ti 12 14 SC 163 ke 14 16 SC

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Tervetuloa. Mittausteknikka. Mittaustekniikan perusteet. Mittaustekniikka. Mittaustekniikka

Tervetuloa. Mittausteknikka. Mittaustekniikan perusteet. Mittaustekniikka. Mittaustekniikka Mittaustekniikan perusteet Mittausteknikka S-08.95 Mittaustekniikan perusteet A S-08.9 Mittaustekniikan perusteet Y Pe 4:5-6:00 A-salissa Mittauksia käsittelevä tieteenhaara on metrologia. Metrologia sisältää

Lisätiedot

Luento 1. 1 DEE Piirianalyysi Risto Mikkonen

Luento 1. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 1 1 DEE-11000 Piirianalyysi Kesäkurssi, viikot 22-24 (26.5. 13.6.) Luennot Harjoitukset ma, ti, ke to klo 16-19 SE 211 pe klo 11-14 SE 211 (helatorstaina 29.5. ei luentoa),

Lisätiedot

Tervetuloa. Luennot ja tiedotus. Mittaustekniikan perusteet. Suorittaminen. Suorittaminen

Tervetuloa. Luennot ja tiedotus. Mittaustekniikan perusteet. Suorittaminen. Suorittaminen Mittaustekniikan perusteet Luennot ja tiedotus S-108.1010 Mittaustekniikan perusteet A S-108.1020 Mittaustekniikan perusteet Y Luennot Noppa ja tiedotus Pe 14:15-15:45 S4-salissa Tervetuloa TkT Maija Ojanen-Saloranta

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

SISÄLLYS. N:o 179. Laki. ulkomaalaislain muuttamisesta. Annettu Naantalissa 10 päivänä heinäkuuta 1998

SISÄLLYS. N:o 179. Laki. ulkomaalaislain muuttamisesta. Annettu Naantalissa 10 päivänä heinäkuuta 1998 SUOMEN SÄÄDÖSKOKOELMA 2001 Julkaistu Helsingissä 7 päivänä maaliskuuta 2001 N:o 179 188 SISÄLLYS N:o Sivu 179 Laki ulkomaalaislain muuttamisesta... 569 180 Laki ampuma-aselain muuttamisesta... 571 181

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto MATEMAATTISTEN MERKINTÖJEN KIRJOITUSOHJE TEKNIIKAN ALALLE.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto MATEMAATTISTEN MERKINTÖJEN KIRJOITUSOHJE TEKNIIKAN ALALLE. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto MATEMAATTISTEN MERKINTÖJEN KIRJOITUSOHJE TEKNIIKAN ALALLE Sivumäärä: 20 Vaasassa 28.08.2006 2 SISÄLLYSLUETTELO 1. JOHDANTO 3 1.1.

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut: 1,2,3,4... Kokonaisluvut (ℵ):... 4, 3, 2, 1,0,1,2,3,4... RaBonaaliluvut: kaikki luvut jotka voidaan esidää kahden kokonaisluvun

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

Tekstiilien tutkiminen ja testaus

Tekstiilien tutkiminen ja testaus Tekstiilien tutkiminen ja testaus Yleistä johdatusta tekstiilien tutkimusmenetelmiin elokuu 2006 Riikka Räisänen Helsingin yliopisto Miksi tekstiilejä tutkitaan? Tutkimus (teoreettinen metrologia) Määritykset,

Lisätiedot

Sähköiset perussuureet. 1 DEE Piirianalyysi Risto Mikkonen

Sähköiset perussuureet. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Sähköiset perussuureet 1 DEE-11000 Piirianalyysi kevät 2016 ; III + IV periodi Luennot, III periodi Ma 10 12 S1 Ti 14 15 S4 Luennot, IV periodi Ma 10 12 S1 Harjoitukset, III + IV

Lisätiedot

0. perusmääritelmiä 1/21/13

0. perusmääritelmiä 1/21/13 Lukutyypit Laskusäännöt Laskujärjestys 0. perusääriteliä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaDonaaliluvut (Q): kaikki luvut, jotka voidaan esifää kahden

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

KE1 Ihmisen ja elinympäristön kemia

KE1 Ihmisen ja elinympäristön kemia KE1 Ihmisen ja elinympäristön kemia Arvostelu: koe 60 %, tuntitestit (n. 3 kpl) 20 %, kokeelliset työt ja palautettavat tehtävät 20 %. Kurssikokeesta saatava kuitenkin vähintään 5. Uusintakokeessa testit,

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

Näytesivut. Merkonomin ja datanomin fysiikka, kemia ja ympäristötieto, opettajan aineisto. Jarkko Haapaniemi, Sirkka Parviainen, Pirjo Wiksten

Näytesivut. Merkonomin ja datanomin fysiikka, kemia ja ympäristötieto, opettajan aineisto. Jarkko Haapaniemi, Sirkka Parviainen, Pirjo Wiksten Näytesivut Merkonomin ja datanomin fysiikka, kemia ja ympäristötieto, opettajan aineisto Jarkko Haapaniemi, Sirkka Parviainen, Pirjo Wiksten ISBN 978-951-37-5398-6 Merkonomin ja datanomin fysiikka, kemia

Lisätiedot

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset. Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Neeviikuu 5A: opettajan oppaan liitteet

Neeviikuu 5A: opettajan oppaan liitteet Neeviikuu 5A: opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kymmenjärjestelmäalusta 2 2. Lukusuoria 3 3. Lukusuoria 4 4. Lukukortit 5 5. Sataruutu 6 6. Rahat 7 7. Ostokset ja pyramidit 8 8. Tiliote 9 9.

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi SISÄLTÖ Mitä metrologia on Metrisopimus, MIKES Lämpötilan yksikkö kelvin, lämpötila-asteikko ITS-90 Valovoiman yksikkö kandela,

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA

SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA 1 MODERNI FYSIIKKA Tapio Rantala Teoreettinen ja laskennallinen materiaalifysiikka Elektronirakenneteoria http://www.tut.fi/semiphys SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA MODERNI FYSIIKKA KVANTTIFYSIIKKA

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

FYSP101A Laboratoriotöiden perusteet

FYSP101A Laboratoriotöiden perusteet FYSP101A Laboratoriotöiden perusteet Luennot To 4.9. klo 14 16 FYS1 Ti 9.9. klo 14 16 FYS1 To 11.9. klo 14 15 FYS1 Harjoitustehtäviä FYSP101:n ensimmäisissä laskuharjoituksissa tiistaina 16.9. Kurssin

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson Säteilyannokset ja säteilyn vaimeneminen Tapio Hansson Ionisoiva säteily Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä.

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja - 26 - - mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6 FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 11.11.2010 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR)

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR) 86 Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava

Lisätiedot

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. 1 MITTAAMINEN II Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. Aihepiirejä: Suomen maantieto, nopeus, matka ja aika, erilaisten

Lisätiedot

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta LC-577 Sähömagneettisten enttien ja optisen säteilyn biologiset vaiutuset ja mittauset Sysy 16 PINTAAJUIST SÄHKÖ- JA MAGNTTIKNTÄT Lauri Puranen Säteilyturvaesus Ionisoimattoman säteilyn valvonta SÄTILYTURVAKSKUS

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot