LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla

Koko: px
Aloita esitys sivulta:

Download "LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla"

Transkriptio

1 MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan ratkaisujaan ja päätelmiään; harjaantuu tekemään havaintoja eteen tulevista matemaattisista ongelmista; saa monipuolisia kokemuksia eri tavoista esittää matemaattisia käsitteitä. Luvut ja laskutoimitukset Algebrallinen ajattelu n käsitteitä LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli lukujen ominaisuudet: vertailu, luokittelu, järjestykseen lukujen ominaisuudet: vertailu, luokittelu, järjestykseen asettaminen, asettaminen, lukujen hajottaminen ja kokoaminen lukujen hajottaminen ja kokoaminen kymmenjärjestelmän rakentumisen periaate kymmenjärjestelmän rakentumisen periaate yhteen- ja vähennyslasku sekä laskutoimitusten väliset yhteen- ja vähennyslasku sekä laskutoimitusten väliset yhteydet yhteydet luonnollisilla luvuilla luonnollisilla luvuilla kertolaskuja ja kertotauluja eri laskutapojen ja välineiden käyttöä: palikoita ja kymmenjärjestelmävälineitä, jakolaskua konkreettisilla välineillä lukusuora, päässälasku, paperin ja kynän käyttö eri laskutapojen ja välineiden käyttöä; palikoita ja kymmen- erilaisia tapoja ratkaista sama asia järjestelmävälineitä, lukusuora, päässälasku, paperin ja kynän käyttö erilaisia tapoja ratkaista sama asia yksinkertaisia murtolukuja konkreetein välinein säännönmukaisuuksien, suhteiden ja riippuvuuksien näkeminen kuvista säännönmukaisuuksien, suhteiden ja riippuvuuksien yksinkertaisten lukujonojen tulkitseminen ja kirjoittaminen näkeminen kuvista yksinkertaisten lukujonojen tulkitseminen ja kirjoittaminen ympäröivän tilan avaruudellisten suhteiden havainnointi ja kuvailu ympäröivän tilan avaruudellisten suhteiden havainnointi ja ympäristössä olevien geometristen muotojen havainnointi, kuvailu ja kuvailu nimeäminen ympäristössä olevien geometristen muotojen havainnointi, kaksi- kolmiulotteisten muotojen tunnistaminen, selostaminen ja kuvailu ja nimeäminen nimeäminen kaksi- ja kolmiulotteisten muotojen tunnistaminen, kaksiulotteisten muotojen rakentaminen, piirtäminen ja jäljentäminen selostaminen ja nimeäminen sekä kolmiulotteisten kappaleiden tunnistaminen ja rakentaminen geometriset peruskäsitteet (piste, jana, murtoviiva, puolisuora, yksinkertaisia peilauksia ja suurennoksia suora ja kulma) kaksiulotteisten muotojen rakentaminen, piirtäminen ja jäljentäminen sekä kolmiulotteisten kappaleiden tunnistaminen ja rakentaminen hahmottamiskyvyn ja geometrisen pohdinnan käyttö ongelmaratkaisussa yksinkertaisia peilauksia ja suurennoksia

2 Mittaaminen mittaamisen periaate pituus, aika ja hinta mittavälineiden käyttö tärkeimpien mittayksiköiden käyttö ja vertailu mittaustulosten arviointi Tietojenkäsittely ja tietojen etsiminen, kerääminen ja tallentaminen tilastot yksinkertaisten taulukoiden ja diagrammien lukeminen koottujen tietojen esittäminen pylväsdiagrammina 89 mittaamisen periaate pituus, massa, pinta-ala, tilavuus aika ja hinta mittavälineiden käyttö tärkeimpien mittayksiköiden käyttö ja vertailu mittaustulosten arviointi tietojen etsiminen, kerääminen ja tallentaminen yksinkertaisten taulukoiden ja diagrammien lukeminen koottujen tietojen esittäminen pylväsdiagrammina KUVAUS OPPILAAN HYVÄSTÄ (ARVOSANA 8) OSAAMISESTA Ajattelun ja työskentelyn taidot sekä algebra LUOKKA 1 LUOKKA 2 osoittaa matematiikkaan liittyvien käsitteiden ymmärtämistä käyttämällä niitä ongelmien ratkaisuissa sekä esittämällä ja selittämällä niitä pystyy tekemään perusteltuja päätelmiä ja selittämään toimintaansa esittää ratkaisujaan konkreetein mallein ja välinen, kuvin ja suullisesti osaa tehdä vertailua esim. pituusvertailua asettaa asioita järjestykseen, löytää asioille vastakohtia, luokittelee asioita ominaisuuksien mukaan ilmoittaa esineen sijainnin käyttämällä sanoja yläpuolella, alla, oikealla, vasemmalla, takana ja välissä osaa vertailla joukkojen suuruuksia käyttäen sanoja enemmän, vähemmän, yhtä monta, paljon, vähän kirjoittaa ja käyttää vertailun symboleja >, = ja < tietää lukujen merkityksen määrän ja järjestyksen ilmaisemisessa tietää lukujen kirjoittamisen ja lukusuoraesityksen hallitsee lukujen hajottamisen ja yhdistämisen, vertailun, summien ja lukujonojen muodostamisen tuntee parilliset ja parittomat luvut ymmärtää yhteen- ja vähennyslaskun sekä osaa soveltaa niitä arkitilanteissa osaa etsiä ratkaisuvaihtoehtojen lukumäärän yksinkertaisissa tapauksissa osoittaa matematiikkaan liittyvien käsitteiden ymmärtämistä käyttämällä niitä ongelmien ratkaisussa sekä esittämällä ja selittämällä niitä pystyy tekemään perusteltuja päätelmiä ja selittämään toimintaansa esittää ratkaisujaan konkreettisin mallein ja välinein, kuvin, suullisesti ja kirjallisesti osaa tehdä vertailua esim. pituusvertailua asettaa asioita järjestykseen, löytää asioille vastakohtia, luokittelee asioita ominaisuuksien mukaan ilmoittaa esineen sijainnin käyttämällä sanoja yläpuolella, alla, oikealla, vasemmalla, takana ja välissä osaa vertailla joukkojen suuruuksia käyttäen sanoja enemmän, vähemmän, yhtä monta, paljon, vähän kirjoittaa ja käyttää vertailun symboleja >, = ja < tietää lukujen merkityksen määrän ja järjestyksen ilmaisemisessa tietää lukujen kirjoittamisen ja lukusuoraesityksen hallitsee lukujen hajottamisen ja yhdistämisen, vertailun, summien ja lukujonojen muodostamisen tuntee parilliset ja parittomat luvut ymmärtää yhteen- ja vähennyslaskun sekä osaa soveltaa niitä arkitilanteissa

3 tuntee perusmuodot tasokuvioista ja kappaleista,: nelikulmio, ympyrä, pallo ja kuutio osaa käyttää yksinkertaisia peilauksia ja suurennoksia Mittaaminen osaa mitata yksinkertaisilla mittavälineillä ja tuntee keskeisimmät suureet kuten pituus, aika ja hinta 90 osaa etsiä ratkaisuvaihtoehtojen lukumäärän yksin-kertaisissa tapauksissa tuntee ja osaa esittää konkreettisilla välineillä yksinkertaisia murtolukuja tuntee perusmuodot tasokuvioista ja kappaleista: nelikulmio, kolmio, ympyrä, pallo ja kuutio tietää geometrian peruskäsitteet: piste, jana, murtoviiva, puolisuora, suora ja kulma ja niiden yhteyden yksinkertaisimpiin tasokuvioihin osaa käyttää yksinkertaisia peilauksia ja suurennoksia osaa mitata yksinkertaisilla mittavälineillä ja tuntee keskeisimmät suureet kuten pituus, massa, tilavuus, aika ja hinta osaa havainnoida tarpeellisen informaation yksinkertaisissa arkipäivä ongelmissa ja osaa käyttää matemaattisia tietojaan ja taitojaan niiden ratkaisemiseen ITSEARVIOINTI: Oppilaan itsearvioinnilla pyritään siihen, että oppilas ymmärtää, kuinka hänen oma aktiivisuutensa ja työnsä vaikuttaa hänen numeroonsa. Itsearviointi toteutetaan säännöllisin väliajoin sopivaa lomaketta käyttäen tai sanallisena keskusteluna. LUOKAT 3-5 TAVOITTEET oppii tutkien ja havainnoiden muodostamaan matemaattisia käsitteitä ja käsitejärjestelmiä oppii käyttämään matemaattisia käsitteitä oppii peruslaskutaitoja ja ratkaisemaan matemaattisia ongelmia löytää ilmiöistä yhtäläisyyksiä ja eroja, säännönmukaisuuksia sekä syy- ja seuraussuhteita perustelee toimintaansa sekä esittää ratkaisujaan oppii esittämään kysymyksiä ja päätelmiä oppii käyttämään sääntöjä ja noudattamaan ohjeita oppii keskittyneeseen ja pitkäjänteiseen työskentelyyn sekä toiminaan ryhmässä.

4 KESKEISET SISÄLLÖT 91 LUOKKA 3 kymmenjärjestelmäkäsitteen varmentaminen, tutustuminen 60-järjestelmään, kellonajat lukujen luokittelua, järjestämistä kertolaskua sisältöjako ja ositusjako laskualgoritmeja ja päässälaskua murtoluvun käsite laskutoimituksen tulosten arviointi, tarkistaminen, pyöristäminen sulkeiden käyttö erilaisten vaihtoehtojen tutkiminen Algebra lausekkeen käsite lukujonojen tulkitseminen ja kirjoittaminen säännönmukaisuuksia, suhteita ja riippuvuuksia yhtälöiden ja epäyhtälöiden ratkaisujen etsiminen päättelemällä yhdenmuotoisuus symmetria, yhtenevyys konkreetein välinen osaa peilata suoran suhteen yhdensuuntaiset suorat erilaisten monikulmioiden tutkiminen ja luokittelu kappaleiden geometristen ominaisuuksien tutkiminen mittaamisen periaate mittayksiköiden käyttö, vertailua ja muuntamista mittatulosten arviointia ja mittauksen tarkistaminen Tietojen käsittely ja tilastot sekä todennäköisyys yksinkertaisten taulukoiden ja diagrammien lukeminen tietojen luokittelu ja järjestäminen

5 Arvosana 8 92 Ajattelun ja työskentelyn taidot osoittaa matematiikkaan liittyvien käsitteiden ymmärtämistä käyttämällä niitä ongelman ratkaisuissa ja esittämällä niitä monipuolisesti pyrkii tietoisesti kohdistamaan tarkkaavaisuutensa havaintoja tehdessään osaa kuvat reaalimaailman tilanteita ja ilmiöitä matemaattisesti osaa ryhmitellä tai luokitella annetun tai valitsemansa kriteerin perusteella sekä osaa etsiä yhteistä ominaisuutta osaa esittää matemaattisia ongelmia uudessa muodossa osaa noudattaa sääntöjä. Luvut, laskutoimitukset ja algebra ymmärtää kymmenjärjestelmän ja käyttää sitä varmasti osaa esittää laskutoimitukset kirjallisesti ja suullisesti ja tietää eri laskutoimitusten väliset yhteydet osaa etukäteen arvioida tuloksen suuruusluokan ja tehtävän jälkeen tarkistaa laskun vaiheet sekä arvioida laskun mielekkyyden osaa muodostaa ja jatkaa lukujonoja sekä esittää riippuvuuksia. osaa muodostaa kuvioita annettuja ohjeita noudattaen pystyy havaitsemaan yksinkertaisten geometristen kuvioiden ominaisuuksia sekä tuntee tasokuvioiden käsitteiden muodostamaa rakennetta tunnistaa yhdenmuotoisuuden ja suoran suhteen symmetriset kuviot osaa peilata suoran suhteen ymmärtää mittaamisen periaatteen osaa arvioida mittauskohteen suuruuden ja tarkistaa mittauksen tuloksen mielekkyyden sekä ilmoittaa mittaustuloksen sopivalla mittayksiköllä. Tietojenkäsittely ja tilastot sekä todennäköisyys osaa kerätä tietoja, järjestää, luokitella ja esittää niitä tilastoina osaa lukea yksinkertaisia taulukoita ja diagrammeja osaa selvittää erilaisten tapausten ja vaihtoehtojen lukumäärän sekä osaa päätellä mahdottoman ja varman tapauksen.

6 LUOKKA 4 93 lukujen luokittelua, järjestämistä kertolaskua laskualgoritmeja ja päässälaskuja murtoluvun käsite desimaaliluvun käsite murtolukujen ja desimaalilukujen yhteen- ja vähennyslaskua laskutoimitusten tulosten arviointi, tarkistaminen ja pyöristäminen sulkeiden käyttö erilaisten vaihtoehtojen lukumäärän tutkiminen Algebra lausekkeen käsite lukujonojen tulkitseminen ja kirjoittaminen säännönmukaisuuksia, suhteita ja riippuvuuksia yhtälöiden ja epäyhtälöiden ratkaisujen etsiminen päättelemällä kohtisuorat suorat peilauksia suoran ja pisteen suhteen kulmien luokittelu mittayksiköiden käyttö, vertailua ja muuntamista mittaustulosten arviointia ja mittauksen tarkistaminen Tietojenkäsittely ja tilastot sekä todennäköisyys tietojen etsiminen, kerääminen, tallentaminen ja esittäminen yksinkertaisten taulukoiden ja diagramminen lukeminen tietojen luokittelu ja järjestäminen

7 Arvosana 8 94 Ajattelun ja työskentelyn taidot osoittaa matematiikkaan liittyvien käsitteiden ymmärtämistä käyttämällä niitä ongelman ratkaisussa ja esittämällä niitä monipuolisesti pyrkii tietoisesti kohdistamaan tarkkaavaisuutensa havaintoja tehdessään osaa kuvata reaalimaailman tilanteita ja ilmiöitä matemaattisesti osaa ryhmitellä tai luokitella annetun tai valitsemansa kriteerin perusteella sekä osaa etsiä yhteistä ominaisuutta osaa esittää matemaattisia ongelmia uudessa muodossa osaa noudattaa sääntöjä. Luvut, laskutoimitukset ja algebra ymmärtää kymmenjärjestelmän myös desimaalilukujen osalta ja osaa käyttää sitä varmasti ymmärtää murtoluvun käsitteet osaa esittää laskutoimitukset kirjallisesti ja suullisesti ja tietää eri laskutoimitusten väliset yhteydet osaa etukäteen arvioida tuloksen suuruusluokan ja tehtävän jälkeen tarkistaa laskun mielekkyyden osaa muodostaa ja jatkaa lukujonoja sekä esittää riippuvuuksia. osaa muodostaa kuvioita annettuja ohjeita noudattaen pystyy havaitsemaan yksinkertaisten geometristen kuvioiden ominaisuuksia sekä tuntee tasokuvioiden käsitteiden muodostamaa rakennetta tunnistaa yhdenmuotoisuuden ja suoran suhteen symmetriset kuviot ymmärtää mittaamisen periaatteen osaa arvioida mittauskohteen suuruuden ja tarkistaa mittauksen tuloksen mielekkyyden sekä ilmoittaa mittaustuloksen sopivalla mittayksiköllä. Tietojenkäsittely ja tilastot sekä todennäköisyys osaa kerätä tietoja, järjestää, luokitella ja esittää niitä tilastoina osaa lukea yksinkertaisia taulukoita ja diagrammeja osaa selvittää erilaisten tapausten ja vaihtoehtojen lukumäärän sekä osaa päätellä mahdottoman ja varman tapauksen.

8 LUOKKA 5 95 lukujen luokittelua, järjestämistä laskualgoritmeja ja päässälaskua murtolukujen muunnokset murtoluvun, desimaaliluvun ja prosentin välinen yhteys murtolukujen ja desimaalilukujen kertominen ja jakaminen luonnollisella luvulla laskutoimitusten tulosten arviointi, tarkistaminen ja pyöristäminen sulkeiden käyttö jaollisuus negatiivisen kokonaisluvun käsite erilaisten vaihtoehtojen lukumäärän tutkiminen Algebra lausekkeen käsite säännönmukaisuuksia, suhteita ja riippuvuuksia yhtälöiden ja epäyhtälöiden ratkaisujen etsiminen päättelemällä suurennoksia ja pienennöksiä, mittakaava ympyrä ja sen osia kulman mitta pinta-ala ja piiri mittayksiköiden käyttö, vertailua ja muuntamista mittatuloksen arviointia ja mittauksen tarkistaminen suurennokset, pienennökset mittakaava Tietojen käsittely ja tilastot sekä todennäköisyys yksinkertaisten taulukoiden ja diagrammien lukeminen kokemuksia klassisesta ja tilastollisesta todennäköisyydestä koordinaatisto keskiarvon käsite ja laskeminen tietojen luokittelu ja järjestäminen, tyyppiarvon ja mediaanin käsitteiden pohjustaminen

9 kokemuksia klassisesta ja tilastollisesta todennäköisyydestä 96 Arvosana 8 Ajattelun ja työskentelyn taidot osoittaa matematiikkaan liittyvien käsitteiden ymmärtämistä ja käyttämällä niitä ongelman ratkaisussa ja esittämällä niitä monipuolisesti pyrkii tietoisesti kohdistamaan tarkkaavaisuutensa havaintoja tehdessään osaa kuvata reaalimaailman tilanteita ja ilmiöitä matemaattisesti osaa ryhmitellä tai luokitella annetun tai valitsemansa kriteerin perusteella sekä osaa etsiä yhteistä ominaisuutta osaa esittää matemaattisia ongelmia uudessa muodossa osaa noudattaa sääntöjä. Luvut, laskutoimitukset ja algebra ymmärtää negatiivisen luvun ja murtoluvun käsitteet sekä osaa esittää niitä eri metodeilla osaa esittää laskutoimitukset kirjallisesti ja suullisesti ja tietää eri laskutoimitusten väliset yhteydet osaa etukäteen arvioida tuloksen suuruusluokan ja tehtävän jälkeen tarkistaa laskun vaiheet sekä arvioida laskun mielekkyyden osaa muodostaa ja jatkaa lukujonoja sekä esittää riippuvuuksia. osaa muodostaa kuvioita annettuja ohjeita noudattaen pystyy havaitsemaan yksinkertaisten geometristen kuvioiden ominaisuuksia sekä tuntee tasokuvioiden käsitteiden muodostamaa rakennetta osaa suurentaa ja pienentää kuvioita annetussa suhteessa osaa arvioida mittauskohteen suuruuden ja tarkistaa mittauksen tuloksen mielekkyyden sekä ilmoittaa mittaustuloksen sopivalla mittayksiköllä osaa laskea suunnikkaiden ja kolmioiden pinta-aloja ja piirejä. Tietojenkäsittely ja tilastot sekä todennäköisyys osaa kerätä tietoja, järjestää, luokitella ja esittää niitä tilastoina osaa lukea yksinkertaisia taulukoita ja diagrammeja osaa selvittää erilaisten tapausten ja vaihtoehtojen lukumäärän sekä osaa päätellä mahdottoman ja varman tapauksen.

10 ITSEARVIOINTI 97 Oppilaan itsearvioinnilla pyritään siihen, että oppilas ymmärtää, kuinka hänen oman aktiivisuutensa ja työnsä vaikuttaa hänen numeroonsa. Itsearviointi toteutetaan säännöllisin väliajoin sopivaa lomaketta käyttäen tai sanallisena keskusteluna. LUOKAT 6-9 TAVOITTEET oppii ymmärtämän matemaattisten käsitteiden ja sääntöjen merkityksen; laskutaitoja ja loogista ja luovaa ajattelua ja näin ratkaisemaan käytännössäkin eteen tulevia matemaattisia ongelmia sekä käyttämään oppimiaan taitoja reaalimaailmassa; työskentelemään keskittyneesti sekä toimimaan ryhmässä. KESKEISET SISÄLLÖT LUOKKA 6 Ajattelun taidot ja menetelmät loogista ajattelua vaativia toimintoja kuten vertailua, järjestämistä, mittaamista ja rakentamista matemaattisten tekstien tulkintaa ajattelua tukevien piirrosten ja välineiden käyttöä matematiikan historiaa luonnolliset luvut, kokonaisluvut ja rationaaliluvut peruslaskutoimitusten varmentaminen aikalaskut, aikaväli desimaalilukujen yhteen- ja vähennyslasku sekä kerto- ja jakolasku murtolukujen laventaminen, supistaminen murtolukujen yhteen- ja vähennyslasku, murtoluvun kertominen ja jakaminen luonnollisella luvulla sekä murto-osan laskeminen prosentin käsite, prosenttiarvon laskeminen pyöristäminen ja arviointi sekä laskimen käyttö suhde ja verrannollisuus

11 Algebra lausekkeen käsite säännönmukaisuuksia, suhteita ja riippuvuuksia 98 kolmioihin ja nelikulmioihin liittyviä käsitteitä tasokuvioiden piirin ja pinta-alan laskeminen kappaleiden nimeäminen suorakulmaisen särmiön tilavuus pinta-alan ja tilavuuden yksiköt, vetomitat Todennäköisyys ja tilastot diagrammien tulkinta LUOKKA 7 Ajattelun taidot ja menetelmät loogista ajattelua vaativia toimintoja kuten vertailua, järjestämistä, mittaamista ja rakentamista matemaattisten tekstien tulkinta ja tuottaminen luokittelun ja järjestämisen käyttöä työkaluna kombinatoristen ongelmien ratkaisemista eri menetelmillä ajattelua tukevien piirrosten ja välineiden käyttöä matematiikan historiaan luonnolliset luvut, kokonaisluvut, rationaaliluvut, reaaliluvut vastaluku, itseisarvo, käänteisluku peruslaskutoimitusten varmentaminen aikalaskut, aikaväli luvun jakaminen alkutekijöihin, lukujen jaollisuussääntöjä murtolukujen supistaminen, laventaminen ja desimaaliluvun esittäminen murtolukuna kertominen ja jakaminen desimaaliluvuilla ja murtoluvuilla prosenttilaskuja lausekkeiden sieventäminen suhde

12 pyöristäminen ja arviointi sekä laskimen käyttö potenssi, eksponenttina kokonaisluku juuren käsite ja laskutoimituksina neliöjuurella 99 Algebra lauseke ja sen sieventäminen potenssilauseke ja sen sieventäminen muuttujan arvon sijoittaminen lausekkeeseen aritmeettisten ja geometristen lukujonojen tutkimista Funktiot lukuparin esittäminen koordinaatistossa kolmioihin ja nelikulmioihin liittyviä käsitteitä säännölliset monikulmiot ympyrä tasokuvioiden piirin ja pinta-alan laskeminen kappaleiden nimeäminen ja luokittelu kulmien välisiä yhteyksiä Todennäköisyys ja tilastot diagrammien tulkinta LUOKKA 8 Ajattelun taidot ja menetelmät mallintamista, sääntöjen ja riippuvuuksien etsimistä sekä niiden esittämistä vertailussa ja riippuvuuksissa tarvittavien käsitteiden tulkinta ja käyttö todistamisen pohjustaminen: suora todistus verrannollisuus potenssi, eksponenttina kokonaisluku

13 Algebra potenssilauseke ja sen sieventäminen polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku yhtälö lineaarisen yhtälön ratkaiseminen verranto 100 Funktiot riippuvuuden havaitseminen ja sen esittäminen muuttujien avulla funktion käsite yksinkertaisten funktioiden tulkitseminen ja niiden kuvaajien piirtäminen koordinaatistoon funktiokuvaajan tutkimista: funktion nollakohta, suurin ja pienin arvo, kasvaminen ja väheneminen lineaarinen funktio suoraan ja kääntäen verrannollisuus yhdenmuotoisuus ja yhtenevyys symmetria suoran ja pisteen suhteen kierto ja siirto tasossa Pythagoraan lause kolmion ja ympyrän välisiä yhteyksiä trigonometriaa ja suorakulmaisen kolmion ratkaiseminen LUOKKA 9 Ajattelun taidot ja menetelmät sääntöjen ja riippuvuuksien etsimistä sekä niiden esittämistä vertailussa ja riippuvuuksissa tarvittavien käsitteiden tulkinta ja käyttö todistaminen pohjustaminen: perustellut arvaukset ja kokeilut, systemaattinen yritys ja erehdys, vääräksi osoittaminen, suora todistus murtolukulaskuja prosenttilasku potenssilasku

14 Algebra Polynomilasku yhtälö, epäyhtälö, määrittelyjoukko, ratkaisujoukko vaillinaisen toisen asteen yhtälön ratkaiseminen yhtälöpari ja sen ratkaiseminen algebrallisesti ja graafisesti 101 Funktiot yksinkertaisten funktioiden tulkitseminen ja niiden kuvaajien piirtäminen koordinaatistoon lineaarinen funktio suoraan ja kääntäen verrannollisuus ympyrä ja siihen liittyvät käsitteet kappaleen tilavuuden ja pinta-alan laskeminen geometrista konstruointia Todennäköisyys ja tilastot todennäköisyyden käsite frekvenssi, suhteellinen frekvenssi keskiarvon, tyyppiarvon ja mediaanin määrittäminen hajonnan käsite tietojen kerääminen, muuntaminen ja esittäminen käyttökelpoisessa muodossa TYÖTAVAT Uudet asiat käsitellään opettajajohtoisesti, muu työskentely yksilöllisesti ja pareittain sekä ryhmissä. Projektitöitä toteutetaan, mikäli aika antaa myöten. Kotitehtäviä ja niiden suoritustasoa tarkkaillaan ryhmittäin ja yksilökohtaisesti. Jos opiskeluryhmällä on vaikeuksia suoriutua opiskelusta, keskitytään tällöin olennaisen oppimiseen. NUMEROARVIOINTI Koko ikäryhmälle järjestetään sekä syksyn että kevään jaksoissa kahdet yhteiset kokeet, joissa mitataan mahdollisimman monipuolisesti saavutettu tiedon ja taidon taso. Menestyminen kokeissa vaikuttaa arvosanojen 7-10 tasolla merkittävimmin. Arvosanojen 5-6 kohdalla muiden näyttöjen, kuten tuntityöskentely ja kotitehtävien tekeminen, merkitys kasvaa.

15 Kaikilla tasoilla asenne ja aktiivisuus, vastuullisuus ja yritteliäisyys otetaan arvioinnissa huomioon. Nämä tulevat parhaiten esille tuntityöskentelyssä sekä kotitehtävien tasossa. 102 Vaatimustasot Saadakseen kunkin arvosanan oppilaan on täytettävä ensimmäinen kriteeri ja useimmat muista kriteereistä. LUOKKA 6 Arvosana 4 ei työskentele kykyjensä mukaisesti oppilaan asennoituminen matematiikkaa kohtaan on negatiivista koti- ja tuntitehtävät tekemättä summatiivisten kokeiden keskiarvo 4-5 Arvosana 5 suoriutuu useimmiten yksinkertaisista mekaanisista tehtävistä osallistuu kykyjensä mukaan kotitehtävien tekeminen satunnaista summatiivisten kokeiden keskiarvo 4-5 Arvosana 6 pystyy suorittamaan yksinkertaisia mekaanisia tehtäviä yleensä myönteinen asenne opiskeluun kotitehtävät yleensä tehty yritteliäs tuntityöskentely summatiivisten kokeiden keskiarvo 5-7 Arvosana 7 pystyy suorittamaan mekaanisia ja yksinkertaisia soveltavia tehtäviä myönteinen asenne opiskeluun kotitehtävät tehty yritteliäs ja aktiivinen tuntityöskentely summatiivisten kokeiden keskiarvo 6-7,5

16 Arvosana Ajattelun taidot ja menetelmät huomaa eri tapauksien yhtäläisyydet ja säännönmukaisuudet osaa tulkita yksinkertaisia matemaattisia tekstejä osaa muuntaa yksinkertaisen tekstimuodossa olevan ongelman matemaattiseen esitysmuotoon ja ratkaista sen. osaa arvioida mahdollista tulosta sekä laatia suunnitelman laskun ratkaisemisesta ja hänellä on luotettava peruslaskutaito. tunnistaa eri geometriset muodot osaa laskea tasokuvioiden piirin ja pinta-alan osaa käyttää harppia ja viivainta suorittaa mittauksia ja niihin liittyviä laskelmia arkielämässä; osaa muuntaa tavanomaisimpia mittayksiköitä. Todennäköisyys ja tilastot osaa tulkita erilaisia taulukoita ja diagrammeja. Edellisten lisäksi työskentelee aktiivisesti ja omatoimisesti, ratkaisee soveltavia tehtäviä ja osaa tuottaa yksinkertaisia ongelmatehtäviä myönteinen asenne opiskelua ja matematiikkaa kohtaan osaa perustella ratkaisunsa ja arvioida sen järkevyyttä summatiivisten kokeiden keskiarvo 7,5-8,5. Arvosana 9 hallitsee asiasisällöt hyvin arvosanaa 8 koskevien kriteerien mukaan työskentelee aktiivisesti ja itsenäisesti osaa soveltaa, on luova ongelmia ratkaistessaan ja osaa tuottaa ongelmatehtäviä osaa perustella ratkaisunsa matemaattisesti summatiivisten kokeiden keskiarvo 8,5-9,5

17 Arvosana Edellisten lisäksi hallitsee asiasisällöt erinomaisesti arvosanaa 8 koskevien kriteerien mukaan erityinen harrastuneisuus matemaattinen ajattelu on luovaa ja ongelmakeskeistä summatiivisten kokeiden keskiarvo 9,5-10 LUOKKA 7 Arvosanojen 4-7 ja 9-10 arviointi suoritetaan 6. luokan kriteereiden mukaisesti, mutta arvosanan 8 vaatimustasot ovat seuraavat: Ajattelun taidot ja menetelmät huomaa eri tapauksien yhtäläisyydet ja säännönmukaisuudet osaa muuntaa yksinkertaisen tekstimuodossa olevan ongelman matemaattiseen esitysmuotoon ja tehdä suunnitelman ongelman ratkaisemiseksi, ratkaista sen ja tarkistaa tuloksen oikeellisuuden osaa käyttää luokittelua matemaattisten ongelmien ratkaisussa. osaa arvioida mahdollista tulosta sekä laatia suunnitelman laskun ratkaisemisesta ja hänellä on luotettava peruslaskutaito osaa korottaa luvun kokonaislukupotenssiin ja pystyy jakamaan luvun alkutekijöihinsä tuntee vastaluvun, itseisarvon ja käänteisluvun käsitteet osaa ratkaista tehtäviä, joissa tarvitaan neliöjuurta osaa käyttää prosenttilaskua ja muita laskutoimituksia arkielämässä eteen tulevien ongelmien ratkaisemisessa. Algebra osaa sieventää algebrallisia lausekkeita osaa korottaa luvun kokonaislukupotenssiin ja osaa potenssin laskutoimitukset osaa sijoittaa muuttujan arvon lausekkeeseen. Funktiot osaa määrittää pisteen koordinaatit koordinaatistossa.

18 tunnistaa eri geometriset muodot ja tuntee niiden ominaisuudet soveltaa oppimiansa piirin ja pinta-alan laskutapoja osaa käyttää harppia ja viivainta yksinkertaisten geometristen konstruktioiden tekemiseen soveltaa kahden kulman välisiä yhteyksiä yksinkertaisissa tilanteissa suorittaa mittauksia ja niihin liittyviä laskelmia arkielämässä; osaa muuntaa tavanomaisimpia mittayksiköitä. 105 Todennäköisyys ja tilastot osaa tulkita erilaisia diagrammeja. Edellisten lisäksi työskentelee aktiivisesti ja omatoimisesti, ratkaisee soveltavia tehtäviä ja osaa tuottaa yksinkertaisia ongelmatehtäviä myönteinen asenne opiskelua ja matematiikkaa kohtaan osaa perustella ratkaisunsa ja arvioida sen järkevyyttä summatiivisten kokeiden keskiarvo 7,5-8,5. LUOKKA 8 Arvosanojen 4-7 ja 9-10 arviointi suoritetaan 6. luokan kriteereiden mukaisesti, mutta arvosanan 8 vaatimustasot ovat seuraavat: Ajattelun taidot ja menetelmät osaa huomaa eri tapauksien yhtäläisyydet ja säännönmukaisuudet päätellä yksinkertaisten väitelauseiden totuusarvon muuntaa yksinkertaisen tekstimuodossa olevan ongelman matemaattiseen esitysmuotoon ja tehdä suunnitelman ongelman ratkaisemiseksi, ratkaista sen ja tarkistaa tuloksen oikeellisuuden. osaa korottaa luvun kokonaislukupotenssiin ja osaa potenssin laskutoimitukset käyttää verrantoa ja muita laskutoimituksia arkielämässä eteen tulevien ongelmien ratkaisemisessa.

19 Algebra osaa ratkaista ensimmäisen asteen yhtälön sieventää algebrallisia lausekkeita ja kertoa polynomin vakiolla muodostaa yksinkertaisesta arkielämään liittyvästä ongelmasta yhtälön ja ratkaista sen algebrallisesti tai päättelemällä arvioida tuloksen järkevyyttä sekä tarkistaa ratkaisunsa eri vaiheet. 106 Funktiot osaa laatia taulukon lukupareista annetun säännön mukaan ratkaista lineaarisen yhtälön graafisesti jatkaa lukujonoa annetun säännön mukaan ja pystyy kertomaan sanallisesti yleisen säännön annetun lukujonon muodostumisesta suoran yhtälön kulmakertoimen ja vakion merkityksen. osaa löytää yhdenmuotoisia ja yhteneviä sekä symmetrisiä kuvioita ja pystyy soveltaman tätä taitoa kolmioiden ja nelikulmioiden ominaisuuksien tutkimisessa käyttää Pythagoraan lausetta ja trigonometriaa suorakulmaisen kolmien osien ratkaisemiseen. Edellisten lisäksi työskentelee aktiivisesti ja omatoimisesti, ratkaisee soveltavia tehtäviä ja osaa tuottaa yksinkertaisia ongelmatehtäviä myönteinen asenne opiskelua ja matematiikkaa kohtaan osaa perustella ratkaisunsa ja arvioida sen järkevyyttä summatiivisten kokeiden keskiarvo 7,5-8,5. LUOKKA 9 Arvosanojen 4-7 ja 9-10 arviointi suoritetaan 6. luokan kriteereiden mukaisesti, mutta arvosanan 8 vaatimustasot ovat seuraavat: Ajattelun taidot ja menetelmät osaa käyttää puheessaan loogisia elementtejä kuten ja, tai, jos niin, ei, on olemassa, ei ole olemassa päätellä yksinkertaisten väitelauseiden totuusarvon

20 muuntaa yksinkertaisen tekstimuodossa olevan ongelman matemaattiseen esitysmuotoon ja tehdä suunnitelman ongelman ratkaisemiseksi, ratkaista sen ja tarkistaa tuloksen oikeellisuuden. 107 osaa arvioida mahdollista tulosta sekä laatia suunnitelman laskun ratkaisemisesta ja hänellä on luotettava peruslaskutaito käyttää verrantoa, prosenttilaskua ja muita laskutoimituksia arkielämässä eteen tulevien ongelmien ratkaisemisessa. Algebra osaa ratkaista lineaarisen yhtälön graafisesti tietää suoran yhtälön ja kulmakertoimen merkityksen; oppilas osaa määrittää kahden suoran leikkauspisteen piirtämällä sieventää algebrallisia lausekkeita (myös rationaalilausekkeita) ratkaista erilaisia yhtälöitä (itseisarvoyhtälöt, epäyhtälöt, toisen asteen yhtälöt) käyttää yhtälöparia yksinkertaisten ongelmien ratkaisemiseen ratkaista yhtälöparin graafisesti ja algebrallisesti. osaa soveltaa oppimiansa piirin, pinta-alan ja tilavuuden laskutapoja käyttää harppia ja viivoitinta yksinkertaisten geometristen konstruktioiden tekemiseen suorittaa mittauksia ja niihin liittyviä laskelmia arkielämässä, tieteissä ja taitoaineissa; hän osaa muuntaa tavanomaisimpia mittayksiköitä. Todennäköisyys ja tilastot ymmärtää todennäköisyyden ja satunnaisuuden merkityksen arkielämän tilanteissa osaa lukea erilaisia taulukoita ja diagrammeja ja määrittää annetusta aineistosta frekvenssit, keskiarvon, mediaanin ja tyyppiarvon. Edellisten lisäksi työskentelee aktiivisesti ja omatoimisesti, ratkaisee soveltavia tehtäviä ja osaa tuottaa yksinkertaisia ongelmatehtäviä myönteinen asenne opiskelua ja matematiikkaa kohtaan osaa perustella ratkaisunsa ja arvioida sen järkevyyttä summatiivisten kokeiden keskiarvo 7,5-8,5.

21 108 Päättöarvioinnissa otetaan huomioon kahdeksannen ja yhdeksännen luokan aikana opiskeltavat kurssit. Päättötodistukseen tulevaksi arvosanaksi tulee kahdeksannen luokan lukuvuosiarvosanan ja yhdeksännen luokan kurssiarvosanojen keskiarvo. Matemaattisesti määräytyvästä keskiarvosta voi opettajan harkinnan mukaan poiketa yhdellä numerolla ylös tai alaspäin riippuen siitä, miten oppilaan yhdeksännen luokan opiskelu on sujunut. ITSEARVIOINTI Oppilaan itsearvioinnilla pyritään siihen, että oppilas ymmärtää kuinka hänen oma aktiivisuutensa ja työnsä vaikuttaa hänen numeroonsa. Itsearviointi toteutetaan säännöllisin väliajoin sopivaa lomaketta käyttäen.

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

1 lk Tavoitteet. 2 lk Tavoitteet

1 lk Tavoitteet. 2 lk Tavoitteet MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas

Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti.

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti. 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Matematiikka. 1. luokka 2. luokka. yksinumeroinen - kaksinumeroinen - lukujonoja, hajottaminen ja kokoaminen kolminumeroinen konkreettisin välinein

Matematiikka. 1. luokka 2. luokka. yksinumeroinen - kaksinumeroinen - lukujonoja, hajottaminen ja kokoaminen kolminumeroinen konkreettisin välinein 40 Matematiikka 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot

6. luokka 7. luokka. 6. luokka 7. luokka

6. luokka 7. luokka. 6. luokka 7. luokka VUOSILUOKAT 6-9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on matematiikan osaamisen vahvistaminen ja riittävien perusvalmiuksien tarjoaminen. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Matematiikka. Aineen kuvaus

Matematiikka. Aineen kuvaus Matematiikka Aineen kuvaus Matematiikkaa lähestytään peruskäsitteistä: määrä, muoto ja jatkuva muutos. Matematiikka sovelluksineen palvelee lähes kaikkia eri oppiaineita ja eri elämän- alueita. Matematiikan

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

MAS- linjan matematiikan kurssit

MAS- linjan matematiikan kurssit Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan

Lisätiedot

Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet

Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet 9.2.4. Matematiikka Koulumme matematiikan opetus antaa oppilaalle välineitä ja taitoja ratkaista arkipäivän ongelmia matemaattisen ajattelun avulla. Opetus tarjoaa oppilaalle välineen oppia tunnistamaan

Lisätiedot

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään 6.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään 101 7.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana. Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5

Lisätiedot

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta

Lisätiedot

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty )

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty ) MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty 16.12.2015) Merkitys, arvot ja asenteet T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Lisätiedot

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä 14.4.4 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä 1 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku 5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään

Lisätiedot

Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa

Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa Matematiikka 7-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

Vetelin kunta Oppimisen seurantalomake 0-2 lk

Vetelin kunta Oppimisen seurantalomake 0-2 lk Vetelin kunta Oppimisen seurantalomake 0-2 lk Koulu: Oppilas: ÄIDINKIELI Lukeminen 20. Luet kokonaisia kirjoja. 19. Osaat tehdä johtopäätöksiä lukemastasi. 18. Löydät lukemastasi tarvittavia tietoja. 17.

Lisätiedot

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä MATEMATIIKKA JOENSUUN SEUDUN OPETUSSUUNNITELMASSA Merkitys, arvot ja asenteet Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen

Lisätiedot

MATEMATIIKKA/Vuosiluokat 7-9

MATEMATIIKKA/Vuosiluokat 7-9 MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

Rauman normaalikoulun opetussuunnitelma 2016 Matematiikka vuosiluokat 1-9

Rauman normaalikoulun opetussuunnitelma 2016 Matematiikka vuosiluokat 1-9 2016 Matematiikka vuosiluokat 1-9 Rauman normaalikoulun opetussuunnitelma Matematiikka vuosiluokat 1-2 Rauman normaalikoulun matematiikan opetuksen pohjana ovat perusopetuksen opetussuunnitelman perusteiden

Lisätiedot

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Olemme valinneet opetussuunnitelman perusteiden 2014 tavoitteiden, sisältöjen ja hyvän osaamisen kuvausten pohjalta

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1)

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1) Lasku-Lassin maatila - Harjoituslista Sivu 1 / 20 Luokka 0-1 Vertailua (Luokka 0-1) 1. Etsi erilainen Kuvavalinta 2. Mikä ei kuulu joukkoon? Kuvavalinta 3. Pitempi, lyhyempi Kuvavalinta 4. Mikä ei kuulu

Lisätiedot

MATEMATIIKKA 1 2lk. Oppiaineen tehtävä

MATEMATIIKKA 1 2lk. Oppiaineen tehtävä 13.4.4 MATEMATIIKKA 1 2lk Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 7-9

MATEMATIIKKA VUOSILUOKAT 7-9 MATEMATIIKKA VUOSILUOKAT 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matematiikan opetuksen tehtävänä on vahvistaa matemaattista yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta Espoon suomenkielisen perusopetuksen opetussuunnitelma Luvut 13 15 OPPIAINEIDEN OPETUSSUUNNITELMAT Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto,

Lisätiedot

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

PITKÄ MATEMATIIKKA. Pakolliset kurssit

PITKÄ MATEMATIIKKA. Pakolliset kurssit 13 PITKÄ MATEMATIIKKA Suoritusohje: Pakolliset kurssit suoritetaan numerojärjestyksessä, poikkeuksena kurssi MAA6, jonka voi suorittaa jo kurssin MAA2 jälkeen. Syventävien kurssien suoritusjärjestys mainitaan

Lisätiedot

Yksilölliset opintopolut

Yksilölliset opintopolut Yksilölliset opintopolut Maija Koski, opettaja Työhön ja itsenäiseen elämään valmentava opetus ja ohjaus, Valmentava 2, autisminkirjon henkilöille, Pitäjänmäen toimipaikka Opetuksen ja ohjauksen suunnittelu

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 3-6

MATEMATIIKKA VUOSILUOKAT 3-6 MATEMATIIKKA VUOSILUOKAT 3-6 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

Matematiikka/ Vuosiluokat 3-6

Matematiikka/ Vuosiluokat 3-6 Matematiikka/ Vuosiluokat 3-6 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

PII JA OPETUSSUUNNITELMAN PERUSTEET

PII JA OPETUSSUUNNITELMAN PERUSTEET PII JA OPETUSSUUNNITELMAN PERUSTEET Yläkoulun matematiikan oppimateriaali Pii noudattaa uuden opetussuunnitelman perusteita. Sarja tarjoaa kaikille oppijoille oman taitotasonsa mukaisia haasteita ja myönteisiä

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut

Lisätiedot

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Matematiikka tarjoaa välineitä johdonmukaisen ja täsmällisen ajattelun edistämiseen, avaruuden hahmottamiseen sekä käytännön ja

Lisätiedot

MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere

MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere MATEMATIIKKA Helsingin normaalilyseo elina.mantere@helsinki.fi OPPIAINEEN TEHTÄVÄ Kehittää loogista, täsmällistä ja luovaa matemaattista ajattelua. Luoda pohja matemaattisten käsitteiden ja rakenteiden

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua sekä vahvistaa matemaattista yleissivistystä. Opetuksessa

Lisätiedot

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. 5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Matematiikka OPPIAINEEN LUONNE

Matematiikka OPPIAINEEN LUONNE Matematiikka OPPIAINEEN LUONNE Matematiikka koskettaa elämäämme hyvin monella tavalla. Matematiikka tarjoaa välineitä monien arkisten ja teoreettisten ongelmien hahmottamiseen ja ratkaisuun. Matematiikka

Lisätiedot

KYMPPI-kartoitus. www.opperi.fi

KYMPPI-kartoitus. www.opperi.fi KYMPPI-kartoitus KYMPPI-kartoitus sisältää luonnollisten lukujen ja desimaalilukujen käsitteisiin liittyviä tehtäviä, laskutoimituksia sekä mittayksiköiden muunnoksia. Nämä ovat 10-järjestelmän hallinnan

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Ensimmäisen ja toisen asteen yhtälöt

Ensimmäisen ja toisen asteen yhtälöt Ensimmäisen ja toisen t nimittäjien poistaminen sieventäminen ensimmäisen identtinen yhtälö yhtälö verranto toisen asteen yhtälö korkeamman ristiin kertominen suhde täydellinen toisen ratkaisukaava vaillinainen

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi

MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi Pedagoginen valiokunta 2003 Sisällysluettelo 1. Esipuhe... 3 2. Vanha ja uusi tuntijako ja niiden erot... 4 2.1. Perusopetuksen tuntijako... 4 2.1.1.

Lisätiedot

HUOLTOMATEMATIIKKA 2, MATERIAALI

HUOLTOMATEMATIIKKA 2, MATERIAALI 1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

PERUSKOULUN KURSSIT ENGLANTI. EN 0: Englanti - valinnainen. Ks. oppikirjaluettelo.

PERUSKOULUN KURSSIT ENGLANTI. EN 0: Englanti - valinnainen. Ks. oppikirjaluettelo. ENGLANTI EN 0: Englanti - valinnainen Perehdyttää englannin kielen alkeisiin jokapäiväisissä käyttötilanteissa. UNIT 1-4 englanti maailmankielenä, perheestä kertominen, tervehtiminen, ruoka-aineita, kahvilassa

Lisätiedot

Paraabeli suuntaisia suoria.

Paraabeli suuntaisia suoria. 15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki

Lisätiedot

Savonlinnan normaalikoulu 2010-2011

Savonlinnan normaalikoulu 2010-2011 KÄYTTÄYTYMISEN JA TYÖSKENTELYN ARVIOINTI Oppilaan nimi syntymäaika 1. vuosiluokka 18.12.2010 Oppilaan itsearviointi: Kiitettävästi Hyvin Tyydyttävästi Heikosti Käyttäytyminen oppilas Noudatan hyviä tapoja.

Lisätiedot

Savonlinnan normaalikoulu 2010-2011

Savonlinnan normaalikoulu 2010-2011 KÄYTTÄYTYMISEN JA TYÖSKENTELYN ARVIOINTI Oppilaan nimi 1. vuosiluokka syntymäaika 04.06.2011 Oppilaan itsearviointi: Kiitettävästi Hyvin Tyydyttävästi Heikosti Käyttäytyminen oppilas Noudatan hyviä tapoja.

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2014-2015 MFKA-Kustannus Oy Asememiehenkatu 4, 00520 HELSINKI, puh. 010 322 3162 http://www.mfka.fi

Lisätiedot

Rationaalilauseke ja -funktio

Rationaalilauseke ja -funktio 4.8.07 Rationaalilauseke ja -funktio Määritelmä, rationaalilauseke ja funktio: Kahden polynomin ja osamäärä, 0 on rationaalilauseke, jonka osoittaja on ja nimittäjä. Huomaa, että pelkkä polynomi on myös

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Neeviikuu 5A: opettajan oppaan liitteet

Neeviikuu 5A: opettajan oppaan liitteet Neeviikuu 5A: opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kymmenjärjestelmäalusta 2 2. Lukusuoria 3 3. Lukusuoria 4 4. Lukukortit 5 5. Sataruutu 6 6. Rahat 7 7. Ostokset ja pyramidit 8 8. Tiliote 9 9.

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen 1 FYSIIKKA Fysiikan päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta fysiikan opiskeluun T2 ohjata

Lisätiedot

INFOA: Matematiikan osaaminen lentoon!

INFOA: Matematiikan osaaminen lentoon! 1(5) INFOA: Matematiikan osaaminen lentoon! Ilmaisia koulutuksia! Opetushallitus on myöntänyt Lapin yliopistolle määrärahan koulutushankkeelle Matematiikan osaaminen lentoon: pedagogista ymmärrystä ja

Lisätiedot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot NEUREN TEHTAVAKUVAUKSET kaikki vuosiluokat Arviointi TAITO TEHTAVA TAVOITE LK. TEHTAVAN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen Lukujonotaitojen arviointi1-50 Puuttuvan luvun taydentaminen on,

Lisätiedot

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9 Sisällysluettelo 1 Laskutoimituksia 3 Peruslaskutoimitukset luvuilla 3 Peruslaskutoimitukset polynomeilla 5 Prosentti 7 Prosenteilla vertaaminen 9 Kuvaaminen koordinaatistossa 11 2 Lausekkeesta yhtälöksi

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

2 Toisen asteen polynomifunktio

2 Toisen asteen polynomifunktio Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4.5.017 Toisen asteen polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Merkitään taulukon pisteet koordinaatistoon ja hahmotellaan niiden kautta kulkeva

Lisätiedot

Tehtäväorientoituneisuus. Keskittyminen ja pitkäjänteisyys työskentelyssä. Työn aloittaminen ja loppuun saattaminen.

Tehtäväorientoituneisuus. Keskittyminen ja pitkäjänteisyys työskentelyssä. Työn aloittaminen ja loppuun saattaminen. 1. LK TYÖSKENTELYTAIDOT Mitä sisältää? Millaista hyvä osaaminen? Osaat työskennellä itsenäisesti Tehtäväorientoituneisuus. Keskittyminen ja pitkäjänteisyys työskentelyssä. Työn aloittaminen ja loppuun

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Pisan 2012 tulokset ja johtopäätökset

Pisan 2012 tulokset ja johtopäätökset Pisan 2012 tulokset ja johtopäätökset Jouni Välijärvi, professori Koulutuksen tutkimuslaitos Jyväskylän yliopisto PISA ja opettajankoulutuksen kehittäminen-seminaari Tampere 14.3.2014 17.3.2014 PISA 2012

Lisätiedot

Opetus- suunnitelma. Aittakorven koulu

Opetus- suunnitelma. Aittakorven koulu Opetus- suunnitelma Aittakorven koulu ARVOPOHJA JA TOIMINTA-AJATUS... 4 ARVOPOHJA... 4 TOIMINTA-AJATUS... 5 YLEISET KASVATUKSEN JA OPETUKSEN TAVOITTEET... 5 KIELIOHJELMA... 6 TUNTIJAKO... 6 KOULUN TOIMINTAKULTTUURIN

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

OA5 Yli esteiden Nimi

OA5 Yli esteiden Nimi O5 A Yli esteiden Nimi Kappale 1 1. Täydennä edeltävä ja seuraava luku. 3 999 9 499 5 729 4 001 9 501 5 731 4 000 9 500 5 730 44 999 17 559 20 998 45 001 17 561 21 000 45 000 17 560 20 999 2. Jatka lukujonoja.

Lisätiedot