Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas

Koko: px
Aloita esitys sivulta:

Download "Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas"

Transkriptio

1 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen. Opetuksen tulee kehittää oppilaan luovaa ja täsmällistä ajattelua, ja sen tulee ohjata oppilasta löytämään ja muokkaamaan ongelmia sekä etsimään ratkaisuja niihin. Matematiikan merkitys on nähtävä laajasti se vaikuttaa oppilaan henkiseen kasvamiseen sekä edistää oppilaan tavoitteellista toimintaa ja sosiaalista vuorovaikutusta. Matematiikan opetuksen on edettävä systemaattisesti, ja sen tulee luoda kestävä pohja matematiikan käsitteiden ja rakenteiden omaksumiselle. Konkreettisuus toimii tärkeänä apuvälineenä yhdistettäessä oppilaan kokemuksia ja ajattelujärjestelmiä matematiikan abstraktiin järjestelmään. Arkipäivän tilanteissa eteen tulevia ongelmia, joita on mahdollista ratkoa matemaattisen ajattelun tai toiminnan avulla, tulee hyödyntää tehokkaasti. Tieto- ja viestintätekniikkaa tulee käyttää oppilaan oppimisprosessin tukemisessa. Vuosiluokkien 1 2 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, keskittymisen, kuuntelemisen ja kommunikoinnin harjaannuttaminen sekä kokemusten hankkiminen matemaattisten käsitteiden ja rakenteiden muodostumisen perustaksi. 1. luokka 2. luokka Tavoitteet -kehittyy matemaattisessa ajattelussaan -asennoituu myönteisesti matematiikkaan -oppii keskittymisen, kuuntelemisen ja kommunikoinnin taitoja -saa tyydytystä ja iloa matemaattisten ongelmien ymmärtämisestä ja ratkaisemisesta - oppii käyttämään matemaattisia tietoja ja taitoja arkitilanteissa -oppii käyttämään matemaattisia käsitteitä -ymmärtää luonnollisen luvun käsitteen ja oppii peruslaskutaitoja -oppii perustelemaan ratkaisujaan ja päätelmiään konkreettisin mallein ja välinein, kuvin sekä kirjallisesti ja suullisesti -kehittää hahmottamiskykyään ja havaintojen tekemistään -oppii löytämään ilmiöistä yhtäläisyyksiä, eroja, säännönmukaisuuksia ja syy-seuraussuhteita -kehittyy päässälaskutaidossa sekä tulosten ja määrän arvioinnissa

2 Luvut ja laskutoimitukset -lukualue lukumäärä, lukusana ja numerosymboli -lukujen vertailu, luokittelu, järjestykseen asettaminen, hajottaminen ja kokoaminen konkreettisin välinein, lukuparit -parilliset ja parittomat luvut -kymmenjärjestelmän rakentumisen periaate -yhteen- ja vähennyslasku lukualueella 0-20 sekä laskutoimitusten väliset yhteydet -käsitteet summa ja erotus -eri laskutapojen ja välineiden käyttöä -jakaminen konkreettisilla välineillä -erilaisten ratkaisuvaihtoehtojen lukumäärän tutkimista Algebra -yksinkertaisten lukujonojen tulkitseminen ja merkitseminen -säännonmukaisuuksien, suhteiden ja riippuvuuksien näkeminen kuvista (looginen päättely) Geometria -ympäröivä tilan avaruudellisten suhteiden havainnointi ja kuvailu -ympäristön geometristen muotojen havainnointi, kuvailu ja nimeäminen -kaksiulotteisten muotojen (ympyrä, nelikulmio, kolmio) tunnistaminen, selostaminen, nimeäminen, piirtäminen ja jäljentäminen -kolmiulotteisten kappaleiden tunnistaminen ja rakentaminen -geometriset peruskäsitteet(piste, suora ja jana) -yksinkertaisia peilauksia ja suurennoksia Mittaaminen -mittaamisen periaate -mittavälineiden käyttö: -pituuus(cm ja m) -paino (kg) -aika ( tasatunnit, puolitunnit) -raha ( ) -tärkeimpien mittayksiköiden (myös oma mittayksikkö) käyttö, vertailu ja muuntaminen -mittaustuloksen arviointi Tietojen käsittely ja tilastot -tietojen etsiminen, kerääminen ja tallentaminen -yksinkertaisten taulukoiden ja diagrammien lukeminen -pylväsdiagrammien laatiminen Luvut ja laskutoimitukset -lukualue lukumäärä, lukusana ja numerosymboli -lukujen vertailu, luokittelu, järjestykseen asettaminen, hajottaminen ja kokoaminen konkreettisin välinein, lukuparien kertaus -kymmenjärjestelmän vahvistaminen -yhteen- ja vähennyslasku lukualueella sekä laskutoimitusten väliset yhteydet -allekkain lasku -kertolaskun käsite ja kertotaulut 1-5 -jakolaskua konkreettisin välinein -murtoluvun käsitteen pohjustaminen konkreettisin välinein -laskulausekkeen merkitseminen -eri laskutapojen ja välineiden käyttöä -erilaisten ratkaisuvaihtoehtojen lukumäärän tutkimista Algebra -yksinkertaisten lukujonojen tulkitseminen ja merkitseminen -säännonmukaisuuksien, suhteiden ja riippuvuuksien näkeminen kuvista (looginen päättely) Geometria -ympäröivä tilan avaruudellisten suhteiden havainnointi ja kuvailu -ympäristön geometristen muotojen havainnointi, kuvailu ja nimeäminen -kaksiulotteiset muodot (suorakulmio, monikulmio, neliö) -kolmiulotteisten kappaleiden (pallo, kuutio, lieriö, kartio) tunnistaminen, selostaminen, nimeäminen ja rakentaminen -geometriset peruskäsitteet (piste, jana, murtoviiva, puolisuora, suora ja kulma) -yksinkertaisia peilauksia ja suurennoksia Mittaaminen -mittaamisen periaate -mittavälineiden käyttö -pituus (mm, cm, m ja km), -paino (g ja kg), -tilavuus (dl ja l), -piiri ja pinta-ala -aika (vaille, yli, pistemerkintä, min, h) -raha (, sentit) -tärkeimpien mittayksiköiden (myös oma mittayksikkö) käyttö, vertailu ja muuntaminen -mittaustuloksen arviointi Tietojen käsittely ja tilastot -tietojen etsiminen, kerääminen ja tallentaminen -yksinkertaisten taulukoiden ja diagrammien lukeminen -pylväsdiagrammien laatiminen

3 Esimerkkejä mahdollisista työtavoista -kokeileminen -konkreettisten välineiden käyttö -lukusuora -käytännön tilanteissa toimiminen -pelit -tietokoneohjelmat -kuvan käyttäminen -tarinat -parityöskentely -yhteistoiminnallisia tehtäviä -pysäkkityöskentely -kilpailut ja leikit -haastattelu -yksinkertainen kirjanpito -rakentelu -piirtäminen -värittäminen -mittavälineiden käyttäminen -päättelytehtävät -päässälaskut Kuvaus oppilaan hyvästä osaamisesta 2. luokan päättyessä Ajattelun ja työskentelyn taidot -osoittaa matematiikkaan liittyvien käsitteiden ymmärtämistä käyttämällä niitä ongelmien ratkaisuissa sekä esittämällä ja selittämällä niitä toisille oppilaille ja opettajalle -pystyy tekemään perusteltuja päätelmiä ja selittämään toimintaansa ja osaa esittää ratkaisujaan konkreettisin mallein ja välinein, kuvin, suullisesti ja kirjallisesti -osaa tehdä vertailua, mm. pituusvertailua, ja asettaa asioita järjestykseen, löytää asioille vastakohtia, luokitella asioita eri ominaisuuksien mukaan sekä ilmoittaa esineen sijainnin, esimerkiksi käyttämällä sanoja yläpuolella, alla, oikealla, vasemmalla, takana ja välissä; osaa vertailla joukkojen suuruuksia käyttäen sanoja enemmän, vähemmän, yhtä monta, paljon ja vähän, sekä kirjoittaa ja käyttää vertailun symboleja >, = ja <. Luvut ja laskutoimitukset sekä algebra -tietää lukujen merkityksen määrän ja järjestyksen ilmaisemisessa, lukujen kirjoittamisen ja lukusuoraesityksen -hallitsee lukujen hajottamisen ja yhdistämisen, vertailun, summien ja lukujonojen muodostamisen; tuntee parilliset ja parittomat luvut -tuntee ja ymmärtää kymmenjärjestelmän paikkajärjestelmänä sekä osaa käyttää sitä -ymmärtää yhteen-, vähennys-, kerto- ja jakolaskun sekä osaa soveltaa niitä arkitilanteissa -osaa etsiä ratkaisuvaihtoehtojen lukumäärän yksinkertaisissa tapauksissa -tuntee ja osaa esittää konkreettisilla välineillä yksinkertaisia murtolukuja, kuten yksi kahdesosa, yksi neljäsosa ja yksi kolmasosa. Geometria -tuntee perusmuodot tasokuvioista ja kappaleista, mm. nelikulmio, kolmio, ympyrä, pallo ja kuutio, sekä tietää geometrian peruskäsitteet: piste, jana, murtoviiva, puolisuora, suora ja kulma, ja niiden yhteyden yksinkertaisimpiin tasokuvioihin -osaa käyttää yksinkertaisia peilauksia ja suurennoksia. Mittaaminen -osaa mitata yksinkertaisilla mittavälineillä ja tuntee keskeisimmät suureet, kuten pituus, massa, tilavuus ja aika -osaa havainnoida tarpeellisen informaation yksinkertaisissa arkipäivän ongelmissa ja osaa käyttää matemaattisia tietojaan ja taitojaan niiden ratkaisemiseen.

4 VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen ja peruslaskutoimitusten varmentaminen sekä kokemusten hankkiminen matematiikan käsitteiden ja rakenteiden omaksumisen pohjaksi. Tavoitt eet 3. luokka 4. luokka 5. luokka oppii - käyttämään sääntöjä ja noudattamaan ohjeita - käyttämään matemaattisia käsitteitä - keskittyneeseen ja pitkäjänteiseen työskentelyyn sekä toimimaan ryhmässä. oppii - peruslaskutaitoja ja ratkaisemaan matemaattisia ongelmia - löytämään ilmiöistä yhtäläisyyksiä ja eroja, säännönmukaisuuksia sekä syy-seuraussuhteita. oppii - perustelemaan toimintaansa ja päätelmiään sekä esittämään ratkaisujaan muille - tutkien ja havainnoiden muodostamaan matemaattisia käsitteitä ja käsitejärjestelmiä - esittämään kysymyksiä ja päätelmiä havaintojen pohjalta. Luvut ja laskutoimitukset, algebra 3. luokka 4. luokka 5. luokka -yhteen ja vähennyslaskun -yhteen ja vähennyslaskun kertausta, laskualgoritmeja, kertausta, laskualgoritmeja ja päässälaskuja, laskulauseke päässälaskuja, laskulauseke -luvut , lukujen luokittelua, järjestämistä -kertotaulut kertominen allekkain yksinumeroisella luvulla -luvut , lukujen luokittelua ja järjestämistä, arviointi ja pyöristäminen -kertolaskua: kertotaulut hallintaan, luvut 10, 100, 1000 jne. tulon tekijänä päässälaskuna Allekkain kertominen, kaksinumeroinen kertoja -kertausta ja täydennystä: laskualgoritmeja, sisältöjako, ositusjako ja jaollisuus, päässälaskua, -kymmenjärjestelmä, luvut , tutustuminen 60 järjestelmään, lukujen luokittelua ja järjestämistä -aika: a, kk, d, h, min, s, kelloajat myös pistemerkintänä -pituus mm, cm, dm, m, km - tilavuus l, dl -massa mg, g, kg, t -jakolaskua: sisältö- ja ositusjako, jakojäännös, jakolaskun tarkistaminen, jaollisuus -laskujärjestyksen periaatteen harjoittelua -lausekkeen käsite -aika: a, kk, vk, d, h, min, s, aikataulut -pituus mm, cm, dm, m, km - tilavuus l, dl -massa mg, g, kg, t -jakolaskua: laskujärjestys, jakaminen jakokulmassa yksinumeroinen jakaja, jaollisuus -laskujärjestyksen periaate (sulkeet) -lukujonon tulkitseminen -lausekkeen käsitteen varmistaminen -säännönmukaisuuksia, suhteita ja riippuvuuksia -yhtälöiden ja epäyhtälöiden ratkaisujen etsiminen päättelemällä -negatiivisen kokonaisluvun käsite

5 -vaihdannaisuus ja liitännäisyys -murtoluvut: käsite, samannimiset murtoluvut -desimaaliluvut: -käsite, suuruusvertailu, yhteen ja vähennyslaskua, soveltaminen mittayksiköihin -murtoluvut: sekaluvut, samannimisten murtolukujen yhteen ja vähennyslasku, mittayksiköt murtolukuina -desimaaliluvut: tuhannesosat, yhteen ja vähennyslaskua päässälaskuina, mittayksiköt ja desimaaliluvut, pyöristäminen, kertolaskut päässä ja allekkain, jakolaskut päässä, 10:llä, 100:lla 1000:lla jne. jakaminen, jakokulmassa jako, päättymätön desimaaliluku ja desimaaliluvun ja murtoluvun yhteys -murtoluvut: laventaminen, supistaminen, yhteen ja vähennyslasku, kertominen ja jakaminen luonnollisella luvulla, murtoluvun, desimaaliluvun ja prosentin välinen yhteys -laskutoimitusten tulosten arviointi, tarkistaminen ja pyöristäminen -laskutoimitusten tulosten arviointi, tarkistaminen ja pyöristäminen -arviointia ja päättelyä: pyöristäminen, laskutulosten arviointi ja tarkistaminen -erilaisten vaihtoehtojen lukumäärän tutkiminen, ongelma ja pohdintatehtäviä -erilaisten vaihtoehtojen lukumäärän tutkiminen, ongelmaja pohdintatehtäviä -ongelma ja päättelytehtäviä Kuvaus oppilaan hyvästä osaamisest a 5. luokan päättyessä -ymmärtää kymmenjärjestelmän myös desimaalilukujen osalta ja osaa käyttää sitä varmasti; ymmärtää negatiivisen luvun ja murtoluvun käsitteet sekä osaa esittää niitä eri metodeilla -osaa esittää laskutoimitukset kirjallisesti ja suullisesti ja tietää eri laskutoimitusten väliset yhteydet; osaa etukäteen arvioida tuloksen suuruusluokan ja tehtävän ratkaisemisen jälkeen tarkistaa laskun vaiheet sekä arvioida ratkaisun mielekkyyden -osaa muodostaa ja jatkaa lukujonoja sekä esittää riippuvuuksia.

6 Geometria 3. luokka 4. luokka 5. luokka -symmetria, yhtenevyys -peilauksia suoran ja pisteen suhteen, -peilauksia suoran ja pisteen suhteen konkreetein välinein symmetria, yhtenevyys konkreetein välinein -suurennoksia ja pienennöksiä -erilaisten monikulmioiden tutkimista ja luokittelua -erilaisten monikulmioiden tutkiminen ja luokittelu -piiri -kappaleiden geometristen ominaisuuksien tutkimista -kappaleiden geometristen ominaisuuksien tutkiminen ja luokittelu -ympyrä ja sen osia -yhdensuuntaiset ja kohtisuorat suorat kulmien luokittelu -pinta-ala (nelikulmio) -pinta-ala (suunnikas, kolmio) -yhdenmuotoisuus -mittaamisen periaatteen vahvistaminen -mittatuloksen arviointia ja mittauksen tarkistaminen -yhdensuuntaiset ja kohtisuorat suorat -mittayksiköiden käyttö, vertailua ja muuntamista -mittakaava -kulman mitta Kuvaus oppilaan hyvästä osaamisesta 5.luokan päättyessä: -muodostaa kuvioita annettuja ohjeita noudattaen; havaitsee yksinkertaisten kuvioiden ominaisuuksia sekä tuntee tasokuvioiden käsitteiden muodostamaa rakennetta -tunnistaa yhdenmuotoisuuden; osaa peilata suoran suhteen sekä suurentaa ja pienentää kuvioita annetussa suhteessa; tunnistaa suoran suhteen symmetriset kuviot -ymmärtää mittaamisen periaatteen; osaa arvioida mittauskohteen suuruuden ja tarkastaa mittauksen tuloksen mielekkyyden sekä ilmoittaa mittaustuloksen sopivalla mittayksiköllä -osaa laskea suunnikkaiden ja kolmioiden pinta-aloja ja piirejä Tietojen käsittely ja tilastot sekä todennäköisyys Kuvaus oppilaan hyvästä osaamisesta 5. luokan päättyessä 3. luokka 4. luokka 5. luokka -tietojen etsiminen, kerääminen, -keskiarvon käsite ja -tietojen luokittelu ja järjestäminen, tyyppiarvon tallentaminen ja esittäminen laskeminen ja mediaanin käsitteiden -yksinkertaisten taulukoiden ja -koordinaatisto pohjustaminen diagrammien lukeminen -kokemuksia klassisesta ja tilastollisesta todennäköisyydestä - osaa kerätä tietoja, järjestää, luokitella ja esittää niitä tilastoina; osaa lukea yksinkertaisia taulukoita ja diagrammeja - osaa selvittää erilaisten tapausten ja vaihtoehtojen lukumäärän sekä osaa päätellä mahdottoman ja varman tapauksen.

7 Esimerkkejä mahdollisista työtavoista - yksilö-/ryhmätyöskentely - opettajajohtoinen/oppilaslähtöinen työskentely (tutkiva, kokeileva, ongelmalähtöinen oppiminen) - tietokoneavusteinen työskentely Tavoitteet oppii -ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen -näkemään matematiikan ja reaalimaailman välisiä yhteyksiä -laskutaitoja ja ratkaisemaan matemaattisia ongelmia -loogista ja luovaa ajattelua -soveltamaan erilaisia ajatteluprosesseja -erilaisia menetelmiä tiedon hankintaan -perustelemaan toimintaansa ja päätelmiään -esittämään kysymyksiä ja päätelmiä havaintojen perusteella -näkemään säännönmukaisuuksia -työskentelemään keskittyneesti ja pitkäjänteisesti sekä toimimaan ryhmässä Esimerkkejä työtavoista -itsenäinen työskentely -erilaisten laskutapojen harjoittelua, mm. päässälasku, paperilla lasku, laskimen käyttö -eriyttäminen (esim. eritasoiset tunti- ja kotitehtävät, mahdollisuuksien mukaan joustavat ryhmät tai samanaikaisopetus, tietokoneen opetusohjelmien käyttö, enemmän aikaa kokeen tekemiseen, yksilöidyt koejärjestelyt, koulunkäyntiavustaja) -päättelytehtävät (esim. viikon knoppi ) -tietokone-ohjelmien käyttö opetuksen apuna -havainnollistaminen -pari- tai ryhmätyöt -oppilaat tekevät omia tehtäviä -pelit -rakentelu -projektityöskentely -yhteistyö muiden oppiaineiden kanssa Ajattelun taidot ja menetelmät -loogista ajattelua vaativia toimintoja kuten vertailua, järjestämistä, mittaamista, rakentamista, mallintamista, sääntöjen ja riippuvuuksien etsimistä sekä niiden esittämistä -vertailussa ja riippuvuuksissa tarvittavien käsitteiden tulkinta ja käyttö -matemaattisten tekstien tulkinta ja tuottaminen -todistamisen pohjustaminen: perustellut arvaukset ja kokeilut, systemaattinen yritys ja erehdys -luokittelun ja järjestämisen käyttöä työkaluna -matemaattisten ongelmien ratkaisemista eri menetelmillä -erilaisten lukujonojen tutkimista -ajattelua tukevien piirrosten ja välineiden käyttöä -loogista ajattelua vaativia toimintoja kuten vertailua, järjestämistä, mittaamista, rakentamista, mallintamista, sääntöjen ja riippuvuuksien etsimistä sekä niiden esittämistä -vertailussa ja riippuvuuksissa tarvittavien käsitteiden tulkinta ja käyttö -matemaattisten tekstien tulkinta ja tuottaminen -todistamisen pohjustaminen: perustellut arvaukset ja kokeilut, systemaattinen yritys ja erehdys -luokittelun ja järjestämisen käyttöä työkaluna -matemaattisten ongelmien ratkaisemista eri menetelmillä -ajattelua tukevien piirrosten ja välineiden käyttöä -matematiikan historiaa

8 Luvut ja laskutoimitukset Algebra -luonnolliset luvut, kokonaisluvut -peruslaskutoimitusten varmentaminen -aikalaskut, aikaväli -yksinkertaisia lukujen jaollisuussääntöjä -murtolukujen supistaminen ja laventaminen ja desimaaliluvun esittäminen murtolukuna -kertominen ja jakaminen desimaaliluvuilla ja murtoluvuilla -lausekkeiden sieventäminen -prosenttilasku -pyöristäminen ja arviointi sekä laskimen käyttö -luonnolliset luvut, kokonaisluvut, rationaaliluvut, reaaliluvut -lukusuora -vastaluku, itseisarvo, käänteisluku -peruslaskutoimitusten varmentaminen (päässä, paperilla ja laskimella laskien) -aikalaskuja, aikaväli -murtolukujen supistaminen ja laventaminen -desimaaliluvun esittäminen murtolukuna -kertominen ja jakaminen desimaaliluvuilla ja murtoluvuilla -lausekkeiden sieventäminen (laskujärjestyksen varmentaminen) -pyöristämissäännöt ja tuloksen suuruusluokan arviointi -laskimen käyttö -potenssi, eksponenttina kokonaisluku -juuren käsite ja laskutoimituksia neliöjuurella. -yhtälöiden ja epäyhtälöiden ratkaisujen etsimistä -lauseke ja sen sieventäminen -potenssilauseke ja sen sieventäminen - potenssisäännöt -polynomin käsite, polynomien yhteen- ja vähennyslasku ja kertominen vakiolla -muuttujan arvon sijoittaminen lausekkeeseen Funktiot Geometria -lukuparin esittäminen koordinaatistossa -lukuparin esittäminen koordinaatistossa -kolmioihin ja nelikulmioihin liittyviä käsitteitä -säännölliset monikulmiot -ympyrä ja siihen liittyviä käsitteitä -tasokuvioiden piirin ja pinta-alan laskeminen -kappaleiden nimeäminen ja luokittelu -suorakulmaisen särmiön tilavuuden ja pinta-alan laskeminen -yhdenmuotoisuus ja yhtenevyys -geometrista piirtämistä harppia ja viivainta apuna käyttäen -symmetria suoran ja pisteen suhteen -kulman mittaaminen ja piirtäminen -kolmioihin liittyviä käsitteitä (tasakylkinen, tasasivuinen, kolmion kulmien summa) -nelikulmiot ja säännölliset monikulmiot -ympyrä ja siihen liittyvät käsitteet -tasokuvioiden piirin ja pinta-alan laskeminen -geometrista piirtämistä -kulmien välisiä yhteyksiä -symmetria suoran ja pisteen suhteen -kierto ja siirto tasossa

9 Todennäköisyys ja tilastot -diagrammien tulkintaa ja laadintaa -tietojen kerääminen, muuntaminen ja esittäminen käyttökelpoisessa muodossa. -diagrammien laadintaa ja tulkintaa

10 8. luokka 9. luokka Tavoitteet oppii -ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen -näkemään matematiikan ja reaalimaailman välisiä yhteyksiä -laskutaitoja ja ratkaisemaan matemaattisia ongelmia -loogista ja luovaa ajattelua -soveltamaan erilaisia ajatteluprosesseja -erilaisia menetelmiä tiedon hankintaan -ilmaisemaan ajatuksensa yksiselitteisesti ja perustelemaan toimintaansa ja päätelmiään -esittämään kysymyksiä ja päätelmiä havaintojen perusteella -näkemään säännönmukaisuuksia -työskentelemään keskittyneesti ja pitkäjänteisesti sekä toimimaan ryhmässä. Esimerkkejä työtavoista -itsenäinen työskentely -erilaisten laskutapojen harjoittelua, mm. päässälasku, paperilla lasku, laskimen käyttö -eriyttäminen (esim. eritasoiset tunti- ja kotitehtävät, mahdollisuuksien mukaan joustavat ryhmät tai samanaikaisopetus, tietokoneen opetusohjelmien käyttö, enemmän aikaa kokeen tekemiseen, yksilöidyt koejärjestelyt, koulunkäyntiavustaja) -päättelytehtävät (esim. viikon knoppi ) -tietokone-ohjelmien käyttö opetuksen apuna -havainnollistaminen -pari- tai ryhmätyöt -oppilaat tekevät omia tehtäviä -pelit -rakentelu -projektityöskentely -yhteistyö muiden oppiaineiden kanssa Ajattelun taidot ja menetelmät 8. luokka 9. luokka -loogista ajattelua vaativia toimintoja kuten vertailua, järjestämistä, mittaamista, rakentamista, mallintamista, sääntöjen ja riippuvuuksien etsimistä sekä niiden esittämistä -vertailussa ja riippuvuuksissa tarvittavien käsitteiden tulkinta ja käyttö -matemaattisten tekstien tulkinta ja tuottaminen -luokittelun ja järjestämisen käyttöä työkaluna -matemaattisten ongelmien ratkaisemista eri menetelmillä -ajattelua tukevien piirrosten ja välineiden käyttöä -matematiikan historiaa -loogista ajattelua vaativia toimintoja kuten vertailua, järjestämistä, mittaamista, rakentamista, mallintamista, sääntöjen ja riippuvuuksien etsimistä sekä niiden esittämistä -vertailussa ja riippuvuuksissa tarvittavien käsitteiden tulkinta ja käyttö -matemaattisten tekstien tulkinta ja tuottaminen -luokittelun ja järjestämisen käyttöä työkaluna -matemaattisten ongelmien ratkaisemista eri menetelmillä -ajattelua tukevien piirrosten ja välineiden käyttöä -matematiikan historiaa päättöarvioinnin kriteerit arvosanalle 8 -huomaa eri tapauksien yhtäläisyydet ja säännönmukaisuudet -osaa käyttää puheessaan loogisia elementtejä kuten ja, tai, jos niin, ei, on olemassa, ei ole olemassa -osaa päätellä yksinkertaisten väitelauseiden totuusarvon -osaa muuntaa yksinkertaisen tekstimuodossa olevan ongelman matemaattiseen esitysmuotoon ja tehdä suunnitelman ongelman ratkaisemiseksi, ratkaista sen ja tarkistaa tuloksen oikeellisuuden -osaa käyttää luokittelua matemaattisten ongelmien ratkaisuissa -osaa esittää järjestelmällisesti mahdolliset ratkaisuvaihtoehdot taulukkoa, puu-, polku- tai muuta diagrammia käyttäen

11 Luvut ja laskutoimitukset 8. luokka 9. luokka - alkuluku ja luvun jakaminen alkutekijöihin, - lukujen jaollisuussääntöjä - suhde ja verrannollisuus - pyöristäminen ja arviointi - laskimen käyttö - prosenttikäsitteen vahvistaminen ja prosenttilasku - aikaisemmin opittujen asioiden laajentamista ja soveltamista ottaen oppilaan yksilölliset tarpeet huomioon päättöarvioinnin kriteerit arvosanalle 8 osaa -arvioida mahdollista tulosta sekä laatia suunnitelman laskun ratkaisemisesta ja hänellä on luotettava peruslaskutaito -korottaa luvun potenssiin, jonka eksponenttina on luonnollinen luku ja pystyy jakamaan luvun alkutekijöihinsä -ratkaista tehtäviä, joissa tarvitaan neliöjuurta -käyttää verrantoa, prosenttilaskua ja muita laskutoimituksia arkielämässä eteen tulevien ongelmien ratkaisemisessa. Algebra 8. luokka 9. luokka - polynomi-opin laajennus (mm. vastapolynomi, polynomi kertaa polynomi, yhteisen tekijän erottaminen, polynomin jakolasku) - muuttujan arvon sijoittaminen lausekkeeseen - yhtälön ratkaiseminen - epäyhtälö - vaillinaisen toisen asteen yhtälön ratkaiseminen - suhde ja verranto - lukujonot; aritmeettisten ja geometristen lukujonojen tutkimista. -yhtälöpari ja sen ratkaiseminen algebrallisesti ja graafisesti - yhtälöparin käyttö ongelmanratkaisussa päättöarvioinnin kriteerit arvosanalle 8 osaa -ratkaista ensimmäisen asteen yhtälön -sieventää yksinkertaisia algebrallisia lausekkeita -osaa potenssien laskutoimitukset -muodostaa yksinkertaisesta arkielämään liittyvästä ongelmasta yhtälön ja ratkaista sen algebrallisesti tai päättelemällä -käyttää yhtälöparia yksinkertaisten ongelmien ratkaisemiseen -arvioida tuloksen järkevyyttä sekä tarkastaa ratkaisunsa eri vaiheet.

12 Funktiot 8. luokka 9. luokka päättöarvioinnin kriteerit arvosanalle 8 -riippuvuuden havaitseminen ja sen esittäminen muuttujien avulla -suoraan ja kääntäen verrannollisuus -funktion käsite -yksinkertaisten funktioiden tulkitseminen ja niiden kuvaajien piirtäminen koordinaatistoon -funktionkuvaajan tutkimista: funktion nollakohta, suurin ja pienin arvo, kasvaminen ja väheneminen -funktion määrittelyjoukko ja arvojoukko -suoraan ja kääntäen verrannollisuus. -riippuvuuden havaitseminen ja sen esittäminen muuttujien avulla -osaa määrittää pisteen koordinaatit koordinaatistosta -osaa laatia taulukon lukupareista annetun säännön mukaan -osaa etsiä lineaarisen funktion nollakohdan -osaa jatkaa lukujonoa annetun säännön mukaan ja pystyy kertomaan sanallisesti yleisen säännön annetun lukujonon muodostumisesta -tietää suoran yhtälön kulmakertoimen ja vakion merkityksen; osaa määrittää kahden suoran leikkauspisteen piirtämällä. Geometria 8. luokka 9. luokka -yhdenmuotoisuus ja yhtenevyys -Pythagoraan lause -ympyrän kehän ja pinta-alan laskeminen -kappaleen tilavuuden ja pinta-alan laskeminen -avaruusgeometrian sovelluksia -trigonometriaa ja suorakulmaisen kolmion ratkaiseminen päättöarvioinnin kriteerit arvosanalle 8 osaa -tunnistaa eri geometriset muodot ja tuntee niiden ominaisuudet -soveltaa oppimiansa piirin, pinta-alan ja tilavuuden laskutapoja -käyttää harppia ja viivoitinta yksinkertaisten geometristen konstruktioiden tekemiseen -löytää yhdenmuotoisia ja yhteneviä sekä symmetrisiä kuvioita ja pystyy soveltamaan tätä taitoa kolmioiden ja nelikulmioiden ominaisuuksien tutkimisessa -soveltaa kahden kulman välisiä yhteyksiä yksinkertaisissa tilanteissa -käyttää Pythagoraan lausetta ja trigonometriaa suorakulmaisen kolmion osien ratkaisemiseen -suorittaa mittauksia ja niihin liittyviä laskelmia sekä osaa muuntaa tavanomaisimpia mittayksiköitä.

13 Todennäköisyys ja tilastot 8. luokka 9. luokka päättöarvioinnin kriteerit arvosanalle 8 -todennäköisyyden käsite -frekvenssi ja suhteellinen frekvenssi -aineiston tunnusluvut (keskiarvo, tyyppiarvo ja mediaani) -hajonnan käsite -diagrammien tulkinta -tietojen kerääminen, muuntaminen ja esittäminen käyttökelpoisessa muodossa osaa -määrittää mahdollisten tapausten lukumäärän ja järjestää yksinkertaisen empiirisen tutkimuksen todennäköisyydestä; hän ymmärtää todennäköisyyden ja satunnaisuuden merkityksen arkielämän tilanteissa -lukea erilaisia taulukoita ja diagrammeja ja määrittää annetusta aineistosta frekvenssit, keskiarvon, mediaanin ja tyyppiarvon. Matematiikkaan liittyviä aihekokonaisuuksia: Ihmisenä kasvaminen Viestintä- ja mediataito Osallistuva kansalaisuus ja yrittäjyys Vastuu ympäristöstä, hyvinvoinnista ja kestävästä tulevaisuudesta Turvallisuus ja liikenne Ihminen ja teknologia -opiskelu- ja ajattelun taitojen kehittyminen -pitkäjänteinen ja tavoitteellinen itsensä kehittäminen -toisten huomioon ottaminen, oikeudet, velvollisuudet ja vastuut ryhmässä, erilaisia yhteistoimintatapoja. - mediassa esiintyvien kuvaajien ja taulukoiden tulkinta kriittisesti - taulukoiden ja diagrammien tekeminen - vaalien seuraaminen (mm. äänestysprosentti, puolueiden kannatus jne.) - mielipidekyselyt ja niiden tulosten esittäminen kuvaajien ja taulukoiden avulla -aihekokonaisuutta havainnollistavat tehtävät -koulun ekologiset käytänteet -oman talouden hallinta - liikennemäärien laskenta - pysähtymismatkan laskeminen - alkoholi ja liikenne (promillelaskut) - tietokoneiden käyttö oppimisen apuna (esim. taulukkolaskenta ) - matematiikka osana tutkimustyötä - laskin työvälineenä

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

1 lk Tavoitteet. 2 lk Tavoitteet

1 lk Tavoitteet. 2 lk Tavoitteet MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

Matematiikka. 1. luokka 2. luokka. yksinumeroinen - kaksinumeroinen - lukujonoja, hajottaminen ja kokoaminen kolminumeroinen konkreettisin välinein

Matematiikka. 1. luokka 2. luokka. yksinumeroinen - kaksinumeroinen - lukujonoja, hajottaminen ja kokoaminen kolminumeroinen konkreettisin välinein 40 Matematiikka 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla

LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla 7.2.3. MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot

6. luokka 7. luokka. 6. luokka 7. luokka

6. luokka 7. luokka. 6. luokka 7. luokka VUOSILUOKAT 6-9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on matematiikan osaamisen vahvistaminen ja riittävien perusvalmiuksien tarjoaminen. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti.

7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti. 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Matematiikka. Aineen kuvaus

Matematiikka. Aineen kuvaus Matematiikka Aineen kuvaus Matematiikkaa lähestytään peruskäsitteistä: määrä, muoto ja jatkuva muutos. Matematiikka sovelluksineen palvelee lähes kaikkia eri oppiaineita ja eri elämän- alueita. Matematiikan

Lisätiedot

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään 101 7.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään

Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään 6.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.

Lisätiedot

Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet

Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet 9.2.4. Matematiikka Koulumme matematiikan opetus antaa oppilaalle välineitä ja taitoja ratkaista arkipäivän ongelmia matemaattisen ajattelun avulla. Opetus tarjoaa oppilaalle välineen oppia tunnistamaan

Lisätiedot

MAS- linjan matematiikan kurssit

MAS- linjan matematiikan kurssit Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana. Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5

Lisätiedot

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty )

MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty ) MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty 16.12.2015) Merkitys, arvot ja asenteet T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Lisätiedot

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä 14.4.4 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1)

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1) Lasku-Lassin maatila - Harjoituslista Sivu 1 / 20 Luokka 0-1 Vertailua (Luokka 0-1) 1. Etsi erilainen Kuvavalinta 2. Mikä ei kuulu joukkoon? Kuvavalinta 3. Pitempi, lyhyempi Kuvavalinta 4. Mikä ei kuulu

Lisätiedot

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä MATEMATIIKKA JOENSUUN SEUDUN OPETUSSUUNNITELMASSA Merkitys, arvot ja asenteet Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen

Lisätiedot

MATEMATIIKKA. Oppiaineen tehtävä

MATEMATIIKKA. Oppiaineen tehtävä 1 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku 5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään

Lisätiedot

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa

Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Olemme valinneet opetussuunnitelman perusteiden 2014 tavoitteiden, sisältöjen ja hyvän osaamisen kuvausten pohjalta

Lisätiedot

Rauman normaalikoulun opetussuunnitelma 2016 Matematiikka vuosiluokat 1-9

Rauman normaalikoulun opetussuunnitelma 2016 Matematiikka vuosiluokat 1-9 2016 Matematiikka vuosiluokat 1-9 Rauman normaalikoulun opetussuunnitelma Matematiikka vuosiluokat 1-2 Rauman normaalikoulun matematiikan opetuksen pohjana ovat perusopetuksen opetussuunnitelman perusteiden

Lisätiedot

MATEMATIIKKA/Vuosiluokat 7-9

MATEMATIIKKA/Vuosiluokat 7-9 MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

MATEMATIIKKA 1 2lk. Oppiaineen tehtävä

MATEMATIIKKA 1 2lk. Oppiaineen tehtävä 13.4.4 MATEMATIIKKA 1 2lk Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta

Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta Espoon suomenkielisen perusopetuksen opetussuunnitelma Luvut 13 15 OPPIAINEIDEN OPETUSSUUNNITELMAT Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto,

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 7-9

MATEMATIIKKA VUOSILUOKAT 7-9 MATEMATIIKKA VUOSILUOKAT 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matematiikan opetuksen tehtävänä on vahvistaa matemaattista yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

PII JA OPETUSSUUNNITELMAN PERUSTEET

PII JA OPETUSSUUNNITELMAN PERUSTEET PII JA OPETUSSUUNNITELMAN PERUSTEET Yläkoulun matematiikan oppimateriaali Pii noudattaa uuden opetussuunnitelman perusteita. Sarja tarjoaa kaikille oppijoille oman taitotasonsa mukaisia haasteita ja myönteisiä

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere

MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere MATEMATIIKKA Helsingin normaalilyseo elina.mantere@helsinki.fi OPPIAINEEN TEHTÄVÄ Kehittää loogista, täsmällistä ja luovaa matemaattista ajattelua. Luoda pohja matemaattisten käsitteiden ja rakenteiden

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 3-6

MATEMATIIKKA VUOSILUOKAT 3-6 MATEMATIIKKA VUOSILUOKAT 3-6 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

Matematiikka/ Vuosiluokat 3-6

Matematiikka/ Vuosiluokat 3-6 Matematiikka/ Vuosiluokat 3-6 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys

Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Yksilölliset opintopolut

Yksilölliset opintopolut Yksilölliset opintopolut Maija Koski, opettaja Työhön ja itsenäiseen elämään valmentava opetus ja ohjaus, Valmentava 2, autisminkirjon henkilöille, Pitäjänmäen toimipaikka Opetuksen ja ohjauksen suunnittelu

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

PITKÄ MATEMATIIKKA. Pakolliset kurssit

PITKÄ MATEMATIIKKA. Pakolliset kurssit 13 PITKÄ MATEMATIIKKA Suoritusohje: Pakolliset kurssit suoritetaan numerojärjestyksessä, poikkeuksena kurssi MAA6, jonka voi suorittaa jo kurssin MAA2 jälkeen. Syventävien kurssien suoritusjärjestys mainitaan

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

INFOA: Matematiikan osaaminen lentoon!

INFOA: Matematiikan osaaminen lentoon! 1(5) INFOA: Matematiikan osaaminen lentoon! Ilmaisia koulutuksia! Opetushallitus on myöntänyt Lapin yliopistolle määrärahan koulutushankkeelle Matematiikan osaaminen lentoon: pedagogista ymmärrystä ja

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Neeviikuu 5A: opettajan oppaan liitteet

Neeviikuu 5A: opettajan oppaan liitteet Neeviikuu 5A: opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kymmenjärjestelmäalusta 2 2. Lukusuoria 3 3. Lukusuoria 4 4. Lukukortit 5 5. Sataruutu 6 6. Rahat 7 7. Ostokset ja pyramidit 8 8. Tiliote 9 9.

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot NEUREN TEHTAVAKUVAUKSET kaikki vuosiluokat Arviointi TAITO TEHTAVA TAVOITE LK. TEHTAVAN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen Lukujonotaitojen arviointi1-50 Puuttuvan luvun taydentaminen on,

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

Matematiikka OPPIAINEEN LUONNE

Matematiikka OPPIAINEEN LUONNE Matematiikka OPPIAINEEN LUONNE Matematiikka koskettaa elämäämme hyvin monella tavalla. Matematiikka tarjoaa välineitä monien arkisten ja teoreettisten ongelmien hahmottamiseen ja ratkaisuun. Matematiikka

Lisätiedot

KYMPPI-kartoitus. www.opperi.fi

KYMPPI-kartoitus. www.opperi.fi KYMPPI-kartoitus KYMPPI-kartoitus sisältää luonnollisten lukujen ja desimaalilukujen käsitteisiin liittyviä tehtäviä, laskutoimituksia sekä mittayksiköiden muunnoksia. Nämä ovat 10-järjestelmän hallinnan

Lisätiedot

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Matematiikka tarjoaa välineitä johdonmukaisen ja täsmällisen ajattelun edistämiseen, avaruuden hahmottamiseen sekä käytännön ja

Lisätiedot

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. 5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija

Lisätiedot

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen? LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava

Lisätiedot

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

MATEMATIIKKA VUOSILUOKAT 1-2

MATEMATIIKKA VUOSILUOKAT 1-2 MATEMATIIKKA VUOSILUOKAT 1-2 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Pienoismallien rakentaminen Linnanmäen laitteista

Pienoismallien rakentaminen Linnanmäen laitteista Pienoismallien rakentaminen Linnanmäen laitteista Suunnittelu ja ohjeet: Hannele Ikäheimo ja Leena Kokko Valokuvat: Leena Kokko Pienoismallien rakentaminen Linnanmäen laitteista Suunnittelu ja ohjeet:

Lisätiedot

7.5 Vieraat kielet ENGLANTI A1-KIELI

7.5 Vieraat kielet ENGLANTI A1-KIELI 43 7.5 Vieraat kielet ENGLANTI A1-KIELI EHEYTTÄMINEN JA AIHEKOKONAISUUDET Ihmisenä kasvaminen Vieraan kielen taito edellyttää pitkäjänteistä työskentelyä. Oppilaiden opiskelun yhteydessä keskustellaan

Lisätiedot

MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi

MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi Pedagoginen valiokunta 2003 Sisällysluettelo 1. Esipuhe... 3 2. Vanha ja uusi tuntijako ja niiden erot... 4 2.1. Perusopetuksen tuntijako... 4 2.1.1.

Lisätiedot

Matematiikka/ Vuosiluokat 1-2

Matematiikka/ Vuosiluokat 1-2 Matematiikka/ Vuosiluokat 1-2 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332.

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332. Laudatur MAA ratkaisut kertausharjoituksiin. Polynomit. Vakiotermi 8 Kolmannen asteen termin kerroin, 5 8 = 9, Neljännen asteen termi n kerroin, 8 9, = 7,6 Kysytty polynomi P(a) = 7,6a + 9,a +a + ya +

Lisätiedot

Yykaakoo 3A opettajan oppaan liitteet

Yykaakoo 3A opettajan oppaan liitteet Yykaakoo 3A opettajan oppaan liitteet Kopiontipohjat 1. Oppikirjan liitteet 2 a. Lukukortit 2 3 b. Kertolaskukortit 4 5 c. Jakolaskukortit 6 7 2. Sanakyltit, yhteen- ja vähennyslasku 8 3. YKS-välineet

Lisätiedot

Opetus- suunnitelma. Aittakorven koulu

Opetus- suunnitelma. Aittakorven koulu Opetus- suunnitelma Aittakorven koulu ARVOPOHJA JA TOIMINTA-AJATUS... 4 ARVOPOHJA... 4 TOIMINTA-AJATUS... 5 YLEISET KASVATUKSEN JA OPETUKSEN TAVOITTEET... 5 KIELIOHJELMA... 6 TUNTIJAKO... 6 KOULUN TOIMINTAKULTTUURIN

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen 1 FYSIIKKA Fysiikan päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Merkitys, arvot ja asenteet T1 kannustaa ja innostaa oppilasta fysiikan opiskeluun T2 ohjata

Lisätiedot

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9 Sisällysluettelo 1 Laskutoimituksia 3 Peruslaskutoimitukset luvuilla 3 Peruslaskutoimitukset polynomeilla 5 Prosentti 7 Prosenteilla vertaaminen 9 Kuvaaminen koordinaatistossa 11 2 Lausekkeesta yhtälöksi

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

Kotostartti. Kiintiöpakolaiset. Tavoite: antaa perustietoja ja taitoja Suomesta ja tutustuttaa suomen kieleen

Kotostartti. Kiintiöpakolaiset. Tavoite: antaa perustietoja ja taitoja Suomesta ja tutustuttaa suomen kieleen 2009-2013 Kotostartti Kiintiöpakolaiset Tavoite: antaa perustietoja ja taitoja Suomesta ja tutustuttaa suomen kieleen Mahdollistaa nopean ja tehokkaan kotoutumisprosessin aloituksen Kotostartti Materiaali:

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

Siilinjärven OPS-veso / Marja Rytivaara TAVOITTEENA LAAJA-ALAINEN OSAAMINEN

Siilinjärven OPS-veso / Marja Rytivaara TAVOITTEENA LAAJA-ALAINEN OSAAMINEN Siilinjärven OPS-veso / Marja Rytivaara TAVOITTEENA LAAJA-ALAINEN OSAAMINEN 19.4.2016 Laaja-alainen osaaminen Tietojen, taitojen, arvojen, asenteiden ja tahdon muodostama kokonaisuus Kykyä käyttää tietoja

Lisätiedot