10. Painotetut graafit

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "10. Painotetut graafit"

Transkriptio

1 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä on monesti hyödyllistä tietää nopein tietoliikenneyhteys eri pisteiden välillä tämähän riippuu mm., mitä teknologiaa käyttäen yhteydet on rakennettu. Maantieverkossa merkitsevät konkreettiset etäisyydet. Näitä, kuten lukemattomia muitakin, voidaan esittää painotettuina graafeina (weighted graph), joista on lentoreittiesimerkki kuvassa Jokaiseen kaareen e = (u,v) liitetään painoarvo (tässä kokonaisluku) w(e). Tässä luvussa pohditaan painotettuihin graafeihin liittyviä lyhimmän polun ongelmaa ja minimivirittävien puiden ongelmaa Kuva Esimerkki painotetusta graafista, jossa solmut ovat lentokenttiä ja kaaret on painotettu niiden välisillä etäisyyksillä maileissa. 10. luku luku Lyhimmät polut Olkoon G = (V,E) painotettu graafi, missä V on solmujen joukko ja E kaarien joukko. Määritellään G:ssä polun P = ( (v 1, v 2 ), (v 2, v 3 ), (v 3, v 4 ),, (v k 1, v k )) pituus tai paino tai kustannus (length, weight, cost) polun kaarien painojen summana: k 1 = i+ i= 1 w( P) w(( v i, v 1)). Ahne menetelmä Esitetään ahne lähestymistapa yhden lähtösolmun lyhimmän polun (single source shortest path) ongelmaan, jossa etsitään lyhin polku lähtien aloitusolmusta v jokaiseen muuhun graafin solmuun. Esitettävä menetelmä on tavallaan painotetun graafin leveyshaku. Ahne menetelmä kasvattaa iteratiivisesti solmujen pilveä lähtien aloitussolmusta. Kullakin iteraatiolla valitaan seuraava pilven ulkopuolinen, lähin solmu, joka lisätään pilveen. Tätä toistetaan, kunnes kaikki solmut on lisätty, jolloin on olemassa polku aloitussolmusta kaikkiin muihin. Määritellään etäisyys (distance) d(v,u) graafin G solmusta v solmuun u näiden välisen lyhimmän polun pituutena edellyttäen, että sellainen polku on olemassa (jos ei ole, voidaan merkitä äärettömäksi). Yleensä painot ilmaistaan ei negatiivisina lukuina. Negatiivisiakin voidaan erikoismerkityksissä joskus soveltaa, mutta ne aiheuttavat omat rajoituksensa eikä tässä käsitellä niitä. 10. luku 509 Lähestymistapa perustuu ahneeseen (greedy method) algoritmien suunnittelumenetelmään. Se soveltuu yleisesti tilanteessa, jossa yritetään optimoida jotakin funktiota yli kohteiden kokoelman tässä funktio on lyhimmän polun etäisyys. Perusajatuksena on lisätä yksi kerrallaan valiten se niin, että saadaan funktion optimiarvoa. 10. luku 510

2 Yhden lähtösolmun lyhimmän polun ongelman tapauksessa ahne menetelmä tuottaa täysin oikein (optimiarvon antavan) toimivan algoritmin, nk. Dijkstran algoritmin (Dijkstra s algorithm). Sovellettaessa ahnetta menetelmää johonkin toiseen ongelmaan se ei välttämättä anna optimaalista tulosta, vaan lähes parhaan. Tällainen on mm. kauppamatkustajan ongelma (travelling salesman problem), jossa etsitään lyhintä polkua, kun pitää käydä kaikki graafin solmut tarkalleen kerran. Dijkstran algoritmin toteutus Käytetään eräässä mielessä etäisyysfunktion approksimaatiota, josta lopulta päästään todelliseen etäisyyteen. Määritellään jokaiselle V:n solmulle u D[u] approksimoiduksi etäisyydeksi solmusta v. D[u] käsittää kulloinkin parhaimman löydetyn polun eli kyseisellä hetkellä lyhimmän. Aluksi jokaiselle solmulle u v määritellään D[v] = 0 ja D[u] = +. Määritellään solmujen joukko C, pilvi, aluksi tyhjäksi. Ensimmäisenä iteraationa asetetaan aloitussolmu v joukkoon C. Seuraavilla iteraatioilla valitaan pienin D[u], kun u ei ole vielä joukossa, ja siirretään u joukkoon C. Tämän yhteydessä päivitetään kaikkien sellaisten solmujen z etäisyydet, jotka solmut ovat u:n vierekkäisiä ja eivät ole vielä joukossa C. Tämä kuvaa sitä, että voi olla uusi lyhyempi polku solmuun z kuin tähän asti tunnettu lyhin. Tämä päivitysoperaatio on relaksaatio (relaxation), sillä se tarkastaa, voidaanko vanhaa estimaattia parantaa lähemmäksi todellista arvoaan (minimietäisyyttä). Kaaren relaksaatio operaatio on nyt: if D[u] + w((u,z)) < D[z] then D[z] D[u] + w((u,z)) Pseudokoodi Dijkstran algoritmia varten on koodina 10.1., ja sitä havainnollistetaan kuvassa luku luku 512 Algorithm ShortestPath(G,v): Input: Painotettu graafi G ja tästä aloitussolmu v. Output: Jokaiselle solmulle u arvo D[u], missä D[u] on lyhimmän polun pituus solmusta v solmuun u graafissa. alustetaan arvot D[v] = 0 ja D[u] = + jokaiselle solmulle u v olkoon Q prioriteettijono, joka käsittää kaikki graafin G solmut ja jossa avaimina ovat arvot D while Q do {valitaan u pilveen C} u Q.removeMinElement() for jokaiselle u:n vierekkäiselle solmulle z prioriteettijonosta Q do {suoritetaan relaksaatio operaatio kaarelle (u,z)} if D[u] + w((u,z)) < D[z] then D[z] D[u] + w((u,z)) vaihdetaan z:n avainarvo Q:sta uudeksi arvoksi D[z] return jokaisen solmun u arvo D[u] Koodi (alku) Dijkstran algoritmin pseudokoodi. Prioriteettijonossa Q ovat ne solmut, jotka eivät ole vielä pilvessä C. Koodi (loppu) Dijkstran algoritmin pseudokoodi. Prioriteettijonossa Q ovat ne solmut, jotka eivät ole vielä pilvessä C. 10. luku luku 514

3 Kuva (alku) Dijkstran algoritmin suoritus. Solmun viereinen arvo on D[v] (suorakaiteessa). (a) Kuva (jatkoa) Löydetty lyhin polku on piirretty paksulla nuolella. Pilven ulkopuoliset, viereiset solmut osoitetaan paksulla kaarella, kun näille on löydetty nykyinen (paras) kaari. (b) 10. luku luku (c) (d) 328 Kuva (jatkoa) Kuva (jatkoa) 10. luku luku 518

4 (e) (f) 328 Kuva (jatkoa) Kuva (jatkoa) 10. luku luku (g) (h) 328 Kuva (jatkoa) Kuva (jatkoa) 10. luku luku 522

5 (i) (j) 328 Kuva (jatkoa) Kuva (loppu) 10. luku luku 524 Miksi Dijkstran algoritmi toimii halutulla tavalla? Perusteena on se, että solmuun u liitetty arvo D[u] päivitetään asianmukaisesti ja valittaessa juuri solmu u pilveen C mukaan se poistetaan samalla prioriteettijonosta Q. Seuraava lause, jonka perustelu sivuutetaan, kiteyttää olennaisimman. Lause Otettaessa solmu u mukaan pilveen C arvo D[u] on yhtä suuri kuin d(v,u), lyhin polku solmusta v solmuun u. Tämä pitää paikkansa jokaiselle graafin G solmulle u. Dijkstran algoritmi kuvattiin melko abstraktilla tasolla. Täten sen suoritusaika riippuu määrätyn yksityiskohdan, prioriteettijono, toteutuksesta. Graafi G on mielekästä toteuttaa vierekkyyslistana, koska tällöin päästään nopeasti vierekkäisiin solmuihin (suoraan suhteessa näiden määrään) relaksaatio operaation aikana. Dijkstran algoritmin suoritusaikojen käsittely on hieman pitkällinen, joten todetaan vain yhteenvedonomaisesti seuraavat seikat. Jos prioriteettijono toteutetaan eräin erikoisominaisuuksin (ei selosteta tällä kurssilla) varustettuna kekona (heap), saadaan pahimman tapauksen suoritusajaksi O((n + m) log n), missä n on solmujen ja m kaarien määrä. Tulos voidaan esittää pelkästään solmujen määrän n funktiona muodossa O(n 2 log n). Toteutettaessa prioriteettijono järjestämättömänä sekvenssinä eräät sen operaatiot mahdollistavat niiden nopean käytön, jolloin suoritusaika on O(n 2 + m). Tämä voidaan muokata muotoon O(n 2 ). Huolimatta näistä tuloksista keko on monesti parempi, jos kaarien lukumäärä verrattuna solmujen määrään ei ole suuri. Myös keskimääräisen suoritusajan tilanteessa keko on monesti käytännössä parempi. 10. luku luku 526

6 10.2. Minimivirittävät puut Olkoon esimerkkinä rakennuksen tietokoneiden yhdistäminen kaapelein käyttäen kaapelia minimimäärän. Tätä voidaan mallintaa painotetun graafin ongelmana laatimalla graafi G, jossa jokainen solmu vastaa tietokonetta ja määrätään paino w((v,u)) kaarelle (v,u). Paino vastaa tarvittua kaapelia yhdistämään solmu v solmuun u. Nyt ei ole kysymys lyhimmän polun laskemisesta jostakin tietystä solmusta lähtien, vaan halutaan muodostaa puu T, joka sisältää kaikki G:n solmut ja jolla on pienin painojen summa w( T ) = w(( v, u)) ( v, u) T kaikkien mahdollisten tällaisten puiden joukosta. Esitetään kaksi ahnetta algoritmia minimivirittävän puun klassista ongelmaa varten. Ennen näitä tarkastellaan kuitenkin oheista lausetta ja siihen liittyvää kuvaa Lause Olkoon G = (V, E) painotettu yhdistetty graafi. Olkoot V 1 ja V 2 kaksi erillistä, ei tyhjää joukkoa sekä lisäksi V =V 1 V 2. Olkoon vielä eg:n kaari, kun tämä on yksi sellaisista, joiden toinen pää on joukossa V 1 ja toinen joukossa V 2. Silloin on minimivirittävä puu T, jolla on e yhtenä kaaristaan ( siltakaari ). Puu, joka käsittää kaikki G:n solmut, on virittävä puu (spanning tree), kuten aiemmin on mainittu. Pienimmän painojen summan käsittävä virittävä puu on minimivirittävä puu (minimum spanning tree, MST) 10. luku 527 Perustelu sivuutetaan. 10. luku 528 Kruskalin algoritmi e minimipainoinen siltakaari Edellistä lausetta käytetään perustana minimivirittävän puun muodostamisessa. Kruskalin algoritmissa sellainen muodostetaan klustereista eli rypäistä. Aluksi kukin solmu muodostaa oman erillisen klusterinsa. Algoritmi käy kaaret läpi kasvavassa painojärjestyksessä. Jos kaari e yhdistää kaksi erillistä klusteria, e lisätään minimivirittävää puuta muodostavaan kaarien joukkoon ja kyseiset klusterit yhdistetään e:llä yhdeksi klusteriksi. Jos toisaalta e yhdistää kaksi jo samassa klusterissa olevaa solmua, e hylätään. Kun kaaria on lisätty tarpeeksi, jotta minimivirittävä puu on syntynyt, algoritmin suoritus päättyy. Kruskalin algoritmi on koodina Kuva esittää algoritmin toimintaa. Kuva Askel minimivirittävän puun muodostamisesta. 10. luku luku 530

7 Algorithm Kruskal(G): Input: yhdistetty painotettu graafi G, jossa on n solmua ja m kaarta Output: graafin G minimivirittävä puu T for jokaiselle G:n solmulle v do määritellään klusteri C(v) {v} alustetaan prioriteettijono Q käsittämään kaikki G:n kaaret käyttäen painoja avaimina T {lopuksi T sisältää minimivirittävän puun kaaret} while Q do poistetaan Q:sta kaari (v,u), jonka paino on pienin olkoon C(v) solmun v sisältävä klusteri ja olkoon C(u) solmun u sisältävä klusteri if C(v) C(u) then lisätään kaari (v,u) puuhun T yhdistetään C(v) ja C(u) yhdeksi klusteriksi eli näiden unioniksi return puu T (a) 849 Kuva (alku) Kruskalin algoritmin toiminnasta esimerkki: (a) alkutilanteen klusterit on merkitty taustavärillä. Koodi Kruskalin algoritmi. 10. luku luku 532 (b) (c) Puuhun käytetty kaari on merkitty vahvennettuna. 10. luku luku 534

8 (d) (e) 10. luku luku 536 (f) (g) Hylätyt kaaret esitetään katkoviivoina. 10. luku luku 538

9 (h) (i) 10. luku luku 540 (j) (k) 10. luku luku 542

10 (l) (m) 10. luku luku 544 Kuva (loppu) (n) 10. luku 545 Ei perehdytä Kruskalin algoritmin perusteisiin tätä enempää, mutta oletetaan prioriteettijonon toteutetun kekona. Tällöin suoritusaika on seuraavan lauseen mukainen. Lause Annetun yhdistetyn painotetun graafin G sisältäessä n solmua ja m kaarta Kruskalin algoritmi etsii siitä minimivirittävän puun ajassa O(m log n). Prim Jarnik algoritmi Tässä algoritmissa, josta käytetään useimmin nimitystä Primin algoritmi, minimivirittävää puuta kasvatetaan yhden solmun klusterista, joka käsittää aluksi juurisolmun v. Sen idea muistuttaa Dijkstran algoritmia. Aloitetaan solmusta v. Tätä C:tä kasvatetaan määräämällä jokaisella iteraatiolla kaari e = (v,u), jonka paino on pienin sekä jonka solmu v on C:ssä ja solmu u tämän ulkopuolella. Solmu u otetaan C:hen mukaan. Prosessia toistetaan, kunnes minimivirittävä puu on muodostunut. Taas ylläpidetään solmua varten arvoa D[u], joka käsittää ko. hetkellä parhaimman kaaren painon liitettäessä solmua u C:hen. 10. luku 546

11 Algoritmi esitetään pseudokoodina (koodi 10.3) ja toiminta kuvana Algorithm PrimJarnik(G): Input: painotettu yhdistetty graafi G, jossa on n solmua ja m kaarta Output: G:n minimivirittävä puu T Otetaan jokin solmu vg:stä D[v] 0 for jokaiselle solmulle u v do D[u] + alustetaan T alustetaan prioriteettijono Q, jonka avaimet ovat D:n arvot ja alkiot solmu kaari parit lisätään pari (v, ) Q:hun prioriteetilla D[v] while Q do (u,e) Q.removeMinElement() lisätään solmu u ja kaari e puuhun T for jokaiselle solmun u vierekkäiselle solmulle z, joka on Q:ssa do {suoritetaan relaksaatio operaatio kaarelle (u,z)} if w((u,z)) < D[z] then D[z] w((u,z)) vaihdetaan z:aan liittyvä kaari Q:sta kaareksi (u,z) return puu T Koodi (loppu) Prim Jarnik algoritmi minimivirittävän puun etsimiseksi. Koodi (alku) Prim Jarnik algoritmi minimivirittävän puun etsimiseksi. 10. luku luku (a) (b) Kuva (alku) Prim Jarnik algoritmin toiminnasta esimerkki. 10. luku luku 550

12 (c) (d) 10. luku luku 552 (e) (f) 10. luku luku 554

13 (g) (h) 10. luku luku 556 (i) (j) Kuva (loppu) 10. luku luku 558

14 Algoritmin suoritusaika on samaa luokkaa kuin Kruskalin, mikä mainitaan perusteluitta. Tämä edellyttää prioriteetijonon toteutusta kekona. Lause Olkoot yhdistetyssä painotetussa graafissa G solmujen määrä n ja kaarien määrä m. Prim Jarnik algoritmi löytää minimivirittävän puun G:lle ajassa O(m log n). Algoritmia on mahdollista edelleen tehostaa prioriteettijonoa tehostamalla, jolloin se toimii ajassa O(n log n + m) (kaarien määrä on siis yleensä olennaisesti suurempi kuin solmujen; vrt. lause 9.3.). 10. luku 559

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Pienin virittävä puu (minimum spanning tree)

Pienin virittävä puu (minimum spanning tree) Pienin virittävä puu (minimum spanning tree) Jatkossa puu tarkoittaa vapaata puuta (ks. s. 11) eli suuntaamatonta verkkoa, joka on yhtenäinen: minkä tahansa kahden solmun välillä on polku syklitön: minkä

Lisätiedot

Graafin virittävä puu 1 / 20

Graafin virittävä puu 1 / 20 Graafin virittävä puu 1 / 20 Graafin virittävä puu PuuT on graafingvirittävä puu (spanning tree), jos se sisältää kaikkig:n pisteet. Virittäviä puita: 2 / 20 Yhdistämisongelma Yhdistämisongelma:(Connector

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT GRAAFITEHTÄVIÄ JA -ALGORITMEJA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) GRAAFIN LÄPIKÄYMINEN Perusta useimmille

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

8. Lajittelu, joukot ja valinta

8. Lajittelu, joukot ja valinta 8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 4 3.4.017 Tehtävä 1 Tarkastellaan harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä

Lisätiedot

Verkon virittävät puut

Verkon virittävät puut Verkon virittävät puut Olkoon G = (V, E) suuntaamaton yhtenäinen verkko verkon yhtenäisyydellä tarkoitamme että kaikki verkon solmut ovat saavutettavissa toisistaan, eli verkossa ei ole erillisiä osia

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Tietorakenteet ja algoritmit. Verkot. Ari Korhonen

Tietorakenteet ja algoritmit. Verkot. Ari Korhonen Tietorakenteet ja algoritmit Verkot Ari Korhonen 1 10. VERKOT ( graphs ) 10.1 Yleistä 10.2 Terminologiaa 10.3 Verkon esittäminen 10.4 Verkon läpikäyntialgoritmit (graph traversal) 10.5 Painotetut verkot

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus

Lisätiedot

9. Graafit. 9.1. Graafin abstrakti tietotyyppi

9. Graafit. 9.1. Graafin abstrakti tietotyyppi 9. Graafit Graafeilla eli verkoilla esitetään yhteystietoja. Esimerkkejä niistä ovat kaupunkikartan kadut ja tietoverkon tietokoneet. Tämä luku tarkastelee verkkojen perusasioita. 9.1. Graafin abstrakti

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla?

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla? 7.7. Tasograafit Graafi voidaan piirtää mielivaltaisen monella tavalla. Graafin ominaisuudet voivat näkyä selkeästi jossain piirtämistavoissa, mutta ei toisessa. Eräs tärkeä graafiryhmä, pintagraafit,

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Algoritmit 2. Luento 8 Ke 13.4.2016. Timo Männikkö

Algoritmit 2. Luento 8 Ke 13.4.2016. Timo Männikkö Algoritmit 2 Luento 8 Ke 13.4.2016 Timo Männikkö Luento 8 Rekursioyhtälöt Master-lause Lähin pistepari Ahne menetelmä Lyhin virittävä puu Kruskalin menetelmä Primin menetelmä Merkkitiedon tiivistäminen

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Harjoitus 4 (7.4.2014)

Harjoitus 4 (7.4.2014) Harjoitus 4 (7.4.2014) Tehtävä 1 Tarkastellaan Harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä solmusta

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

0 v i v j / E, M ij = 1 v i v j E.

0 v i v j / E, M ij = 1 v i v j E. Vieruspistematriisi Graafi esitetään tietokoneessa useimmiten matriisin avulla. Graafin G = (V, E), V = {v 1, v 2,..., v n } vieruspistematriisi (adjacency matrix)on n n matriisi M = (M ij ), missä n on

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen. Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä

Lisätiedot

7.4. Eulerin graafit 1 / 22

7.4. Eulerin graafit 1 / 22 7.4. Eulerin graafit 1 / 22 Viivojen läpikäynti Graafin pisteiden/viivojen läpikäyminen esiintyy usein sovelluksissa: Etsintäalgoritmit, reititykset Läpikäyminen tehdään nopeimmin, kun yhtäkään viivaa/pistettä

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

6. Approksimointialgoritmit

6. Approksimointialgoritmit 6. Approksimointialgoritmit Tässä luvussa käsitellään lyhyesti approksimointiin liittyvät peruskäsitteet ja joitain keskeisiä approksimoituvuustuloksia. Tavoitteena on, että opiskelija näkee approksimointialgoritmien

Lisätiedot

811312A Tietorakenteet ja algoritmit V Verkkojen algoritmeja Osa1 : Leveys- ja syvyyshaku

811312A Tietorakenteet ja algoritmit V Verkkojen algoritmeja Osa1 : Leveys- ja syvyyshaku 811312A Tietorakenteet ja algoritmit 2016-2017 V Verkkojen algoritmeja Osa1 : Leveys- ja syvyyshaku Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi 811312A

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Silmukkaoptimoinnista

Silmukkaoptimoinnista sta TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 6: Verkkoteoria Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Verkkojen peruskäsitteitä Motivaatiota (...) networks may

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

Itsestabilointi: perusmääritelmiä ja klassisia tuloksia

Itsestabilointi: perusmääritelmiä ja klassisia tuloksia Itsestabilointi: perusmääritelmiä ja klassisia tuloksia Jukka Suomela Hajautettujen algoritmien seminaari 12.10.2007 Hajautetut järjestelmät Ei enää voida lähteä oletuksesta, että kaikki toimii ja mikään

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla.

Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. 4.2 Fibonacci-kasat Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. Pääsiallinen ero on, että paljon Decrease-Key-operaatioita sisältävät jonot nopeutuvat. Primin algoritmi pienimmälle

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

3.4 Peruutus (backtracking)

3.4 Peruutus (backtracking) 3.4 Peruutus (backtracking) Tarkastellaan kahta esimerkkiongelmaa: Kahdeksan kuningattaren ongelma: sijoitettava 8 8 ruudun pelilaudalle 8 nappulaa siten, että millekään vaaka-, pysty- tai viistoriville

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007 Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Lyhin kahden solmun välinen polku

Lyhin kahden solmun välinen polku Lyhin kahden solmun välinen polku Haluamme etsiä lyhimmän polun alla olevan ruudukon kohdasta a kohtaan b vierekkäisten (toistensa sivuilla, ylä- ja alapuolella olevien) valkoisten ruutujen välinen etäisyys

Lisätiedot

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan. 5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Tutki ja kirjoita -kurssi, s-2005

Tutki ja kirjoita -kurssi, s-2005 Teoreettisen tutkimuksen raportoinnista Tutki ja kirjoita -kurssi, s-2005 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Teoreettisen tutkimuksen raportoinnista p.1/14 Sisältö Algoritmisten

Lisätiedot

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl.

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl. iskreetti matematiikka, syksy 00 arjoitus, ratkaisuista. seta 8 nollaa ja 8 ykköstä renkaaksi niin, että jokainen yhdistelmä 0000, 000,..., esiintyy täsmälleen kerran. Vihje: Tulkitse de ruijnin jonon

Lisätiedot

Muuttujien roolit Kiintoarvo cin >> r;

Muuttujien roolit Kiintoarvo cin >> r; Muuttujien roolit Muuttujilla on ohjelmissa eräitä tyypillisiä käyttötapoja, joita kutsutaan muuttujien rooleiksi. Esimerkiksi muuttuja, jonka arvoa ei muuteta enää kertaakaan muuttujan alustamisen jälkeen,

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot