S-114.250 Laskennallisen tieteen erikoiskurssi. Antti Kuronen Teknillinen korkeakoulu Laskennallisen tekniikan laboratorio PL 9400 02015 TKK



Samankaltaiset tiedostot
S Laskennallisen tieteen erikoiskurssi. Antti Kuronen Teknillinen korkeakoulu Laskennallisen tekniikan laboratorio PL TKK

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

FYSA242 Statistinen fysiikka, Harjoitustentti

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

6. Yhteenvetoa kurssista

8. Klassinen ideaalikaasu

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

3. Simulaatioiden statistiikka ja data-analyysi

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Kvanttimekaniikan tulkinta

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Moniulotteisia todennäköisyysjakaumia

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Jatkuvat satunnaismuuttujat

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

Satunnaislukujen generointi

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Integrointialgoritmit molekyylidynamiikassa

Suurkanoninen joukko

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

ABHELSINKI UNIVERSITY OF TECHNOLOGY

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

4. laskuharjoituskierros, vko 7, ratkaisut

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

PHYS-A0120 Termodynamiikka syksy 2016

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

PHYS-A0120 Termodynamiikka syksy 2017

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

1 Eksergia ja termodynaamiset potentiaalit

Harjoitus 2: Matlab - Statistical Toolbox

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH ) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Kvanttifysiikan perusteet 2017

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

The Metropolis-Hastings Algorithm

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Sovellettu todennäköisyyslaskenta B

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

6. laskuharjoitusten vastaukset (viikot 10 11)

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Markov-ketjut pitkällä aikavälillä

Suurkanoninen joukko

MS-A0004/A0006 Matriisilaskenta

Sovellettu todennäköisyyslaskenta B

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

Luento 2: Liikkeen kuvausta


Aikariippuva Schrödingerin yhtälö

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

Mat Sovellettu todennäköisyyslasku A

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Mat Sovellettu todennäköisyyslasku A

Martingaalit ja informaatioprosessit

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

H7 Malliratkaisut - Tehtävä 1

Osittaisdifferentiaaliyhtälöt

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

V ar(m n ) = V ar(x i ).

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

S Fysiikka III (EST) Tentti ja välikoeuusinta

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

Normaalijakaumasta johdettuja jakaumia

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

766334A Ydin- ja hiukkasfysiikka

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Inversio-ongelmien laskennallinen peruskurssi Luento 7

9. Tila-avaruusmallit

D ( ) E( ) E( ) 2.917

Satunnaismuuttujien muunnokset ja niiden jakaumat

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

Matematiikan tukikurssi, kurssikerta 3

Transkriptio:

S-114250 Laskennallisen tieteen erikoiskurssi Antti Kuronen Teknillinen korkeakoulu Laskennallisen tekniikan laboratorio PL 9400 02015 TKK maaliskuu 2000

i Esittely iii Materiaalia iii Esitiedot ja edellytykset iv Yleistä 1 Fysiikan tietokonesimulaatioista 1 Deterministiset ja stokastiset simulaatiomenetelmät 2 Monte Carlo -menetelmän historiasta 5 Esimerkkejä sovellutuksista 6 Statistista fysiikkaa 10 Faasiavaruus 10 Ensemblet 12 Makroskooppisten suureiden laskeminen 17 Todennäköisyyslaskentaa 20 Yleistä 20 Tärkeimmät todennäköisyysjakaumat 23 Ajasta riippuvat ilmiöt 25 Metropoliksen Monte Carlo 35 Monte Carlo -integrointi 35 Metropolis-algoritmi 38 Metropolis-algoritmin parannuksia 49 Monte Carlo -simulaatiot eri ensembleissä 57 Yleistä 57 Mikrokanoninen ensemble 57 Vakiopaine-ensemble 58 Suurkanoninen ensemble 63 Simulaatio-ohjelma käytännössä 71 Reunaehdot 71 Potentiaalienergian laskeminen 74 Pitkän kantaman potentiaalit 78 Alkuehdot 83 Tulosten analysoinnista 85 Satunnaisluvuista 91 Tasaisesti jakautuneiden satunnaislukujen generointi 91 Erilaiset sartunnaislukujakaumat 100 Atomien välisistä vuorovaikutuspotentiaaleista 105 Yleistä 105 Idealisoidut potentiaalit 106 Redusoidut yksiköt 109 Realistiset potentiaalit 110 Tasapainosimulaatioiden sovellutuksia 115 Tilanyhtälö ja faasitasapaino 115 Faasitasapainon simulointi 121 Ajasta riippuvien ilmiöiden simulointi 128 Yleistä 128 Säteilyn kulkeutumisen simulointi 129 Varaustenkuljettajien kulkeutuminen puolijohdemateriaaleissa 143

ii Kineettinen Monte Carlo 144 Yleistä 144 Pinnan kasvu ja pintadiffuusio 149 Van der Waalsin tilanyhtälö 167

iii Esittely Kurssi S-114250 Laskennallisen tieteen erikoiskurssi kuuluu laskennallisen tekniikan pää/sivuaineen vaihtoehtoisiin opintoihin Kurssin laajuus on 4opintoviikkoa ja suoritus koostuu harjoituksista (osuus loppuarvosanassa 40%) ja lopputyöstä (60%) Kevätlukukaudella 2000 luennoitsijana toimii tutkija Antti Kuronen Laskennallisen tekniikan laboratorio puh 451 4846 e-mail AnttiKuronen@hutfi Lukujärjestys on seuraavanlainen: luennot: harjoitukset: ma klo 10-12 sali H402 ke klo 10-12 sali H402 pe klo 12-14 sali S3 ma klo 12-14 sali H402 Päämääränä on perehdyttää opiskelija stokastisiin ja jonkin verran myös deterministisiin simulointimenetelmiin ja niiden soveltamiseen fysikaalisten ilmiöiden tutkimisessa Materiaalia Tärkein materiaali on kurssin luentomoniste, jotka on käsissäsi Muuta materiaalia ja viitteitä löydät kurssin kotisivulta http://wwwlcehutfi/teaching/s-114250 Kotisivulla on mm kurssin ilmoitustaulu Kirjoista voisi mainita seuraavat: 1 M P Allen, D J Tildesley: Computer Simulation of Liquids

Varsin kattava ja usein viitattu teos, joka käsittelee molekyylisysteemien siumlointia Monte Carlo - ja molekyylidynamiikkamenetelmillä (Viittauksissa nimellä Allen-Tildesley) 2 DWHeermann: Computer Simulation Methods in Theoretical Physics Kirja käsittelee sekä deterministisiä (molekyylidynamiikka) että stokastisia (Monte Carlo, Langevin) simulointimenetelmiä (Viittauksissa nimellä Heermann) 3 KBinder, DWHeermann: Monte Carlo Simulation in Statistical Physics: An Introduction Kirjassa käydään läpi Monte Carlo -menetelmän teoreettisia perusteita statistisen fysiikan sovellutusten kannalta (Viittauksissa nimellä Binder-Heermann) 4 DFrenkel, BSmit: Understanding Molecular Simulation: From Algorithms to Applications Kirja rajoittuu -kuten nimikin kertoo- molekyylisysteemien simulointiin Sekä molekyylidynamiikka että Monte Carlo -menetelmät käydään läpi Kirjaan liittyy esimerkkiohjelmia, jotka voi hakea kirjan kotisivulta osoitteesta http://ct-cr6chemuvanl/ frenkel_smit (Viittauksissa nimellä Frenkel-Smit) 5 AKersch, WJ Mokoroff: Transport Simulation in Microelectronics Kirja käsittelee Monte Carlo -menetelmän käyttöä mikroelektroniikan materiaalien prosessoinnin ja komponenttien varauksenkuljetuksen mallintamisessa (Viittauksissa nimellä Kersch-Mokoroff) iv Esitiedot ja edellytykset Statistisen fysiikan perusteet Jonkin ohjelmointikielen hallinta (C tai Fortran) - Kurssin laskuharjoituksissa ja varsinkin lopputyössä laaditaan ohjelmia, joten ohjelmointitaito on välttämätön Tietokoneen käyttömahdollisuus

1 1 Yleistä 11 Fysiikan tietokonesimulaatioista Simulaatioiden (tai laskennallisten menetelmien) asemaa fysiikassa voi parhaiten havainnollistaa seuraavalla kuvalla LUONTO MALLI MITTAUKSET SIMULAATIOT TEORIA KOETULOKSET EKSAKTEJA TULOKSIA MALLISTA TEOREETTISIA ENNUSTUKSIA VERTAILU VERTAILU MALLIN TESTAUS TEORIAN TESTAUS Kuva 11: Tietokonesimulaatioiden asema fysiikassa Simulaatioilla voidaan testata sekä teorioita että malleja Ne kaventavat kuilua teorian ja mittausten välillä Toisaalta tämä menetelmä on algoritminen lähestymistapa: lopputlokseen ei ole oikotietä Äärellisen laskentakapasiteetin vuoksi tutkittavan systeemin koko ja myös ilmiön mallintamisen aikaskaala ovat rajoitettuja Tämän vuoksi ns äärelliseen koon vaikutusten (finite size effects) osuutta simulaatiotuloksiin tulisi aina tutkia Lisäksi simulaatioiden statistisesta luonteesta johtuen tuloksissa on statistista epämääräisyyttä Simulaation suoritus voidaan jakaa eri vaiheisiin kuvan 12 mukaan

2 Malli voi olla hyvinkin ilmeinen (esim kiinteä aineatomit, jotka vuorovaikuttavat potentiaalin välityksellä) tai sitten ei Otetaan esimerkiksi ns Isingin malli Siinä systeemi koostuu spineistä S i, joilla voi olla arvot ± 1 Systeemin energia on Fysikaalinen ilmiö E J S i S j i, j, (11) Malli missä summa käy yli lähinaapuriparien Numeerinen algoritmi j i Simulointiohjelma Tietokonemittaus Kuva 13: Isingin malli Isingin mallilla voidaan jossain määrin kuvata ferromagneettisia aineita, mihin malli alunperin kehitettiinkin Mutta se soveltuu moneen muuhunkin ilmiöön Esimerkiksi kaksikomponenttista metalliseosta voidaan kuvata tällä mallilla A Kuva 12: Simulaation suorituksen vaiheet A B Numeerisen algoritmin avulla pystytään laskemaan mallin antamia tuloksia Se voi olla esim algoritmi, jolla kuljetetaan systeemiä ajassa eteenpäin ( liikeyhtälöt ) tai jolla käydään läpi systeemin faasiavaruutta Simulaatioissa ja kokeellisissa mittauksissa on samankaltaisia piirteitä (raakadatan käsittely, statistiset virheet tuloksissa,), joten usein simulaatioita kutsutaan tietokonemittauksiksi (computer experiments) A A B A A Kuva 14: Kaksikomponenttisen metalliseoksen Isingin malli, B 12 Deterministiset ja stokastiset simulaatiomenetelmät Simulaatiomenetelmät voidaan tietyllä tasolla jakaa deterministisiin ja stokastisiin Esimerkiksi laskettaessa monen vapausasteen systeemin tasapaino-ominaisuuksia jako on selkeä Olkoon systeemin Hamiltonin funktio (eli kokonaisenergia) H, ja tilan määrää vektori x

3 x ( x 1, x 2,, x n ), (12) missä n on vapausasteiden lukumäärä Monesti systeemi koostuu N:stä atomista tai molekyylistä, jolloin n 6N ja x ( r 1, r 2,, r N, p 1, p 2,, p N ) (13) Usein haluamme laskea tietyn suureen A odotusarvon A Z 1 A( x)f( H( x) ) dx Ω, (14) Z Ω f( H( x) ) dx (15) missä Ω on systeemin faasiavaruus ja f( H( x) ) on todennäköisyystiheysfunktio Tämä on ns ensemblekeskiarvo, jota ei suoraan voi laskea simuloimalla, koska koko faasiavaruutta ei voida käydä läpi On tyydyttävä enemmän tai vähemmän edustavaan otokseen Deterministinen tapa antaa systeemin oman dynamiikan (liikeyhtälöt) kuljettaa tilavektoria halki faasiavaruuden Ensemblekeskiarvo korvataan aikakeskiarvolla A t x t A t t 1 A( x() τ ) dτ 0 (16) Ergodisuus takaa, että A A Käytännössä on tyydyttävä siihen, että A A t Tätä menetelmää kutsutaan molekyylidynamiikaksi (MD) x ( m) Stokastisessa menetelmässä systeemin tiloja generoidaan satunnaisesti Markovin prosessilla Useimmiten ollaan kiinnostuneita vain x:n konfiguraatio-osasta eli koordinaateista r i Liikemäärä voidaan integroida erikseen Suureen A odotusarvo on nyt M A M 1 A( x ( m) ) k 1 (17) Tämä menetelmä on Monte Carlo -simulaatio (MC) Ongelmana on kehittää tehokas algoritmi, jolla käydään läpi faasiavaruuden niitä osia, jotka ovat merkittäviä suureen A laskemisen kannalta Yksi algoritmi on kanonisen ensemblen yhteydessä käytettävä Metropolisalgoritmi: 1 generoi uusi tila: x ( m) x ( m + 1) 2 laske energiaero E H( x ( m + 1) ) H( x ( m) ) 3 jos E < 0, hyväksy uusi tila todennäköisyydellä 1, muuten hyväksy se todennäköisyydellä exp( E kt)

4 Voidaan osoittaa (ja myöhemmin kurssilla osoitetaan), että algoritmi generoi tiloja, jotka noudattavat kanonista jakaumaa exp( H( x) kt) MD-menetelmän etuna on, että sillä voidaan tutkia ajasta riippuvia ilmiöitä; Metropolis- MC:llä taas ei Sen avulla toisaalta voidaan tutkia systeemeitä, joilla ei varsinaista sisäistä dynamiikkaa ole ollenkaan Esimerkkinä olkoon Ising-malli: H Ising J S i S j B S ; S (18) i i ± 1 i, j Lisäksi MC-menetelmän avulla voidaan systeemiin tuoda esimerkiksi kemiallisia vapausasteita: algoritmi voi muuttaa atomin tai molekyylin lajia Huomaa, että ylläolevassa esimerkissä ei itse systeemissä (tai sen mallissa) ollut mitään stokastista, satunnaista Integroitaessa faasiavaruuden yli MC-menetelmässä vain käytettiin satunnaisotantaa Itse systeemissä voi olla satunnaiselementtejä i Esimerkiksi gammasäteilyn etenemisessä väliaineessa vuorovaikutusten välimatka on satunnainen suure, joka noudattaa tiettyä todennäköisyysjakaumaa Satunnaisuus voi johtua myös puutteellisesta mallista: jotkut vapausasteet otetaan huomioon stokastisina elementteinä Esimerkkinä Brownin liike, jossa väliaineen vaikutus otetaan huomioon Langevinin liikeyhtälöllä dv m dt γv + Rt (), (19) missä γ on kitkavakio ja Rt () ajasta riippuva satunnaisvoima, jonka statistisista ominaisuuksista tiedämme jotain Langevinin liikeyhtälöitä voidaan käyttää kuvaamaan systeemiä ympäröivää lämpökylpyä (kanoninen ensemble) Termiä Monte Carlo käytetään varsin erilaisisten stokastisten simulaatiomenetelmien yhteydessä Karkeasti ottaen voisi sanoa, että Monte Carlo -menetelmiä ovat simulaatiot, joissa käytetään paljon satunnaislukuja

5 13 Monte Carlo -menetelmän historiasta Italialainen matemaatikko Lazzerini arvioi piin likiarvoa heittämällä 3407 kertaa neulan tasavälisten suorien päälle (Buffonin neula) Likiarvoksi tuli 31415929 eli 7 numeron tarkkuudella oikea (sattumalta?) d P hit 2l ------ πd W S Gossett ( Student ) arvioi -jakaumansa korrelaatiokertoimia otantakokeella Lordi Kelvinin assistentti generoi 5000 satunnaista rataa tutkiessaan hiukkasen ja kaarevan välisiä törmäyksiä l Kuva 15: Buffonin neula Varsinainen Metropolis-MC kehitettiin Los Alamosissa 50-luvulla Ensimmäinen julkaisu lienee N Metropolis, A W Rosenbluth, M N Rosenbluth, A H Teller, E Teller, Equation of State Calculations by Fast Computing Machines, J Chem Phys, 21 (1953) 1087 Julkaisussa tutkittiin kaksiulotteisten kovien kiekkojen tilanyhtälöä Kuva 16: Ensimmäinen MC-julkaisu

6 14 Esimerkkejä sovellutuksista Tasapainoilmiöiden simulaatioista otetaan esimerkiksi Lennard-Jones-systeemin (LJ-systeemin) tilanyhtälö LJ-systeemi koostuu atomeista, jotka vuorovaikuttavat LJ-potentiaalin välityksellä V LJ ( r ij ) 4ε σ ---- 12 ---- σ 6 r ij r ij (110) Oheisessa kuvassa on esitetty eri simulaatiomenetelmillä lasketut tilanyhtälöt ρ( P) [F F Abraham Adv Phys 35 (1986) 1] Paineen ja tiheyden yksikköinä on käytetty LJ-systeemin redusoituja yksiköitä Kuvasta näkyvät selvästi eri olomuodot sekä kiteen ylkuumeneminen ja nesteen alijäähtyminen Faasitransitiosta olkoon esimerkkinä kaasun kondensoituminen ja sen klusterimalli [F F Abraham, J Vac Sci Technol B 2 (1984) 534] Kuva 17: Lennard-Jones -systeemin tilanyhtälö MCMonte Carlo, SD,CD,LVdynaamisia menetelmiä Kuva 18: Argonkaasun kondensoituminen

Esimerkkinä kuljetusilmiöstä on gamma- ja elektronisäteilyn eteneminen väliaineessa Analyyttisten ratkaisutapojen ongelmana on mm sekundäärihiukkasten synty: elektronigammakaskadi Ilmiön MC-simuloinnin periaate on seuraava: heijastuminen absorptio 7 läpäisy Seurataan hiukkasta väliaineessa vuorovaikutuksesta toiseen Kuva 19: Sätelilyn eteneminen väliaineessa Vuorovaikutusten välimatkan todennäköisyysjakauma on Ps () e s λ λ, missä hiukkasen keskimääräinen vapaa matka λ 1 σ ja on vuorovaikutuksen vaikutusala eli todennäköisyys σ Simuloinnissa generoidaan välimatkoja s ja jokaisen vuorovaikutuksen kohdalla arvotaan vuorovaikutusmekanismi (ks oheinen kuva) Hiukkasen uusi suunta ja energia saadaan ko vuorovaikutuksen differentiaalivaikutusalasta Myös mahdollisen sekundäärihiukkasen tiedot otetaan muistiin Kuvassa 111 on esitetty muutamia MC-menetelmällä simuloituja elektronien ja niiden synnyttämien fotonien ratoja 1 γ 1 γ 2 e - γ γ 1 γ 2 Ze e + e - e - e - γ Ze e -/+ γ 1 e + e - γ 2 e - Kuva 110: Gamma- ja elektronisäteilyn vuorovaikutusmekanismit 1 Elektronin energia lienee muutama sata kev

8 05 cm Kuva 111: Energeettisten (muutama sata kev) elektronien eteneminen vedessä Monte Carlo - simulaatiolla laskettuna Erilaisia kuljetus- ja kasvuilmiöitä voidaan mallintaa kineettisellä Monte Carlolla (KMC) Tärkeitä sovellutuksia ovat mm diffuusio kiinteässä aineessa, kiteen kasvu, säteilyvaurioiden kulkeutuminen KMC perustuu siihen, että kuvaamme systeemiä sellaisella tasolla, että voimme erottaa tietyn joukon diskreettejä tapahtumia E { e 1, e 2,, e N }, joissa systeemi siirtyy tilasta toiseen Lisäksi aikaskaala on sellainen, että mitkään tapahtumat eivät tapahdu samanaikaisesti Otetaan esimerkiksi kiteen kasvu kaasufaasista Tapahtumia ovat: adsorptio, desorptio ja atomin hypyt pinnalla erilaisissa geometrioissa adsorptio desorptio diffuusio diffuusio diffuusio

9 Kuva 112: Kiteen kasvatuksessa havaittavat tapahtumat Algoritmi tämän toteuttamiseksi voisi olla seuraavanlainen: i Generoi tasaisesti jakautunut satunnaisluku ξ [ 0, QC ( k )) ii Valitse tätä vastaava tapahtuma: valitse ensimmäinen indeksi s, jolle pätee s a 1 R a ( C k ) ξ iii Etene uuteen konfiguraatioon toteuttamalla tapahtuma C k + 1 s iv Päivitä niitä todennäköisyyksiä R a, jotka ovat muuttuneet tapahtuman s seurauksena Päivitä Q ja muut tarvittavat tietorakenteet Tässä C k on systeemin tila simulointiaskeleella k, Q( C k ) on kokonaistodennäköisyys aikayksikköä kohti, että systeemi siirtyy johonkin toiseen tilaan ja R a ( C k ) tapahtuman a todennäköisyys aikayksikköä kohti systeemin tilassa C k Lisäksi Monte Carlo -menetelmiä voidaan käyttää kvanttimekaanisten systeemien tutkimiseen (kvantti-monte Carlo, quantum Monte Carlo QMC)

10 2 Statistista fysiikkaa (lähteenä Allen-TIldesley) 21 Faasiavaruus Kertaamme seuraavassa lyhyesti kurssilla tarvittavia statistisen fysiikan käsitteitä Pitäydymme klassisessa statistisessa fysiikassa Statistisessa fysiikassa on viimekädessä kyse siitä, miten aineen mikroskooppisesta kuvauksesta saadaan makroskooppisia (termodynaamisia, mitattavia suureita): { qp, } (tai{ r, p} ) makroskooppiset suureet, missä q { q i } ovat systeemin koordinaatit ja p { p i } liikemäärät Systeemiä kuvaa Hamiltonin funktio (eli kokonaisenergia) H( qp, ) Atomisysteemeille Hamiltonin funktio on useimmiten muotoa H( qp, ) H( rp, ) N i 1 p i 2 -------- + 2m i V ( q) (21) Systeemin dynamiikkaa (aikakehitystä) kuvaavat Hamiltonin liikeyhtälöt 1 q k H( qp, ) p k (22) ṗ k H( qp, ) q k (23) Yksinkertaisissa tapauksissa Hamiltonin yhtälöistä saadaan Newtonin liikeyhtälöt dr i dt v i dm (, i v i ) ------------------ F( r (24) dt ij ) i j Jos meillä on N hiukkasta, koko systeemin tilaa voidaan kuvata pisteellä Γ 6N-ulotteisessa faasiavaruudessa Pisteen kulun määräävät liikeyhtälöt Olemme luonnollisesti kiinnostuneita jonkin suureen A A( Γ) arvosta Kokeellisesti pääsemme käsiksi keskiarvoon: A obs 1 A t A( Γ() t ) t lim ------- A( Γ() t ) dt t obs t obs t obs 0 (25) 1 Kuten olemme jo todenneet, aina ei mallissa ole liikeyhtälöitä

11 Simulaatioissa tulisi pystyä laskemaan mikroskooppisesta mallista lähtien Statistisessa fysiikassa käytetään Gibbsin ensemblejä kuvaamaan systeemin todennäköisyyttä olla tietyssä faasiavaruuden pisteessä Tällä tavalla pystytään helpommin laskemaan erilaisia asioita verrattuna siihen, että integroisimme liikeyhtälöitä Olkoon meillä suuri määrä (ensemble) samanlaisia systeemejä (mutta erilaisissa mikroskooppissa tiloissa) Todennäköisyystiheys ρ ens ( Γ)dΓ on verrannollinen faasiavaruuden alkiossa dγ olevien systeemien lukumäärään Tiheys ρ ens on erilainen erilaisille ulkoisille olosuhteille Koska piste Γ on yhtä kuin systeemi, ρ ens ( Γ) riippuu ajasta ρ ens Tiheydelle pätevät säilymislait i ρ käyttäytyy kuten kokoonpuristumaton neste dρ ii Systeemejä ei häviä eikä synny: ens 0 dt ρ iii Tasapainossa ens 0 t A obs Näistä voidaan johtaa tiheydelle liikeyhtälö ρens ( Γ, t) ilρ t ens ( Γ, t), (26) missä Liouvillen operaattori L on il i r i ri + i p i pi (27) Statistisessa fysiikassa aikakeskiarvo siis korvataan ensemblekeskiarvolla A obs A ens A( Γ)ρ ens ( Γ) Γ (28) Eräs tärkeä ja kiistanalainenkin asia on ergodisuus Jos systeemi on ergodinen, tietystä alkutilasta lähdettäessä käydään läpi (liikeyhtälöiden mukaan) kaikki faasiavaruuden pisteet, joissa on nollasta poikkeava ρ ens Todennäköisyystiheydestä käytetään myös normittamatonta muotoa ρ ens ( Γ) w ens ( Γ) ------------------ ; Q ens w ens ( Γ) (29) Q ens Γ

12 w ens ( Γ)A( Γ) Γ A ens -------------------------------------- w ens ( Γ) Γ (210) Tuo normitustekijä eli partitiofunktio Q ens riippuu systeemin makroskooppisista ominaisuuksista Yhteys termodynamiikkaan saadaan määrittelemällä Ψ ens lnq ens termodynaaminen potentiaali (211) Simuloinnin 1 tarkoitus on yleensä käydä läpi faasiavaruutta mahdollisimman tehokkaasti keskiarvojen laskemista varten A obs Kuten aikaisemmin mainittiin tähän tehtävään on kaksi lähestymistapaa i molekyylidynamiikka: A t ii Monte Carlo: A ens (importance sampling) Tärkeimmät ensemblet eli ulkoiset olosuhteen statistisessa fysiikassa ovat i mikrokanoninen: hiukkaslukumäärä, tilavuus ja sisäinen energia vakioita (NVE) ii kanoninen (NVT): kuten edellä, mutta energian sijasta lämpötila vakio iii isoterminen-isobaarinen (NPT): kuten edellä, mutta tilavuuden sijasta paine vakio iv suurkanoninen (µvt): kuten kanoninen ensemble, mutta hiukkaslukumäärän sijasta kemiallinen potentiaali vakio (Huom: Seuraavassa symbolilla V merkitään systeemin tilavuutta ja symbolilla U systeemin hiukkasten välistä vuorovaikutuspotentiaalia) 22 Ensemblet Miten saadaan nuo tiheysfunktiot erilaisille ulkoisille olosuhteille? 2 Gibbsin entropia määritellään ρ ens S k B ρ ens ( Γ) ln( C N ρ ens ( Γ) ) dγ, (212) missä on Boltzmannin vakio k B Mikrokanonisessa ensemblessä systeemin hiukkaslukumäärä, tilavuus ja kokonaisenergia ovat 1 Tarkemmin: tasapainosimulaation 2 Katso esimerkiksi L E Reichl, A Modern Course in Statistical Physics

vakioita (NVE-ensemble) Tasapainotilassa entropia on maksimissaan ja tiheysfunktion on oltava normitettu: 13 ρ ( NVE Γ ) dγ 1 H( Γ) E (213) Käytetään Lagrangen kerrointa etsittäessä tiheysfunktiota: α 0 δ ( α 0 ρ NVE ( Γ) k B ρ NVE ( Γ) ln( C N ρ NVE ( Γ) ) ) dγ 0 (214) H( Γ) E Tästä edelleen ( α 0 k B ln[ C N ρ NVE ( Γ) ] k )δρ ( Γ) dγ B 0 NVE H( Γ) E, (215) ja koska variaatio δρ NVE ( Γ) on mielivaltainen, on integrandin hävittävä: α 0 k B ln[ C N ρ NVE ( Γ) ] 0 k B (216) Saamme siis ρ NVE ( Γ) KH, ( Γ) E 0, muulloin (217) Normitusehdon huomioonottaen saadaan lopulta ρ NVE ( Γ) 1 Ω ---------------------------, ( E, V, N) H ( Γ ) E 0, muulloin (218) Kanonisen ensemblen tapauksessa energian sijasta lämpötila on vakio Mukaan tulee siten lisäehto, että sisäisen energian keskiarvo pysyy vakiona: E H( Γ)ρ NVT ( Γ) dγ (219) Variaatioyhtälö tulee nyt muotoon (uusi Lagrangen kerroin ): α E δ [ ( α 0 ρ NVE ( Γ) + α E H( Γ)ρ NVT ( Γ) k B ρ NVE ( Γ) ln[ C N ρ NVE ( Γ) ]) dγ] 0, (220)

14 josta edelleen Samaan tapaan saadaan muiden ensembleiden tiheydet Metropoliksen MC-algoritmi kehitettiin alunperin kanonista ensembleä varten, mutta on helposti yleistettävissä muihinkin ensembα 0 + α E H( Γ) k B ln[ C N ρ NVT ( Γ) ] k B 0 (221) ja ρ NVT ( Γ) 1 ------- exp C N α 0 ----- 1 + ------ H( Γ) k B α E k B (222) Normalisaatiosta seuraa α 0 Q NVT exp 1 ----- k B 1 ------- exp C N α E ------ H( Γ) dγ k B (223) Seuraavaksi määritämme kertoimen α E Kertomalla yhtälö (221) ρ NVT :llä ja integroimalla saadaan ( ) ρ NVT ( Γ) dγ + α E H( Γ)ρ NVT ( Γ) dγ ρ NVT ( Γ) ln[ C N ρ NVT ( Γ) ] dγ 0 α 0 k B k B, (224) jonka voimme kirjoittaa muotoon ln + α E E + S 0 k B Q NVT (225) Helmholtzin vapaa energia määritellään joten voimme tehdä seuraavat identifikaatiot missä partitiofunktio on nyt ja tiheysfunktio A U + ST 0, (226) 1 α E ---, A k, (227) T B TlnQ NVT 1 Q NVT ------- e βh( Γ) d Γ ( β ( k B T ) 1 ) (228) C N ρ NVT ( Γ) 1 --------------------- C N e βh Γ Q NVT ( ) (229)

15 leihin Listataan lopuksi vielä eri ensembleiden tiheysfunktiot ja termodynaamiset potentiaalit 1 Mikrokanoninen ensemble: NVE vakioita (eristetty) ρ NVE ( Γ) δ( H( Γ) E) (230) Q NVE δ( H( Γ) E) Γ 1 ------- C N dr dpδ( H( r,p) E) (231) Termodynaaminen potentiaali on nyt entropia: S ----- lnq k NVE B (232) Kanoninen ensemble : NVT vakioita (suljettu) ρ NVT ( Γ) exp( H( Γ) k B T ) (233) Q NVT exp( H( Γ) k B T ) Γ 1 ------- C N r d dpexp( H( r,p) k B T ) (234) Termodynaaminen potentiaali on Helmholtzin vapaa energia: A --------- lnq k B T NVT (235) Isoterminen-isobaarinen ensemble: NPT vakioita ρ NPT ( Γ) exp( ( H( Γ) + PV) k B T ) (236) Q NPT Γ exp( ( H( Γ) + PV) k B T ) 1 ------- 1 C N ----- drdpexp( ( H( r,p) + PV) k V B T ) 0 (237) Termodynaaminen potentiaali on Gibbsin vapaa energia: G --------- lnq k B T NPT (238) 1 Vakio C N h 3N erilaisille hiukkasille ja N!h 3N identtisille

16 Suurkanoninen ensemble: µvt vakioita ρ µvt ( Γ) exp( ( H( Γ) + µn ) k B T ) (239) Q µvt N Γ, N exp( ( H( Γ) + µn ) k B T ) 1 ------- exp( µ N k B T ) C N drdpexp( H( r,p) k B T ) (240) Termodynaaminen potentiaali on suuri potentiaali: Ω --------- lnq k B T µvt (241) Jos systeemin Hamiltonin funk tio voidaan jakaa koordinaateista ja liikemääristä riippuviin osiin H( r,p) K( p) + U( r), (242) voimme integroida pois liikemääräosuuden: 1 Q NVT ------- d pexp( K( p) k B T ) d rexp( U( r) k B T ) C N (243) Q NVT id ex Q NVT Q NVT, (244) Tässä ideaalikaasuosuus on id Q NVT V N h 2 1 2 ---------------- ; (245) N!Λ 3N Λ -------------------- 2πmk B T ja hiukkasten vuorovaikutuksesta aiheutuva osuus on ex Q NVT d rexp( U( r) k B T ) V N (246) ex Q NVT Metropolis-MC:llä lasketaan vain koordinaateista riippuva osa (konfiguraatio-osa)

17 23 Makroskooppisten suureiden laskeminen Simulaatiossa on tarkoituksena siis laskea makroskooppisia (termodynaamisia) suureita systeemin mikroskooppisten ominaisuuksien avulla Seuraavassa on lyhyesti esitetty tärkeimpien suureiden laskeminen lähinnä atomeista koostuville systeemeille Systeemin sisäinen energia on sen kokonaisenergian keskiarvo E H K + U p i 2 --------- + U( q) 2m i i (247) Lämpötila taas on kineettisen energian keskiarvo T 2 K ------------- 3Nk B N p i 2 1 ------------- 3Nk B --------- 2m i i 1 (248) Systeemin paine P taas saadaan ns viriaalin avulla PV Nk B T + W, (249) missä viriaali W on N W 1 3 -- r i f i i 1, (250) f i ja on hiukkaseen i kohdistuva voima Ylläolevat yhtälöt voidaan johtaa ns yleistetystä ekvipartitioteoreemasta 1 H H p k k, (251) p B T q k k k q B T k Kuten myöhemmin tulemme huomaamaan, ei tasapainoilmiöiden Monte Carlo -simulaatioissa ole ollenkaan mukana hiukkasten liikemääriä, joten lämpötilaa ei voi laskea Toisaalta, jos tutkimme ensembleä, jossa lämpötila on vakio, on se ennalta annettu parametri; siis simulaation syöttötieto Erilaiset vastefunktiot kertovat, miten systeemi reagoi tietyn tilamuuttujan muutokseen Tärkein näistä lienee vakiotilavuuslämpökapasiteetti C V Sehän määritellään sisäisen energian lämpötiladerivaattana 1 Ks Allen-Tildesley kappale 24

18 C V ( T ) E T V (252) Simulaatioilla :n laskemisen voisi toteuttaa tekemällä useita ajoja eri lämpötiloilla ja integroimalla yhtälö (252) Toisaalta kanonisessa ensemblessä fluktuaatioilla ja vastefunktioilla on yhteys 1, josta voimme lämpökapasiteetin laskea missä C V δh 2 k B T 2 C V, (253) δh 2 H 2 H 2 (254) Tämän fluktuaatio-vastefunktio -yhteyden avulla voidaan monia muitakin vastefunktioita laskea; esimerkiksi lämpölaajenemiskerroin, isoterminen puristuvuus jne Termodynaamisten potentiaalien (eli vapaiden energioiden) laskemista tarvitaan monessa yhteydessä Esimerkiksi kiinteän aineen sulamispisteen saa selville, jos pystyy laskemaan kiteisen ja nestemäisen rakenteen Helmholtzin vapaat energiat Potentiaalien laskeminen ei ole kuitenkaan kovin helppoa Esimerkiksi Helmholtzin vapaan energian potentiaalienergiasta riippuva osa 2 voidaan lausua muodossa A ex exp --------- k B T 1 ------------- exp( U k B T ) Qex NVT (255) Toisaalta kanonisessa ensemblessä todennäköisimmät tilat ovat sellaisia, joille on suuri, joten suora keskiarvon lakeminen on tehotonta exp( U k B T ) Käyttökelpoinen tapa laskea energiaeroja on integrointi reversiibeliä reittiä pitkin Esimerkiksi A --- T 2 A --- T 1 T 2 E ----- dt T 1 T 2 (256) tai A --- T 2 A --- T 1 V 2 P --- T d V V 1 (257) Toinen tapa on lähteä idealisoidusta mallista, jonka vapaa energia pystytään laskemaan eksaktisti Olkoon systeemin potentiaalienergia riippuvainen parametrista λ : U U( r, λ) Tällöin saamme seuraavan yhteyden 1 AT, kappale 25 2 A A id + A ex, ks kaavat (235) ja (245)

19 A λ k B T [ ln rexp( U( r,λ) k λ d B T )] U d r exp( U k λ B T ) ---------------------------------------------------- d rexp( U k B T ) U λ (258) Vapaan energian absoluuttiarvo on laskettavissa, jos λ :n avulla voimme kuvata systeemiä, jonka A on laskettavissa (ideaalikaasu, harmoninen kide): A( λ) A( λ 0 ) λ U dλ λ (259) λ 0 Otetaan esimerkiksi harmoninen kide (Einsteinin malli) U( r, λ) U 0 ( r) + λ ( r i r i0 ) 2 N i 1 (260) Kun λ 0, systeemi on alkuperäinen, ja kun λ kasvaa lähestyy systeemi harmonista kidettä Vapaa energia saadaan integraalina A( λ 0) A( λ) λ 0 U dλ' λ (261) Helmholtzin vapaa energia suurella λ :n arvolla voidaan laskea tarkasti A( λ 0) 3Nhω -------------- 3Nk 2 B T 1 e hω k BT ln( ) + O( 1 λ) (262)

3 Todennäköisyyslaskentaa 1 20 31 Yleistä Seuraavassa käydään läpi kurssiin liittyvää todennäköisyyslaskentaa Todennäköisyyden avulla voimme kuvata enemmän tai vähemmän kvantitatiivisesti jonkin tapahtuman tai kokeen odotettavissa olevaa tulosta Jos tapahtuman A todennäköisyys on P( A), voimme odottaa, että N :n identtisen kokeen tuloksena saamme NP( A) kappaletta tapahtumia A Rajalla N, tapahtumien A osuus lähestyy arvoa P( A) Kokeen otosavaruus (sample space) S on kokeen mahdollisten tulosten joukko Siis jokainen kokeen tulos vastaa yhtä tai useampaa joukon alkiota (otosavaruuden pistettä) Koe tai tapahtuma on S :n osajoukko Todennäköisyys, että saadaan joko tulos A tai B on P( A B) P( A) + PB ( ) P( A B), (31) missä P( A B) on todennäköisyys, että saadaan sekä A että B Jos tapahtumat A 1, A 2,, A m ovat toisensa poissulkevia ja lisäksi A i :t jakavat S :n osiin: A 1 A 2 A m S, (32) niin pätee P( A 1 ) + P( A 2 ) + + P( A m ) 1 Tapahtumat A ja B ovat riippumattomia, jos P( A B) P( A)PB ( ) (33) Ehdollinen todennäköisyys on todennäköisyys, että tapahtuma A toteutuu ehdolla, että myös tapahtuma B toteutuu Se määritellään PBA ( ) P( A B) ----------------------- PB ( ) (34) Koska P( A B) PB ( A) pätee myös P( A)P( A B) PB ( )PBA ( ) (35) Jos A ja B ovat riippumattomia 1 Lähteenä pääasiassa LEReichl: A Modern Course in Statistical Physics

21 PBA ( ) P( A) (36) Suure, jonka arvon määrää edelläesitellyn kokeen tulos on satunnaismuuttuja tai stokastinen muuttuja Otosavaruuden S satunnaismuuttuja X on funktio, joka kuvaa S:n alkiot reaalilukujoukolle Jokaisessa kokeessa muuttuja X voi saada jonkin arvon joukosta { } Pari esimerkkiä X :stä: a) kruunujen lukumäärä kolmen kolikon heiton jälkeen b) noppien silmälukujen maksimi, neljän nopan heiton jälkeen Olkoon X stokastinen muuttuja avaruudessa S Olkoot sallitut arvot X( S) { x 1, x 2, } Voimme tehdä X( S) :stä otosavaruuden antamalla jokaiselle x i :lle todennäköisyyden Nämä todennäköisyydet f( x i ) määrittelevät S :n todennäköisyysjakauman ja niille pätee x i f( x i ) 0 (37) f ( x ) i 1 i (38) Usein meillä on tietoa vain jakauman f momenteista: X n x n i f( x i ) i (39) Ensimmäinen momentti X on keskiarvo ja jakauman standardipoikkema on σ X ( X 2 X 2 ) 12 / (310) Stokastinen muuttuja X voi tietysti saada myös jatkuvia arvoja Esimerkiksi reaalilukuakselin väli a X b voi vastata yhtä tapahtumaa Todennäköisyysjakauma on sellainen paloittain jatkuva funktio, että tapahtuman a X b todennäköisyys on Pa ( X b) f X ( x) dx Lisäksi jakaumafunktio toteuttaa ehdot b a (311) f( x) ja f X ( x) 0 (312) a b Kuva 31: Todennäköisyysjakauma x f ( X x ) d x 1 (313)

22 Vastaavasti momentit määritellään x n f X ( x) dx X n (314) Jos tunnemme f X :n kaikki momentit, tunnemme jakauman täysin Tämä voidaan osoittaa ns karakteristisen funktion φ X ( k) avulla: φ X ( k) e ikx e ikx f X ( x) dx n 0 ( ik) n X n ------------------------ n! (315) Todennäköisyystiheys on karakteristisen funktion Fourier-muunnos: f X ( x) 1 ----- e 2π ikx φ X ( k) dk (316) Vastaavasti jakauman momentit saadaan karakteristisen funktion derivaattoina: X n 1 i --- n n d φx dk n ( k) k 0 (317) Stokastisia muuttujia voi olla useampiakin Olkoon meillä muuttujat X( S) { x 1, x 2, } ja Y( S) { y 1, y 2, } Näiden tulojoukko X( S) Y( S) {( x 1, y 1 ), ( x 1, y 2 ),, ( x i, y j ), } muodostaa nyt otosavaruuden, kun määrittelemme parin { x i, y j } todennäköisyydeksi PX ( x i, Y y j ) f( x i, y j ) (318) Muuttujien kovarianssi määritellään cov( X, Y) ( x X )( y Y )f( x, y) dxdy xyf ( x, y) dxdy X Y XY X Y (319) ja korrelaatio cor( X, Y) cov( X, Y) ---------------------- σ X σ Y (320) Korrelaatiolla on seuraavat ominaisuudet (i) cor( X, Y) cor( Y, X), (ii) 1 cor( X, Y) 1,

23 (iii) cor( X, X) 1, cor( X, X) 1, (iv) cor( ax + b, cy + d) cor( X, Y), jos ac, 0 (321) Jos muuttujat X ja Y ovat riippumattomia pätevät seuraavat relaatiot (i ) f( x, y) f X ( x)f Y ( y), (ii ) XY X Y, (iii ) ( X + Y) X + Y X 2 X + Y 2 Y, (iv ) cov( X, Y) 0 (322) 32 Tärkeimmät todennäköisyysjakaumat Usein meillä on kyseessä tilanne, jossa on suuri määrä N kokeita, joilla jokaisella on kaksi mahdollista tulosta ( +1 ja 1 ) Esimerkiksi hiukkanen joko siroaa tietyllä matkalla tai sitten ei Olkoot todennäköisyydet tuloksille p ja q Selvästikin p + q 1 Todennäköisyys, että N :n kokeen tuloksena on n 1 kertaa +1 ja n 2 kertaa 1 on P N ( n 1 ) N! -------------- p n 1 q n 2 n 1!n 2! (323) Tämä on ns binomijakauma Sen keskiarvo ja standardipoikkeama ovat n 1 pn, σ2 N Npq (324) Binomijakaumasta saadaan rajalla N ja pn (siis p ei ole kovin pieni) Gaussin jakauma P N ( n 1 ) 1 ----------------- exp 2π σ N 1 -- 2 ( n 1 n 1 ) 2 ----------------------------- σ N 2, (325) missä σ N Npq (326) Gaussin jakauman määräävät kaksi ensimmäistä momenttia n 1 ja σ N Taasen rajalla N ja p 0 siten, että Np a «N (missä a on äärellinen vakio) binomijakaumaa voidaan approksimoida Poissonin jakaumalla