MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

Samankaltaiset tiedostot
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2016)

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

Mat Matematiikan peruskurssi K2

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

ELEC C4140 Kenttäteoria (syksy 2015)

Gaussin lause eli divergenssilause 1

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 6: Vektorikentän viivaintegraali

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

ELEC C4140 Kenttäteoria (syksy 2016)

Kvanttifysiikan perusteet 2017

Magneettikenttä ja sähkökenttä

4. Gaussin laki. (15.4)

Differentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 /

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

ELEC C4140 Kenttäteoria (syksy 2016)

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

ELEC C4140 Kenttäteoria (syksy 2015)

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

Muutoksen arviointi differentiaalin avulla

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Fr ( ) Fxyz (,, ), täytyy integroida:

Sähkömagneettinen induktio

Elektrodynamiikka, kevät 2008

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Magneettikentät. Haarto & Karhunen.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

ELEC C4140 Kenttäteoria (syksy 2016)

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät

Sähkömagnetismi (ENG2)

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

12. Derivointioperaattoreista geometrisissa avaruuksissa

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

Tfy Fysiikka IIB Mallivastaukset

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

5 Kentät ja energia (fields and energy)

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Magnetismi Mitä tiedämme magnetismista?

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Magnetismi Mitä tiedämme magnetismista?

Potentiaali ja potentiaalienergia

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

= ( F dx F dy F dz).

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].

F x y z. F voidaan ymmärtää kahden vektorin. Divergenssi. Vektorikentän F( x, y, z ) divergenssi määritellään

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Shrödingerin yhtälön johto

ELEC C4140 Kenttäteoria (syksy 2015)

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten

ELEC C4140 Kenttäteoria (syksy 2016)

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Elektrodynamiikan tenttitehtäviä kl 2018

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

Mat Matematiikan peruskurssi S2

edition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

Luennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko).

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

Sähkömagnetismi (ENG2)

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

ELEC C4140 Kenttäteoria (syksy 2015)

Viivaintegraali ja Greenin lause

Fysiikka 7. Sähkömagnetismi

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

Transkriptio:

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 1 / 17

Stokesin lause (ei todisteta) Lause Oletetaan, että S R 3 on suunnistettu pinta, jonka reunakäyrät C 1,..., C N ovat suljettuja. Tällöin S curl F ˆN ds = kun F : R 3 R 3 on sileä vektorikenttä. N j=1 C j F dr, Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 2 / 17

Huomautuksia Reunakäyrät C j on suunnistettu S:n suunnistuksen mukaan. Jos S on xy-tason osajoukko ja ˆN = k, niin Stokesin lause on Greenin lause. Jos F : R 3 R 3 on konservatiivinen vektorikenttä, eli F = φ jollakin φ: R 3 R, niin: Aiemmin: Jos C on suljettu, niin F dr = 0. Stokes: Jos C on pinnan S reunakäyrä, niin F dr = curl F ˆN ds = 0. C C S Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 3 / 17

Esimerkki 1/4 Olkoon S se osa pallosta x 2 + y 2 + (z 2) 2 = 8, joka on xy-tason yläpuolella. Laskettava I = S curl F ˆN ds, kun F = y 2 i cos xz + x 3 e yz j e xyz k, ja S on suunnistettu ulkonormaalilla ˆN. Huom. 2 = 4 < 8 < 9 = 3. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 4 / 17

Esimerkki 2/4 Pallon keskipiste on (0, 0, 2) ja säde a (2, 3). Etsitään pinnan S reunakäyrä C: x 2 + y 2 + 2 2 = 8, joten x 2 + y 2 = 2 2 ja z = 0. Siis C on 2-säteinen ympyrä xy-tasossa. Huomataan, että C on myös reunakäyrä pinnalle (tasoalueelle) D = {(x, y, 0) : x 2 + y 2 2}, ˆN = k. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 5 / 17

Esimerkki 3/4 Saadaan Lasketaan Stokes = I = D S curl F ˆN ds Stokes = curl F ˆN ds = D C F dr curl F k ds. i j k curl F k = det x y z k y 2 cos xz x 3 e yz e xyz = 3x 2 yz 2y cos xz. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 6 / 17

Esimerkki 4/4 Sijoittamalla tulos integraaliin saadaan 3x 2 e yz 2y cos xz ds = (3x 2 e zy 2y cos xz) da D x 2 +y 2 2 2 z=0 = 3x 2 2y da symmetr. = x 2 +y 2 2 2 3x 2 da x 2 +y 2 2 2 = ˆ 2π ˆ 2 0 0 3(r cos θ) 2 r dr dθ = ˆ 2π 0 cos 2 θ dθ ˆ 2 0 3r 3 dr = 12π. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 7 / 17

Esimerkki 1/3 Olkoon F (x, y, z) = 3yi xzj + yz 2 k ja S parabloidin 1 2 (x2 + y 2 ) osa, joka jää tason z = 2 alapuolelle. Laskettava curl F ˆN ds, S kun S on suunnustettu siten, että normaali osoittaa alaspäin. Stokesin lauseen perusteella curl F ˆN ds = missä C on S:n reunakäyrä. S C F dr, Reunakäyrän suunnistus: Kiertosuunta myötäpäivään C:tä pitkin z-akselin ympäri on positiivinen. Tällöin S jää kierrettäessä vasemmalle puolelle. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 8 / 17

Esimerkki 2/3 Reunakäyrän parametrisaatio: C koostuu pisteistä { z = 2, z = 1 2 (x2 + y 2 ), eli { z = 2, 2 2 = x 2 + y 2. Siten C on 2-säteinen ympyrä, ja C:n parametrisaatioksi saadaan r(t) = 2 cos ti 2 sin tj + 2k, t [2, 2π] ja r (t) = 2 sin ti 2 cos tj + 0k. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 9 / 17

Esimerkki 3/3 Lasketaan C F dr = ˆ 2π 0 F (r(t)) r (t) dt = ˆ 2π 0 ( 3( 2 sin t)i (2 cos t)2j + ( 2 sin t)2 2 k ) ( 2 sin ti 2 cos tj) dt = ˆ 2π 0 12 sin 2 t + 8 cos 2 t dt = 12π + 8π = 20π. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 10 / 17

*Sähköstatiikkaa Coulombin lain mukaan pistemäinen varaus q pisteessä s R 3 synnyttää sähkökentän E(r) = q 4πɛ 0 r s r s 3, missä ε 0 8.85 10 12 coulombia 2 /N m 2 on tyhjiön permittiivisyys. Voidaan osoittaa, että sähkökentälle E pätee curl E = 0, ja div E = ρ, ɛ 0 missä ρ on varaustiheys annetussa pisteessä. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 11 / 17

*Biot-Savartin laki Magneettikentät syntyvät varauksen liikkumisen eli virran seurauksena. Ajatellaan, että vakiovirta I kulkee käyrää F pitkin. Tällöin pisteessä s käyrää F pitkin kulkeva virtayksikkö synnyttää kentän db(r) = µ 0I ds (r s) 4π r s 3, missä µ 0 1.26 10 6 N/ampeeri 2 on tyhjiön permeabiliteetti, ds = ˆT ds ja ˆT on käyrän F yksikkötangenttivektori. Yleisemmässä tapauksessa voidaan tarkastella virran vektoritiheysfunktiota J (suunta ja voimakkuus). Voidaan osoittaa, että curl B = µ 0 J ja div B = 0. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 12 / 17

*Maxwellin yhtälöt 1/5 Tarkastellaan seuraavaksi tilannetta, jossa sähkö- ja magneettikentät riippuvat myös ajasta. Yhtälö div E = ρ/ɛ 0 on edelleen voimassa, kuten myös yhtälö div B = 0, joka viittaa siihen fysikaaliseen havaintoon, että magneettisia lähteitä tai nieluja ei ole (tai ainakaan ei tunneta). Siten kentän B kenttäviivat ovat suljettuja käyriä. Michael Faradayn havainnon mukaan sähkökentän virtaus suljetun käyrän C ympäri vastaa muutosta magneettikentän vuossa Φ = B ˆN ds missä S on mikä tahansa suunnistettu pinta reunakäyränä C, ja dφ dt = E dr. S C Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 13 / 17

*Maxwellin yhtälöt 2/5 Soveltamalla Stokesin lausetta, saadaan curl E ˆN ds = S C E dr = d B B ˆN ds = dt S S t ˆN ds. Koska pinta S on mielivaltainen, saadaan seuraava Faradayn lain muoto: curl E = B t. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 14 / 17

*Maxwellin yhtälöt 3/5 Aikariippuvassa tapauksessa myös Ampèren lakia curl B = µ 0 J täytyy muokata. Jos nimittäin sähkökenttä riippuu ajasta, niin myös virrantiheys J on aikariippuvainen. Oletamalla sähkövarauksen säilyminen (varauksia ei synny eikä katoa) voidaan osoittaa, että ρ = div J. t Tämä tulos on kuitenkin ristiriidassa Ampèren lain kanssa, koska div curl B = 0, mutta div J 0, kun ρ riippuu ajasta. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 15 / 17

*Maxwellin yhtälöt 4/5 Identiteetistä ρ = ɛ 0 div E saadaan div J = ρ t = ɛ 0div E t. Siten ( E ) div J + ɛ 0 = 0. t Tämän perusteella Ampèren laiksi ei-staattisessa tapauksessa saadaan curl B = µ 0 J + µ 0 ɛ 0 E t. Tulos liittyy Maxwellin tekemään havaintoon, jonka mukaan magneettikenttiä eivät synnytä pelkästään sähkövirrat vaan myös sähkökentissä tapahtuvat muutokset. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 16 / 17

*Maxwellin yhtälöt 5/5 On johdettu seuraavat neljä yhtälöä: Maxwellin yhtälöt div E = ρ/ɛ 0, div B = 0, curl E = B t, curl B = µ E 0J + µ 0 ɛ 0 t. Nämä yhtälöt määräävät ne tavat, joilla sähkö- ja magneettikenttiä syntyy kolmiulotteisessa avaruudessa varausten ja virtojen seurauksena. Huomaa, että µ 0 ɛ 0 = 1/c 2, missä c 2.99 10 8 m/s on valon nopeus tyhjiössä. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016 17 / 17