Sähkötekniikka ja elektroniikka Kimmo Silvonen (X)
Passiiviset peruskomponentit Luento Kondensaattori kapasitanssi C, i =f(u), varauksen häviämättömyyden laki eli sähkövirran määritelmä Kela induktanssi L, u =f(i), Faradayn induktiolaki (yksi jännitteen määritelmistä) Muutosilmiöt eli transienttianalyysi Diracin deltafunktio Eksponentiaaliset muutosilmiöt RC, RL Vaimeneva värähtely RLC, RCC, RLL Laplace-muunnos (ei kuulu kurssiin) Teoriaa laajasti: Sähkötekniikka ja piiriteoria, 2009 Page 2 (22)
Kela ja induktanssi L Varastoi energiaa, mutta ei kuluta tehoa, koska ei ole vastusta i u L ψ = Li = Nφ i w L = 1 2 Li2 u = u(t) = dψ dt = d(li) = L di dt dt t u L vrt. u = Ri i = i(t) = 1 udt + I L0 vrt. i = Gu L 0 Induktanssi [L] = H = Vs/A = henry Käämivuo [ψ] = Vs = Wb = weber Magneettivuo [φ] = Vs = Wb I L0 = i(0) = kelan virta hetkellä t = 0, kierrosmäärä N w L = kelaan varastoitunut energia (J) Page 3 (22)
Kondensaattori ja kapasitanssi C Ei ole vastusta; varastoi energiaa, mutta ei kuluta tehoa u i C + C + C C q = Cu w C = 1 2 Cu2 i = dq dt = d(cu) = C du dt dt u = 1 C t 0 idt + U C0 vrt. i = Gu vrt. u = Ri Kapasitanssi [C] = F = As/V = faradi Varaus [q] = As = C = coulombi U C0 = u(0) = kondensaattorin eli konkan jännite hetkellä t = 0 w C = kondensaattoriin varautunut energia [J] Page 4 (22)
Jännite ja virta kelassa ja konkassa, yhteenveto Varastoitunut hetkellinen energia w = w(t) w L = 1 2 Li2 w C = 1 2 Cu2 u L = L di dt i L (t) = 1 L t 0 udt + i L (0) i C = C du dt u C (t) = 1 C t 0 idt + u C (0) Page 5 (22)
Diracin deltafunktio δ(t), nopea muutosilmiö Jännite- tai virtapiikki, korkeus, leveys nolla (vrt. Laplace-muunnos) Kelan virta tai kondensaattorin jännite katkaistaan brutaalisti: u L = L di dt L 0 I L 0 i C = C du dt C 0 U C 0 u L = Lδ(t) i C = Cδ(t) U C C virtapiikki i C (t) u L (t) t = 0 i C t = 0 t jännitepiikki suojaus t = 0 I L u L L i L i L Page 6 (22)
Ylärivi: 6. vasemmalta Schrödinger, 8. Pauli, 9. Heisenberg, 12. X Keskirivi: 5. Dirac (keskimm.), 6. Compton, 7. de Broglie, 9. Bohr Alarivi: 2. Planck, 3. MC (2xNP), 4. Lorentz, 5. mc 2 [Solvay 1927] 7
Muutosilmiöt Circuit Transients Transienttianalyysi L ja C varastoivat energiaa Energiavarastot verrannollisia virtaan (L) ja jännitteeseen (C) Varastot eivät voi muuttua äkkijyrkästi: i L ja u C jatkuvia Muutosilmiöt ovat eksponenttifunktioita RC ja RL 1. kertaluvun differentiaaliyhtälöt LC, RLC, RCC ja RLL 2. kertaluvun d. y. Page 8 (22)
Jännitelähteen kytkeminen Switching On Jännite u C ja virta i L muuttuvat eksponenttikäyrää pitkin E R t = 0 C u C E R t = 0 i L L u C i L kasvava = kupera t Page 9 (22)
Jännitteen katkaisu Switching Off Lähde nollataan. Huom. todellista jännitelähdettä ei saa oikosulkea! toteaa nimimerkki Coke musta on! E R R i L t = 0 C u C E t = 0 L u C i L pienenevä = kovera t Page 10 (22)
Kondensaattorin lataaminen Charging the C Alkujännitteestä U C0 alkaen. Tulos on johdettu tuonnempana. u R R t = 0 i E C u E U C0 R i t u E U C0 u(t 0) = E (E U C0 )e t/(rc) t Page 11 (22)
Differentiaaliyhtälö Differential Equation Yrite on yhtälön tunnettu ratkaisu, jonka vakioita ei vielä tunneta. t 0 : u R E R C i u E + Ri + u = 0 E = RC du dt + u }{{} differentiaaliyhtalo i = C du dt u(t) = B + Ae t/τ }{{} yrite tai E = Ri + 1 C t 0 idt + u(0) Page 12 (22)
Vakioiden määrittäminen Coefficients Sijoitetaan yrite alkuperäiseen yhtälöön E = RC du dt }{{} A τ e t/τ + u }{{} B+Ae t/τ E + RC A τ e t/τ = B + Ae t/τ Munat ja jauhot -menetelmä (mnt, jht): yhtälön on oltava voimassa kaikilla t:n arvoilla, koska jauhoilla ei voi kompensoida munattomuutta! B = E τ = RC A saadaan Alkuehdosta (t = 0): u(0) = U C0 = B + Ae 0/τ = B + A A = U C0 B Page 13 (22)
Raja-arvot Limit Values Nollaa lähestytään miinus- tai pluspuolelta Samanlaista merkintää käytetään matematiikassa. i(t) E U C0 R i(0 + ) t i(0 ) u(t) E U C0 t i(0 ) = 0 i(0 + ) = E U C0 R u(0 ) = u(0 + ) = u(0) = U C0 Page 14 (22)
Yleinen esitysmuoto General Form Ei tarvita differentiaaliyhtälöä ainoastaan alku- ja loppuarvot! Silmäile tätä kertausvaiheessa! u( ) = B + Ae /τ = B + 0 = B u(0) = B + Ae 0/τ = B + A u(t) = u( ) +[u(0) u( )] }{{}}{{} B A e t/τ E R u(t) u( ) i( ) = 0 t u( ) u(0) Page 15 (22)
Aikavakio Time Constant Määrittäminen graafisesti tai matemaattisesti on triviaalia Silmäile tätä kertausvaiheessa! A > 0,B = 0 A A e t τ Vino viiva on käyrän tangentti A < 0 B B + A e B + A t τ 1 e 0,37 1 1 e 0,63 Page 16 (22)
Induktanssin kytkeminen piiriin Switching On Vrt. kondensaattorin lataaminen E u R i(t) R t = 0 L u(t) E = u R + u = Ri + L di dt u(t) i(t) E RI L0 E/R t I L0 t Page 17 (22)
Induktanssin tyhjentäminen Switching Off Aluksi E:n tasavirta menee kokonaan vastuksettoman kelan läpi R i(t) E L R u(t) t = 0 i(t) u(t) t RI L0 t I L0 L:n ja C:n muutosilmiöt ovat matemaattisesti samanlaisia, jos u:t ja i:t vaihdetaan päikseen. Page 18 (22)
RC- ja RL-piirit, yhteenvetoa Kelan TAI konkan muuttuva virta ja jännite Tyypillisiä tapauksia, silmäile tätä kertausvaiheessa! i L tai u C u L = L di L dt tai i C = C du C dt Vakio (d.c.) 0 Lineaarisesti kasvava Lineaarisesti pienenevä Kasvava eksponenttikäyrä Pienenevä eksponenttikäyrä positiivinen vakio negatiivinen vakio pienenevä eksponenttikäyrä kasvava eksponenttikäyrä Page 19 (22)
LC- ja RLC-piirit: kela JA konkka Toisen kertaluvun differentiaaliyhtälö! Alinna eräs ratkaisu. t = 0 R L C E i(t) t E = Ri + L di dt + 1 idt + U C0 C 0 0 = R di dt + L d2 i dt 2 + i C + 0 (derivoitu) [ E s = RI(s) + L si(s) + 1 C I(s) s + U ] C0 s (Laplace muunn.) i(t) = Ae at sin(ωt) Page 20 (22)
Eksponentiaalisesti vaimeneva sini Eksponentiaalinen verhokäyrä i(t) t i(t) = Ae at sin(ωt) Vrt. Tacoma Narrows Bridge Seattlen lähellä; sillan värähtelyä (Youtube, 4 min. 13 s.) on simuloitu RLC-piirillä. Volgogradissa eräs silta suljettiin 22.5.2010 vastaavan värähtelyn takia. Page 21 (22)
Osoitinlaskenta Phasor Calculus Vaihtovirrat ja kompleksiluvut Käsitellään kolmella seuraavalla viikolla. Esitietoja ei vaadita. Yksi kurssin pääaiheista, kaikki mukaan! Ota laskin mukaan (tavallinen funktiolaskin on hyvä)! Opit rakastetun kompleksiaritmetiikan jo ennen kuin olet läpäissyt kurssin, esim.: 2 1 = 1 + 1 = 1 + j = 2 45 = 2e j π 4 Korota joku tuloksista toiseen, saat juuren alusen! PS. Muista ilmoittautua laboratoriotöihin (A tai B) Oodissa! Page 22 (22)