DEE Sähkötekniikan perusteet
|
|
- Raili Jurkka
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 DEE Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät
2 Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho Q Symmetriset kolmivaihejärjestelmät Pätöteho P Tarkoitus on ymmärtää mitä eri vaihtosähköpiireihin liittyvät tehotermit tarkoittavat. Jatketaan myös harjoituksia vaihtosähköpiirien analyysistä tutuilla menetelmillä ja tutustutaan kolmivaihejärjestelmiin.
3 Johdatellaan aiheeseen esimerkillä Ratkaise kuvan piirissä jännitelähteen syöttämä teho silmukkavirtamenetelmällä. 5Ω 5 mh + U(t) 15 mh 0.5 mf U(t) = 325sin(100πt) V, M = 7.5 mh
4 Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I )
5 Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I ) Tällöin tehoksi saadaan P(t) = U(t)I(t) = ÛÎ sin(ωt +ϕ U )sin(ωt +ϕ I )
6 Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I ) Tällöin tehoksi saadaan P(t) = U(t)I(t) = ÛÎ sin(ωt +ϕ U )sin(ωt +ϕ I ) Kaivetaan avuksi trigonometriaa sin(x)sin(y) = 1 (cos(x y) cos(x +y)) 2
7 Hetkellinen teho Hetkellisarvot jännitteelle ja virralle ovat Tällöin tehoksi saadaan U(t) = Ûsin(ωt +ϕ U ) I(t) = Î sin(ωt +ϕ I ) P(t) = U(t)I(t) = ÛÎ sin(ωt +ϕ U )sin(ωt +ϕ I ) Kaivetaan avuksi trigonometriaa sin(x)sin(y) = 1 (cos(x y) cos(x +y)) 2 Jolloin teho voidaan kirjoittaa seuraavasti P(t) = ÛÎ 2 cos(ϕ U ϕ I ) ÛÎ 2 cos(2ωt +ϕ U +ϕ I )
8 Tehon eri komponentit Mitä edeltä voidaan havaita? Teho koostuu kahdesta termistä, joista toinen riippuu ajasta ja toinen ei. Jos kirjoitetaan teho osoittimien pituuksien avulla saadaan P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Ensimmäinen termihän edustaa nyt keskimääräistä tehoa vastuksessa (tällöin ϕ U = ϕ I ). Toisen termin avulla päästään käsiksi siihen miten teho vaihtelee 0:n ja maksimin välillä. Toisen termin integraali jakson yli on 0, joten se ei vaikuta piirissä kuluvaan tehoon jakson aikana.
9 Tehon eri komponentit Hetkellisen tehon ajasta riippumatonta termiä kutsutaan pätötehoksi P P = U I cos(ϕ U ϕ I ) Pätötehon yksikkö on watti (W).
10 Tehon eri komponentit Hetkellisen tehon ajasta riippumatonta termiä kutsutaan pätötehoksi P P = U I cos(ϕ U ϕ I ) Pätötehon yksikkö on watti (W). Pätötehon maksimiarvo on näennäisteho S (eli miten ϕ I ja ϕ U voidaan valita, jotta saavutetaan maksimiarvo) S = U I Näennäistehon yksikkö on volttiampeeri (VA). Tämä ei vastaa hetkellisen tehon maksimiarvoa.
11 Tehokolmio Tehoja on vielä kolmaskin: loisteho Q, joka vastaa tehokolmion puuttuvaa kateettia Q = U I sin(ϕ U ϕ I ) Loistehon yksikkö on reaktiivinen volttiampeeri (VAr) Kuten loistehon yksiköstä (reaktiivinen) on pääteltävissä, loistehoa esiintyy sellaisissa komponenteissa, joiden reaktanssi (siis impedanssin imaginääriosa) poikkeaa nollasta) S = U I ϕ U ϕ I P = U I cos(ϕ U ϕ I) Q = U I sin(ϕu ϕi)
12 Mitä eri tehot tarkoittavat? Pätöteho on sitä, joka tekee työtä (esim. muuttuu lämmöksi vastuksessa). Pätöteho on aina positiivinne, mikä tarkoittaa sitä, että eneria kuluu tietyllä teholla. Loisteho liittyy magneettikenttään (induktanssi) tai sähkökenttään (kapasitanssi) varastoituvaan energiaan. Kyse on siitä, että jos komponentissa reaktanssi poikkeaa nollasta, kaikki lähteen syöttämä teho ei ole tarjolla työn tekemiseen, vaan osa energiasta varastoituu komponenttiin (tai palautuu siitä piiriin). Loisteho voi olla joka negatiivinen tai positiivinen: Negatiivinen: komponentti tuottaa loistehoa Positiivinen: komponentti ottaa loistehoa
13 Komponenttien tehot I(t) Z Komponentin virta on I(t) = 7.07sin(100πt +π/2) A Laske pätöteho P, loisteho Q ja näennäisteho S, kun komponetti on Ω:n vastus mh:n käämi µf kondensaattori (alkujännite 0 V).
14 Vaihtosähkön teho ja passiiviset piirikomponentit Vastusken teho on aina pelkkää pätötehoa, koska vastuksen jännitteen ja virran välillä ei ole vaihe-eroa Koska vastukselle Q = 0 VAr, vastuksen pätöteho ja näennäisteho ovat yhtäsuuret.
15 Vaihtosähkön teho ja passiiviset piirikomponentit Vastusken teho on aina pelkkää pätötehoa, koska vastuksen jännitteen ja virran välillä ei ole vaihe-eroa Koska vastukselle Q = 0 VAr, vastuksen pätöteho ja näennäisteho ovat yhtäsuuret. Käämin teho on aina pelkkää loistehoa, koska käämin jännitteen ja virran välillä on 90 :n vaihe-ero. Käämin loisteho on positiivinen, koska jännitteen vaihekulma on aina virran vaihekulmaa suurempi. Koska loisteho on positiivinen, käämi ottaa loistehoa. Kuitenkin käämi välillä varastoi energiaa ja välillä palauttaa piiriin. Koska käämille P = 0 W, käämin loisteho ja näennäisteho ovat yhtäsuuret.
16 Vaihtosähkön teho ja passiiviset piirikomponentit Koska käämille P = 0 W, käämin loisteho ja näennäisteho ovat yhtäsuuret. Kondensaattorin teho on aina pelkkää loistehoa, koska kondensaattorin jännitteen ja virran välillä on 90 :n vaihe-ero. Kondensaattorin loisteho on negatiivinen, koska jännitteen vaihekulma on aina virran vaihekulmaa pienempi Koska loisteho on negatiivinen, kondensaattori tuottaa loistehoa. Koska kondensaaattorille P = 0 W, kondensaattorin loisteho ja näennäisteho ovat itseisarvoiltaan yhtäsuuret.
17 Kompleksinen teho Kompleksinen teho tarkoittaa näennäistehon osoitinta S = S ϕ U ϕ I = S cos(ϕ U ϕ I )+js sin(ϕ U ϕ I ) = P+jQ Jos impedanssin jännite on U ja virat I, miksi kompleksinen teho ei ole UI? S = UI = U ϕ U I ϕ I = UI ϕ U +ϕ I = S ϕ U +ϕ I Osoittimen pituus oikein, kulma väärin! Kun kompleksinen teho määritellään S = UI, saadaan kulmakin oikein S = UI = U ϕ U I ϕ I = UI ϕ U ϕ I = S ϕ U ϕ I
18 Kompleksinen tehokolmio Im S ϕ U ϕ I Q = Im(S) P = Re(S) Re S = UI = U ϕ U I ϕ I = UI ϕ U ϕ I = S ϕ U ϕ I
19 Kompleksinen teho piirikomponentille U ϕ U Z I ϕ I Kompleksinen teho S, pätöteho P, loisteho Q ja näennäisteho S: S = UI = U ϕ U I ϕ I = UI ϕ I ϕ U = P +jq P = Re(S) = Re(UI ϕ I ϕ U ) = UI cos(ϕ U ϕ I ) Q = Im(S) = Im(UI ϕ I ϕ U ) = UI sin(ϕ U ϕ I ) S = S = UI Kompleksiluku a ja sen konjugaatti a : a = 2+j5 = tan a = 2 j5 = tan
20 Esimerkki Laske kytkennän impedanssien kompleksiset tehot, näennäistehot, pätötehot ja loistehot. Minkälaisia komponentteja piirissä on? 2 90 Ω 10 0 V Ω 5 j3ω
21 Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla.
22 Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I )
23 Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Siirtoverkko täytyy mitoittaa huipputehon mukaan, pyritään tasaiseen tehonvirtaukseen. Symmetrisissä kolmivaihejärjestelmissä kuormaan syötetty pätöteho on vakio!
24 Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Siirtoverkko täytyy mitoittaa huipputehon mukaan, pyritään tasaiseen tehonvirtaukseen. Symmetrisissä kolmivaihejärjestelmissä kuormaan syötetty pätöteho on vakio! Kolmivaihejärjestelmin analyysi ei ole merkittävästi monimutkaisempaa, kuin 1-vaihejärjestelmän, silloin kuin järjestelmä on symmetrinen.
25 Kolmivaihejärjestelmät Nikola Tesla keksi monivaiheisen sähkönsiirtojärjestelmän edut 1800-luvun lopulla. Yksivaihejärjestelmässä teho värähtelee kaksinkertaisella taajuudella P(t) = U I cos(ϕ U ϕ I ) U I cos(2ωt +ϕ U +ϕ I ) Siirtoverkko täytyy mitoittaa huipputehon mukaan, pyritään tasaiseen tehonvirtaukseen. Symmetrisissä kolmivaihejärjestelmissä kuormaan syötetty pätöteho on vakio! Kolmivaihejärjestelmin analyysi ei ole merkittävästi monimutkaisempaa, kuin 1-vaihejärjestelmän, silloin kuin järjestelmä on symmetrinen. Käytännössä järjestelmiä pyritään käyttämään siten, että vaiheiden väliset kuormat ovat tasapainossa ja tällöin järjestelmä toimii symmetrisesti.
26 Kolmivaihesähkön tuottaminen Sähköenergiaa tuotetaan pääasiassa kolmivaihegeneraattoreilla. Näiden käämien napajännittet ovat U R = Ûsin(ωt) U S = Ûsin(ωt 120 ) U T = Ûsin(ωt 240 ) Tärkeää on huomata, että symmetrisessä kolmivaihejärjestelmässä jännitteiden välillä on 120:n vaihe-erot ja huippuarvot ovat samat.
27 Eurooppalainen kolmivaihejärjestelmä on kytketty myötäpäivään R S T Tällä on merkitystä 3-vaihe moottorien pyörimissuunnalle. Samalla tavalla käämitty moottori pyörii erisuuntiin USAssa ja Euroopassa!
28 Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. U R + R I R Z U S U T + + S T U R U S I S I T Z Z T R N U T S
29 Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. R I ST U TR U ST S T U S I ST Z Z Z I TR T R U RS U R N U T S
30 Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. Vaiheen ja nollan välistä jännitettä kutsutaan vaihejännitteellä. Kahden vaiheen välistä jännitettä kutsutaan pääjännitteellä: U RS = U R U S = U R U R = (1 cos( 120 ) sin( 120 )j)u R ( ) 3 3 = j U R = 3 30 U R ja vastaavasti muut. Eli pääjännitteen itseisarvo on 3 kertaa vaihejännitteen itseisarvo ja välillä on 30 vaihe-ero.
31 Kytketyt kolmivaihejärjestelmät Kolmivaihejärjestelmä voidaan kytkeä kahdella eri tavalla: tähteen Y tai kolmioon. Piirejä voidaan siis kytkeä neljällä eri tavalla kolmioon ja/tai tähteen lähde ja/tai kuorma. Ns. kolmiotähtimuunnoksella voidaan aina siirtyä tähti-tähti esitykseen (ks. kotisivut Piirianalyysi 1 pruju) ja symmetrisiä kolmivaihejärjestelmiä analysoitaessa voidaan rajoittua 1-vaiheisiin sijaiskytkentöihin, jotka esittävät tähtikytkennän yhtä vaihetta.
32 Esimerkki Symmetrinen tähtikytketty 3-vaihegeneraattori, jonka napajännite on 230 V rms ja vaihejärjestys on myötäpäivään syöttää tähtikytkettyä kuormaa, jonka impedanssi on j Ω. Siirtolinjan impedanssi on j Ω. Piirrä järjestelmän yksivaiheinen sijaiskytkentä ja määritä mikä on generaattorin syöttämä pätöteho ja loisteho.
33 Kolmivaihejärjestelmässä siirtyvä teho on vakio ajan suhteen Aikaisemmin teho ajan funktiona oli (nyt yhtä vaihetta kohti) P R (t) = U R (t)i R (t) = ÛÎ cosϕ ÛÎ cos(2ωt ϕ)
34 Kolmivaihejärjestelmässä siirtyvä teho on vakio ajan suhteen Eli kokonaistehoksi saadaan P tot = P R (t)+p S (t)+p T (t) = ÛÎ cosϕ ÛÎ cos(2ωt ϕ) +ÛÎ cosϕ ÛÎ cos(2ωt ϕ 120 ) +ÛÎ cosϕ ÛÎ cos(2ωt ϕ 240 ) = 3ÛÎ cosϕ ÛÎ [cos(2ωt ϕ)+cos(2ωt ϕ 120 )+cos(2ωt ϕ 240 )] ja vähän trigonometriaa osoittaa, että [ ] = 0, jolloin tehoksi jää vakio, joka on kolme kertaa yhden vaiheen keskimäärinen teho.
35 Kolmivaihejärjestelmässä siirtyvä teho on vakio ajan suhteen HUOM! Kolmivaihejärjestelmässä (niin kuin 1-vaihejärjestelmässäkin) joudutaan siirtämään loistehoa varten virtaa. Tämä generoi häviöitä siirtoverkossa ja isot teollisuusyritykset joutuvat maksamaan loistehosta (joka yleensä johtuu sähkömoottoreista). Loistehoa voi kompensoida asentamalla kuorman yhteyteen kondensaattoripankkeja.
36 Yhteenveto Kompleksinen teho S ja näennästeho S tehokolmio Loisteho Q Kompleksisen tehon imaginääriosa kondensaattori tuottaa käämi kuluttaa Symmetriset kolmivaihejärjestelmät - amplitudit ja vaihe-erot - pääjännite - vaihejännite - vakio tehon siirto - kätisyys Pätöteho P Kompleksisen tehon reaaliosa vastukset
37 Yhteenveto piiriteoriaosuudesta tällä kurssilla Virta, jännite, potentiaali, varaus, työ, teho Kirchhoffin virtaja jännitelaki Kerrostamissilmukkavirta- ja solmupistemenetelmä Theveninin ekvivalentti Vastus, käämi, kondensaattori ja näiden virta-jännite yhtälöt Vaihtosähköpiirien analyysi kompleksiluvuilla, impedanssit, keskinäisinduktanssi Vaihtosähkön teho: Pätö, lois, näennäis Symmetriset kolmivaihejärjestelmät
SMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka
LisätiedotSinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla
LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
LisätiedotS Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
LisätiedotKolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015
Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotSähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014
Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Laboratoriotyöt Ti 8 10, Ti 10 12, To 10 12, Pe 8 10 (vain A) 4 labraa joka toinen viikko, 2 h 15 min, ei koeviikolla. Labrat alkavat ryhmästä riippuen
LisätiedotSÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-4 2017, Kimmo Silvonen Osa IV, 9.10.2017 1 Vaihtovirran teho ja kompleksinen teho Tasavirran tehon kaava pätee myös vaihtovirran ja vaihtojännitteen hetkellisarvoille,
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,
LisätiedotSATE1040 Piirianalyysi IB kevät /6 Laskuharjoitus 5: Symmetrinen 3-vaihejärjestelmä
1040 Piirianalyysi B kevät 2016 1 /6 ehtävä 1. lla olevassa kuvassa esitetyssä symmetrisessä kolmivaihejärjestelmässä on kaksi konetta, joiden lähdejännitteet ovat vaihejännitteinä v1 ja v2. Järjestelmä
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,
LisätiedotKondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin
LisätiedotKondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)
LisätiedotAktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)
LisätiedotKuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
LisätiedotLuento 2. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
LisätiedotLuku 13. Vaihtovirrat Sinimuotoinen vaihtojännite
Luku 13 Vaihtovirrat 13.1 Sinimuotoinen vaihtojännite Vaihtojännitegeneraattorin toimintaperiaate on esitetty kappaleessa 10.7. Sen perusteella homogeenisessa magneettikentässä pyörivään johdinsilmukkaan
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
LisätiedotLineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
Lisätiedot14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
LisätiedotErään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.
DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
LisätiedotElektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X
TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy
Lisätiedot( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset
SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,
LisätiedotKuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite
TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori.
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotKun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.
DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla
Lisätiedot215.3 MW 0.0 MVR pu MW 0.0 MVR
Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien
SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että
LisätiedotELEC-E8419 syksy 2016 Jännitteensäätö
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on
LisätiedotDEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä
LisätiedotDEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Theveninin ja Nortonin ekvivalentit, kuorman maksimiteho Luennon keskeinen termistö ja tavoitteet Theveninin ekvivalentti Nortonin ekvivalentti kuorman
Lisätiedot2.2 Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W tot saadaan lausekkeesta ( )
DEE- Piirianalyysi, kesäkurssi, harjoitus (3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t t () ()()
LisätiedotLuento 2. SMG-2100 Sähkötekniikka Risto Mikkonen
SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)
LisätiedotSMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet
SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:
LisätiedotMitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.
Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin
LisätiedotSÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotLuento 6. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä
LisätiedotSinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
LisätiedotPassiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
LisätiedotR = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotRCL-vihtovirtapiiri: resonanssi
CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn
LisätiedotSATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015
1 SAT1050 PANAYYS / MAAT VSAPUSTO: APA, MATAB JA SMUNK -HAJOTUSTYÖ / SYKSY 2015 Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-, Matab ja Simulink simulointiohjelmistojen ominaisuuksiin ja
LisätiedotSATE1040 PIIRIANALYYSI I / MAARIT VESAPUISTO: APLAC -HARJOITUSTYÖ / KEVÄT RYHMÄ 4: Luoma, Tervo
1 SATE1040 PIIRIANALYYSI I / MAARIT VESAPUISTO: APLAC -HARJOITUSTYÖ / KEVÄT 2008 RYHMÄ 4: Luoma, Tervo Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-simulointiohjelmiston ominaisuuksiin
LisätiedotMagneettinen energia
Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee
LisätiedotTasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q
EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,
LisätiedotLuento 2. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,
LisätiedotSMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset
SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen
LisätiedotFYS206/5 Vaihtovirtakomponentit
FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
Lisätiedot521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.11 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti.1.11: tehtävät 1,3,5,6,1. 1. välikoe: tehtävät 1,,3,4,5.. välikoe: tehtävät 6,7,8,9,1. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,
LisätiedotIMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet
1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.
LisätiedotKirchhoffin jännitelain perusteella. U ac = U ab +U bc U ac = U ad +U dc. U ac = R 1 I 12 +R 2 I 12 U ac = R 3 I 34 +R 4 I 34, ja I 34 = U ac
1.1 a U ac b U bd c voimessa siltakytkennässä tunnetaan resistanssit,, ja sekä jännite U ac. Laske jännite U bd kun 30 Ω 40 Ω 40 Ω 30 Ω U ac 5V. d U ab U ac U bc Kirchhoffin jännitelain perusteella I 12
Lisätiedot1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
LisätiedotLoistehon kompensointi
OHJE 1 (5) Loistehon kompensointi Yleistä Monet kulutuslaitteet tarvitsevat pätötehon lisäksi loistehoa. Moottoreissa ja muuntajissa työn tekee pätöteho. Loistehoa tarvitaan näissä toiminnalle välttämättömän
LisätiedotScanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
LisätiedotSÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015
SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
LisätiedotKaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I
Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä
LisätiedotELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus
LisätiedotSÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
LisätiedotSähkövirran määrittelylausekkeesta
VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.
LisätiedotS Suuntaajatekniikka Tentti
S - 81.3110 Suuntaajatekniikka Tentti 28.5.2008 1. Siniohjatun syklokonvertterin ohjaussuhde r = 0,6. Millä ohjauskulma-alueella suuntaajia ohjataan, kun kuormituksen tehokerroin on 1, 0,7 tai -1? Miten
LisätiedotKatso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/
4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA A KTONKKA Kimmo Silvonen Tentti 20.5.200: tehtävät,3,5,6,8.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.)
Lisätiedotd+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen
MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,
LisätiedotFy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7
Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/6 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.
LisätiedotTTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.
TTY FYS-1010 Fysiikan työt I 25.1.2010 205348 Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Vaihtosähköpiiri..................................
Lisätiedot3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.
Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen
LisätiedotVIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;
VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen
LisätiedotLasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on
ELEC-E849. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0, ohm/km ( ohmia/johto). Kunkin johdon virta on 000. Jätä rinnakkaiskapasitanssit
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
Lisätiedota P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
Lisätiedot1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Sähkövoimatekniikka, kolmivaihejärjestelmä Luento, v. 2 Sähköliittymä, pistorasiat Kolmivaihejärjestelmä ja voimavirta Tähti- ja kolmiokytkentä Yksivaiheinen
Lisätiedot