802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77
Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on irrationaalinen. (Myös ei-rationaaliset p-adiset (p P) luvut ovat irrationaalisia eli luku α C p \ Q on irrationaalinen, missä C p on kompleksilukujen kuntaa C vastaava p-adisten lukujen kunta.) Esimerkki 1 5 / Q. (1.1) LUKUTEORIA 2 / 77
Irrationaaliluvuista I todistus. Jos, olisi niin 5 = m n Q, m n, (1.2) 5n 2 = m 2 5 m 2 5 m (1.3) 5 2 m 2 = 5n 2 5 n 2 5 n. (1.4) Selvästi tulokset (1.3) ja (1.4) ovat ristiriidassa valinnan m n kanssa. LUKUTEORIA 3 / 77
Irrationaaliluvuista II todistus. Jos, olisi m 5 = Q, m n, (1.5) n niin sellaiset luvut s, t Z, että 1 = sm + tn. (1.6) Siten 5 = sm 5 + tn 5 = s5n + tm Z (1.7) mutta Ristiriita. 2 < 5 < 3. (1.8) LUKUTEORIA 4 / 77
Irrationaaliluvuista Määritelmä 2 Luku m Z on neliövapaa (square-free), jos ehdosta a 2 m, a Z, välttämättä seuraa a 2 = 1. Tulos (1.1) yleistyy tulokseksi (Harjoitustehtävä 46) Lause 1 Olkoon D Z, D 1, neliövapaa. Tällöin D / Q. (1.9) LUKUTEORIA 5 / 77
Irrationaaliluvuista Esimerkki 2 Todistus. Jos olisi niin mikä on mahdotonta. log 2 log 3 / Q. (1.10) log 2 log 3 = a b, a, b Z+, (1.11) 2 b = 3 a 2 3 a 2 3 (1.12) LUKUTEORIA 6 / 77
Irrationaaliluvuista Esimerkki 3 log 2 / Q. (1.13) Ei todisteta. Todistus huomattavasti vaikeampi kuin Esimerkissä 2. Lause 2 Olkoot n Z 3 ja r Q +. Tällöin n 1 + r n / Q. (1.14) Todistus perustuu Wilesin tulokseen (??). LUKUTEORIA 7 / 77
Irrationaaliluvuista Tiedetään, että Neperin luvulle e pätee ( e = lim 1 + 1 ) n = n n k=0 1 k!. (1.15) Lause 3 Neperin luku e on irrationaalinen. I Todistus. Olkoon siis vastaoletuksena e = a b Q, a, b Z+, a b. (1.16) LUKUTEORIA 8 / 77
Irrationaaliluvuista Valitaan sellainen kokonaisluku m, että m Z +, b m (1.17) ja merkitään Aluksi huomataan, että A = m! ( e m k=0 ) 1. (1.18) k! A = m!a b m! m k=0 1 Z. (1.19) k! Toisaalta A = m! k=m+1 1 k!, (1.20) LUKUTEORIA 9 / 77
Irrationaaliluvuista joten saadaan arviot ( ) 1 0 < A = m! (m + 1)! + 1 (m + 2)! + 1 (m + 3)! +... 1 m + 1 + 1 (m + 1)(m + 2) + 1 (m + 1)(m + 2)(m + 3) +... = ( 1 + 1 ) m + 2 + 1 (m + 2)(m + 3) +... < ( 1 1 + 1 ) m + 1 m + 1 + 1 (m + 1) 2 +... = 1 1. (1.21) m 1 m + 1 Siten A Z ja 0 < A < 1, jotka ovat ristiriidassa. = LUKUTEORIA 10 / 77
Irrationaaliluvuista II Todistus. e 1 ( 1) k =. (1.22) k! k=0 Olkoon siis vastaoletuksena e 1 = b a Q, a, b Z+, a b. (1.23) Valitaan sellainen kokonaisluku m, että m Z +, a m (1.24) ja merkitään ( ) m B = m! e 1 ( 1) k. (1.25) k! k=0 LUKUTEORIA 11 / 77
Irrationaaliluvuista Aluksi huomataan, että B = m!b a m m! ( 1) k k! k=0 Z. (1.26) Toisaalta B = m! k=m+1 ( 1) k. (1.27) k! LUKUTEORIA 12 / 77
Irrationaaliluvuista Käytetään alternoivien sarjojen ominaisuuksia. Olkoon r n > r n+1 > r n+2 >... > 0, r n 0, (1.28) ja s n := r n r n+1 + r n+2 r n+3 +... (1.29) Tällöin 0 < s n = r n s n+1 < r n. (1.30) Sovelletaan tulosta (1.30), kun r n = 1 n!. LUKUTEORIA 13 / 77
Irrationaaliluvuista Nyt esityksestä (1.27) saadaan B = m! k=m+1 ( 1) k k! = m! ( 1) m+1 (r m+1 r m+2 + r m+3 r m+4 +...) = m!s m+1 (1.31) Siispä 0 < B = m!s m+1 < m!r m+1 = m! (m + 1)! = 1 m + 1 1 2. (1.32) Siten B Z ja 0 < B < 1, jotka ovat ristiriidassa. LUKUTEORIA 14 / 77
Antiikin lukuja Kolmio- neliö- ja tetraedriluvut Lukuja T n = 1 + 2 + + n kutsutaan kolmioluvuiksi (triangular numbers). Aritmeettisen sarjan summakaavalla ja binomikertoimen määritelmällä saadaan ( ) n + 1 T n = kaikilla n Z +. 2 Lukuja n = n 2 kutsutaan neliöluvuiksi (square numbers). Lukuja T n = T 1 + T 2 + + T n kutsutaan tetraedriluvuiksi (tetrahedral numbers). Käyttämällä Pascalin kolmion palautuskaavaa (??) saadaan T n = n ( ) k + 1 = 2 k=1 n (( ) ( )) ( ) k + 2 k + 1 n + 2 =. (2.1) 3 3 3 k=1 LUKUTEORIA 15 / 77
Antiikin lukuja Pythagoraan luvut Määritelmä 3 Kolmikko (a, b, c) Z 3 1 mikäli syt(a, b, c) = 1 ja on primitiivinen Pythagoraan lukukolmikko, a 2 + b 2 = c 2. (2.2) Tutkitaan ensin pariteettia. Oletetaan aluksi, että mistä saadaan 2 a ja 2 b, 2 c 2 2 c, ristiriita. Muut parit vastaavasti, eli ainakin kaksi luvuista on parittomia. Edelleen, jos olisi a = 2l + 1 ja b = 2k + 1 c 2 = a 2 + b 2 2 (mod 4), ristiriita. LUKUTEORIA 16 / 77
Antiikin lukuja Pythagoraan luvut Siis toinen luvuista a ja b on parillinen, muut parittomia. Olkoon vaikka Nyt kaikille alkuluvuille p pätee Vastaavasti muille pareille, joten a = 2l + 1 ja b = 2k. p a ja p b p c 2 p c, ristiriita. syt(a, b) = syt(a, c) = syt(b, c) = 1. Lähdetään yhtälöstä (23.7), joka on yhtäpitäävää yhtälön kanssa Koska 2 a, niin a = r i=1 a 2 = (c b)(c + b) p α i i 2 p i P i = 1, 2,..., r. LUKUTEORIA 17 / 77
Antiikin lukuja Pythagoraan luvut Valitaan jolloin Jos p α i i a p 2α i i (c b)(c + b). p i c b ja p i c + b p i 2c ja p i 2b p i c ja p i b, ristiriita. Siis joko p 2α i i c b tai p 2α i i c + b. LUKUTEORIA 18 / 77
Antiikin lukuja Pythagoraan luvut c b = j J ( p 2α j j = c + b = l L p 2α l l = j J ( l L p α j j p α l l ) 2 ja ) 2, missä J L = {1, 2,..., r} J L =. Huomaa, että b on parillinen ja c pariton, eli 2 c b ja 2 c + b, ja että syt(c b, c + b) = 1. Nyt siis on olemassa sellaiset luonnolliset luvut s ja t, syt(s, t) = 1, että LUKUTEORIA 19 / 77
Antiikin lukuja Pythagoraan luvut { c + b = s 2 c b = t 2 {c = s2 +t 2 2 b = s2 t 2 2 a 2 = s 2 t 2 a = st. Osoita vielä laskemalla, että kolmikko ja (a, b, c) = (st, s2 t 2 toteuttaa Pythagoraan yhtälön (2.2). Saadaan siis seuraava 2, s2 + t 2 ) (2.3) 2 LUKUTEORIA 20 / 77
Antiikin lukuja Pythagoraan luvut Lause 4 Yhtälön a 2 + b 2 = c 2 (2.4) primitiiviset ratkaisut saadaan parametrimuodossa a = st, b = s2 t 2 2, (2.5) c = s2 +t 2 2, missä s, t 2Z + 1, s > t 1 ja syt(s, t) = 1. LUKUTEORIA 21 / 77
Antiikin lukuja Pythagoraan luvut Esimerkki 4 Olkoon t = 1. Annetaan luvulle s parittomia arvoja s = 3 3 2 + 4 2 = 5 2 s = 5 5 2 + 12 2 = 13 2. s = 2m + 1 (2m + 1) 2 + (4T m ) 2 =. (2m 2 + 2m + 1) 2. LUKUTEORIA 22 / 77
Antiikin lukuja Pythagoraan luvut Esimerkki 5 Olkoon t = 2k 1 ja s = 2k + 1. Nyt a = 4k 2 1, b = 4k, c = 4k 2 + 1. Saatiin siis ratkaisu, missä c a = 2. LUKUTEORIA 23 / 77
Antiikin lukuja Heronin luvut Määritelmä 4 Neliövapaa luku n Z + on Heronin luku eli kongruentti luku, jos sellaiset rationaaliluvut A, B, C Q +, että { A 2 + B 2 = C 2 ; n = AB 2. (2.6) Lause 5 Neliövapaa luku n Z + on kongruentti luku on olemassa sellaiset kokonaisluvut d, s, t Z +, että { s, t 2Z + 1, s > t 1, s t; 4nd 2 = st(s 2 t 2 ). (2.7) LUKUTEORIA 24 / 77
Antiikin lukuja Heronin luvut Todistus. : Siis (2.6) toteutuu. Olkoon d := p.y.j(den A, den B, den C), a := da, b := db, c := dc Z +, (2.8) jolloin { a 2 + b 2 = c 2 ; s.y.t.(a, b, c) = 1. (2.9) LUKUTEORIA 25 / 77
Antiikin lukuja Heronin luvut Siten Lauseen 4 nojalla on olemassa sellaiset s, t 2Z + 1, että s > t 1, syt(s, t) = 1 ja a = st, b = s2 t 2 2, (2.10) c = s2 +t 2 Edelleen 2. n = AB 2 = 1 st s 2 t 2 2 d 2d 4nd 2 = st(s 2 t 2 ). (2.11) LUKUTEORIA 26 / 77
Antiikin lukuja Heronin luvut : Valitaan A := st d ; B := s2 t 2 2d ; (2.12) C := s2 +t 2 2d. Tällöin saadaan { A 2 + B 2 =... = C 2, n =... = AB 2. (2.13) Joten (2.6) toteutuu. LUKUTEORIA 27 / 77
Antiikin lukuja Heronin luvut Esimerkki 6 Olkoot A = 3 2, B = 20 3, C = 41 6. (2.14) Tällöin { A 2 + B 2 = C 2, AB 2 = 5, (2.15) joten n = 5 on Heronin luku. LUKUTEORIA 28 / 77
Antiikin lukuja Heronin luvut Heronin lukuja: 5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41,... Huomautus 1 Heronin luvut liittyvät elliptisiin käyriin y 2 = x 3 n 2 x. (2.16) LUKUTEORIA 29 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Määritelmä 5 Luvut f 0 = 0, f 1 = 1 ja palautuskaava (eli rekursio) f n+2 = f n+1 + f n, n N, (3.1) muodostavat Fibonaccin luvut ja luvut l 0 = 2, l 1 = 1 sekä palautuskaava l n+2 = l n+1 + l n, n N, (3.2) muodostavat Lucasin luvut. Siten Fibonaccin lukuja ovat f 0 = 0, f 1 = 1, f 2 = 1, f 3 = 2, f 4 = 3, f 5 = 5, f 6 = 8, f 7 = 13,... (3.3) ja Lucasin lukuja ovat l 0 = 2, l 1 = 1, l 2 = 3, l 3 = 4, l 4 = 7, l 5 = 11, l 6 = 18, l 7 = 29,... (3.4) LUKUTEORIA 30 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Ratkaistaan rekursio v n+2 = v n+1 + v n, n N, (3.5) yritteellä Rekursiosta (3.5) saadaan v n = x n, x C. (3.6) jonka ratkaisut ovat x n+2 = x n+1 + x n x 2 x 1 = 0, (3.7) α = 1 + 5 2, β = 1 5. (3.8) 2 LUKUTEORIA 31 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Lause 6 Olkoot a, b C. Tällöin on rekursion (3.5) ratkaisu. Todistus. Suoraan laskemalla saadaan F n = aα n + bβ n (3.9) F n+2 = aα n+2 + bβ n+2 = a(α n+1 + α n ) + b(β n+1 + β n ) = aα n+1 + bβ n+1 + aα n + bβ n = F n+1 + F n. (3.10) LUKUTEORIA 32 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Siten Fibonaccin luvut ovat muotoa f n = aα n + bβ n, (3.11) mistä saadaan f 0 = aα 0 + bβ 0, f 1 = aα 1 + bβ 1. (3.12) Sijoitetaan alkuarvot f 0 = 0 ja f 1 = 1 yhtälöön (3.12), josta a + b = 0, a 1 + 5 2 + b 1 5 2 = 1 (3.13) ja siten a = 1/ 5 ja b = 1/ 5. Vastaavasti Lucasin luvuille ja siten saadaan. LUKUTEORIA 33 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Lause 7 Fibonaccin ja Lucasin luvut voidaan esittää Binet n kaavoilla (( ) n ( ) n ) f n = 1 5 l n = ( 1 + 5 2 1 5 2, (3.14) 1 + ) n ( 5 1 ) n 5 +. (3.15) 2 2 Siis missä Huomaa, että f n = 1 5 (α n β n ), l n = (α n + β n ), (3.16) α = 1 + 5 2, β = 1 5. (3.17) 2 αβ = 1, α + β = 1, α β = 5. (3.18) LUKUTEORIA 34 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Lause 8 l n = f 2n f n. (3.19) Todistus. Suoraan laskemalla f 2n f n = α2n β 2n α n β n = α n + β n = l n. (3.20) LUKUTEORIA 35 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Huomautus 2 Rekursioilla saadaan tarkat arvot nopeasti (laskennallinen kompleksisuus). Mutta eksplisiittisistä esityksistä (3.14) ja (3.15) saadaan likiarvo nopeasti, jolloin voi soveltaa seuraavaa tulosta. Lause 9 f 2k = α 2k 5 k N, (3.21) f 2k+1 = α 2k+1 5 k N. (3.22) LUKUTEORIA 36 / 77
Fibonaccin ja Lucasin luvut Rekursio ja Binet n kaava Todistus. Aluksi haetaan likiarvot. Koska α = 1 + 5 2 = 1.6180..., (3.23) ja α 1 = α 1 = 0.6180..., niin Siten Tarkemmin laskareissa. β = 1 5 2 = 1 α = 0.6180... (3.24) β n / 5 < 1 n N. (3.25) LUKUTEORIA 37 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Olkoon Lasketaan potensseja F = F 2 = F 3 = ( ) 1 1 = 1 0 ( ) 2 1 = 1 1 ( ) 3 2 = 2 1 Jolloin huomataan, että alkioiksi tulee Fibonaccin lukuja. ( ) f2 f 1. (3.26) f 1 f 0 ( ) f3 f 2, (3.27) f 2 f 1 ( ) f4 f 3. (3.28) f 3 f 2 LUKUTEORIA 38 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Sovitaan vielä, että f 1 = 1, sillä tällöin pätee f 1 = f 0 + f 1. (3.29) Nyt F 0 = I = ( ) ( ) 1 0 f1 f = 0. (3.30) 0 1 f 0 f 1 Lause 10 Olkoon Tällöin ( fn+1 f F n = n f n f n 1 ). (3.31) F n = F n n N. (3.32) LUKUTEORIA 39 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Todistus. Induktiolla. Tapaukset n = 0 ja n = 1 kohdista (3.26) ja (3.30). Induktio-oletus: Identiteetti (3.32) pätee, kun n = k. Induktioaskel; Lasketaan ( ) ( ) F k+1 = F 1 F k 1 1 fk+1 f = k = (3.33) 1 0 f k f k 1 ( ) ( ) fk+1 + f k f k + f k 1 fk+2 f = k+1 = F k+1. (3.34) f k+1 f k f k+1 f k LUKUTEORIA 40 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Lause 11 Olkoot n, m N, tällöin f n+m+1 = f n+1 f m+1 + f n f m, (3.35) f 2m+1 = f 2 m+1 + f 2 m, (3.36) f 2m = f m (f m+1 + f m 1 ). (3.37) LUKUTEORIA 41 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Todistus. Sovelletaan identiteettiä F n+m = F n+m = F n F m = F n F m, (3.38) jolloin ( fn+m+1 f n+m f n+m ( fn+1 f n f n f n 1 f n+m 1 ) ( fm+1 f m f m ) = (3.39) f m 1 ) = (3.40) ( ) fn+1 f m+1 + f n f m f n+1 f m + f n f m 1. (3.41) f n f m+1 + f n 1 f m f n f m + f n 1 f m 1 Vertaamalla matriisien (3.39) ja (3.41) vastinalkioita saadaan (3.35), josta edelleen saadaan (3.36) ja (3.37). LUKUTEORIA 42 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Lause 12 Olkoon n N, tällöin f n+1 f n 1 f 2 n = ( 1) n. (3.42) Todistus. Otetaan determinantit tuloksesta (3.32), jolloin f n+1 f n = 1 1 n 1 0. (3.43) f n f n 1 LUKUTEORIA 43 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Lause 13 Olkoon n N, tällöin lukujen f n+2 ja f n+1 Eukleideen algoritmin pituus on n. Edelleen syt(f n+1, f n ) = 1. (3.44) Todistus. Olkoot a = f n+2 ja b = f n+1, jolloin LUKUTEORIA 44 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys r 0 = a, r 1 = b 0 r 1 < r 0 r 0 = q 1 r 1 + r 2 = 1 r 1 + r 2 0 r 2 < r 1 sillä f n+2 = 1 f n+1 + f n r 1 = q 2 r 2 + r 3 = 1 r 2 + r 3 0 r 3 < r 2 sillä f n+1 = 1 f n + f n 1. r k = q k+1 r k+1 + r k+2 = 1 r k+1 + r k+2 0 r k+2 < r k+1 sillä f n+2 k = 1 f n+1 k + f n k. r n 2 = q n 1 r n 1 + r n = 1 r n 1 + r n 1 = r n < r n 1 = 2 sillä f 4 = 1 f 3 + f 2 r n 1 = q n r n = 2 1 LUKUTEORIA 45 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys siten Edelleen saadaan Seuraus 1 r n = syt(a, b) = 1. (3.45) r n = s n a + t n b 1 = s n f n+2 + t n f n+1, (3.46) missä s n ja t n saadaan palautuskaavoista s k+2 = s k q k+1 s k+1 = s k s k+1, (3.47) t k+2 = t k q k+1 t k+1 = t k t k+1 0 k n 2 (3.48) lähtien alkuarvoista s 0 = t 1 = 1, s 1 = t 0 = 0. LUKUTEORIA 46 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Esimerkki 7 Olkoot n = 5, f 7 = 13, f 6 = 8, jolloin q 1 =... = q 4 = 1 ja q 5 = 2. Siten s 2 = 1, s 3 = 1, s 4 = 2, s 5 = 3,... t 5 = 5 ja 1 = ( 3) 13 + 5 8 = f 5 f 6 f 4 f 7. (3.49) Lause 14 Olkoon a, b Z + annettu, tällöin Eukleideen algoritmin pituudelle n pätee n log a/ log((1 + 5)/2)). (3.50) LUKUTEORIA 47 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Eukleideen algoritmissa r 0 = a, r 1 = b 0 < r 1 < r 0 r 0 = q 1 r 1 + r 2 0 < r 2 < r 1. r k = q k+1 r k+1 + r k+2 0 < r k+2 < r k+1. r n 2 = q n 1 r n 1 + r n r n 1 = q n r n + 0 0 < r n < r n 1 osamäärien kokonaisosille pätee q k 1 kaikilla k. LUKUTEORIA 48 / 77
Fibonaccin ja Lucasin luvut Matriisiesitys Täten r n 1 = f 2, (3.51) r n 1 2 = f 3, (3.52) r n 2 1 r n 1 + r n f 3 + f 2 = f 4. (3.53) Edelleen induktiolla saadaan r n h f h+2 h = 0, 1,..., n (3.54) ja siten a = r 0 f n+2 ((1 + 5)/2) n. (3.55) Epäyhtälön (3.55) todistus laskareissa. LUKUTEORIA 49 / 77
Fibonaccin ja Lucasin luvut Generoiva sarja Olkoon F (z) = f k z k (3.56) sarja, jolle haetaan lauseke tunnettujen funktioiden avulla. Vaihdetaan aluksi summausindeksi k = n + 2, jolloin F (z) = k=0 f n+2 z n+2 + f 1 z + f 0. (3.57) n=0 Seuraavaksi käytetään rekursiota (3.1), jolloin F (z) = z z f n+1 z n+1 + z 2 f n z n + f 1 z + f 0 = n=0 n=0 f k z k + z 2 f k z k + f 1 z + f 0 = k=1 k=0 z(f (z) f 0 ) + z 2 F (z) + z. (3.58) LUKUTEORIA 50 / 77
Fibonaccin ja Lucasin luvut Generoiva sarja Yhtälöstä (3.58) saadaan ratkaisu Lause 15 Sarjalla on esitys rationaalifunktiona F (z) = F (z) = F (z) = z 1 z z 2. (3.59) f k z k (3.60) k=0 z 1 z z 2. (3.61) LUKUTEORIA 51 / 77
Fibonaccin ja Lucasin luvut Generoiva sarja Määritelmä 6 Sarja F (z) = f k z k (3.62) k=0 on Fibonaccin lukujen generoiva sarja ja funktio F (z) = on Fibonaccin lukujen generoiva funktio. Määritelmä 7 Polynomi on rekursion (3.1) karakteristinen polynomi. z 1 z z 2 (3.63) K(x) = K f (x) = x 2 x 1 (3.64) LUKUTEORIA 52 / 77
Fibonaccin ja Lucasin luvut Generoiva sarja Huomaa, että joten F (z) = K f (x) = (x α)(x β), (3.65) 1/z (1/z) 2 1/z 1 = 1/z K(1/z) = 1/z (1/z α)(1/z β) = z (1 αz)(1 βz). (3.66) Jaetaan (3.66) osamurtoihin ja käytetään geometrisen sarjan summakaavaa, jolloin LUKUTEORIA 53 / 77
Fibonaccin ja Lucasin luvut Generoiva sarja F (z) = 1 ( 1 5 1 αz 1 ) = 1 βz 1 (α k β k) z k = f k z k. (3.67) 5 k=0 k=0 Vertaamalla sarjojen kertoimia saadaan jälleen Binet n esitys (3.14). LUKUTEORIA 54 / 77
Fibonaccin ja Lucasin luvut Laajennus negatiivisiin indekseihin Lauseiden 16, 17, 18 ja 19 todistuksia ei vaadita kokeessa. Sallitaan Fibonaccin lukujen palautuskaavassa f k+2 = f k+1 + f k (3.68) negatiiviset indeksit, jolloin asettamalla k = 1, 2,..., saadaan f 1 = f 0 + f 1 f 1 = 1, (3.69) f 0 = f 1 + f 2 f 2 = 1, (3.70) f 1 = f 2 + f 3 f 3 = 2,... (3.71) Sijoitetaan k = n rekursioon (3.68), jolloin f n = f (n 1) + f (n 2). (3.72) LUKUTEORIA 55 / 77
Fibonaccin ja Lucasin luvut Laajennus negatiivisiin indekseihin Lause 16 f n = ( 1) n+1 f n n N. (3.73) Todistus. Induktiolla käyttäen rekursiota (3.72). Äskeisen tuloksen nojalla Lause 10 laajenee myös negatiiviselle puolelle. Lause 17 Olkoon Tällöin ( fn+1 f F n = n f n f n 1 ). (3.74) F n = F n n Z. (3.75) LUKUTEORIA 56 / 77
Fibonaccin ja Lucasin luvut Laajennus negatiivisiin indekseihin Todistus. n 0 kts. Lause 10. n 0. Alkuaskel: n = 1. Aluksi määrätään käänteismatriisi ( ) F 1 0 1 = 1 1 (3.76) ja toisaalta Sitten induktio. ( ) f0 f F 1 = 1 = f 1 f 2 ( ) 0 1. (3.77) 1 1 LUKUTEORIA 57 / 77
Fibonaccin ja Lucasin luvut Laajennus negatiivisiin indekseihin Edelleen, Lauseet 11 ja 12 laaajenevat negatiivisiin indekseihin. Lause 18 Olkoot n, m Z, tällöin f n+m+1 = f n+1 f m+1 + f n f m, (3.78) f 2m+1 = fm+1 2 + fm, 2 (3.79) f 2m = f m (f m+1 + f m 1 ). (3.80) Huomaa, että (3.78) on yhtäpitävä kaavan f n+m = f n+1 f m + f n f m 1 (3.81) kanssa. LUKUTEORIA 58 / 77
Fibonaccin ja Lucasin luvut Laajennus negatiivisiin indekseihin Lause 19 Olkoon n Z, tällöin f n+1 f n 1 f 2 n = ( 1) n. (3.82) LUKUTEORIA 59 / 77
Fibonaccin ja Lucasin luvut Jaollisuustuloksia Lause 20 Olkoot n, r, N, M Z, tällöin ja jos (M, N) = d, niin ja jos M N, niin f n f rn, (3.83) (f M, f N ) = f d (3.84) f M f N f MN. (3.85) LUKUTEORIA 60 / 77
Fibonaccin ja Lucasin luvut Jaollisuustuloksia Todistus. Kohta (3.83). Relaatiosta (3.80) saadaan joten saadaan induktion alkuaskel Sijoitetaan m = rn yhtälöön (3.81), jolloin f 2n = f n (f n+1 + f n 1 ), (3.86) f n f 2n. (3.87) f (r+1)n = f n+1 f rn + f n f rn 1, (3.88) jonka avulla saadaan induktioaskel ja siten (3.83) todistettua arvoilla r 1. Koska f 0 = 0, niin f n f 0 aina, kun n Z. Tapaus r 0 pienin säädöin vastaavasti. LUKUTEORIA 61 / 77
Fibonaccin ja Lucasin luvut Jaollisuustuloksia Kohta (3.84). Nyt M = dm ja N = dk, joillakin m, k Z. siten kohdan (3.83) nojalla f d f M, f d f N. (3.89) Lauseen?? nojalla on olemassa sellaiset r, s Z, että joten jälleen kaavan (3.81) nojalla d = rn + sm, (3.90) f d = f rn+sm = f rn+1 f sm + f rn f sm 1. (3.91) LUKUTEORIA 62 / 77
Fibonaccin ja Lucasin luvut Jaollisuustuloksia Jos, nyt niin kohdan (3.83) nojalla Täten kohdan (3.91) nojalla saadaan c f M, c f N, (3.92) c f sm, c f rn. (3.93) c f d. (3.94) Kohdan (3.89) nojalla f d on yhteinen tekijä ja kohdan (3.94) nojalla suurin tekijä. Kohta (3.85) laskarit. LUKUTEORIA 63 / 77
Fibonaccin ja Lucasin luvut f n (mod k) Tarkastellaan Fibonaccin jonoa (f n ) = (f n ) n=0 (mod k). Esimerkki 8 (f n ) (0, 1, 1, 0, 1, 1, 0, 1, 1,...) (mod 2). (3.95) (f n ) (0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1,...) (mod 3). (3.96) (f n ) (0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1,...) (mod 5). (3.97) (f n ) (0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7,...) (mod 10), (3.98) LUKUTEORIA 64 / 77
Fibonaccin ja Lucasin luvut f n (mod k) f 15 = f 30 = f 45 = f 60 0, f 61 = f 62 1 (mod 10). (3.99) Siten f 3+l f l (mod 2), l N. (3.100) f 8+l f l (mod 3), l N. (3.101) f 20+l f l (mod 5), l N. (3.102) f 60+l f l (mod 10), l N. (3.103) LUKUTEORIA 65 / 77
Fibonaccin ja Lucasin luvut f n (mod k) Määritelmä 8 Jonon (a l ) jakso on luku J = J a Z +, jolle pätee a l+j = a l l N. (3.104) Minimijakso= MJ a = min{j Z + J = jakso}. Olkoon J f = J f (k) Fibonaccin jonon jakso (mod k). Esimerkki 9 MJ f (2) = 3, MJ f (3) = 8, MJ f (5) = 20, MJ f (10) = 60. (3.105) LUKUTEORIA 66 / 77
Fibonaccin ja Lucasin luvut f n (mod k) Lause 21 Todistus. Tarkastellaan jonoa MJ f (k) k 2 k Z 2. (3.106) (f n ) Z k = {0,..., k 1} (3.107) Koska niin joukossa #Z 2 k = #{(a, b) a, b Z k} = k 2, (3.108) {(f l, f l+1 ) l = 0, 1,..., k 2 } (3.109) LUKUTEORIA 67 / 77
Fibonaccin ja Lucasin luvut f n (mod k) on sellaiset alkiot, että (f l, f l+1 ) = (f h, f h+1 ) (3.110) ja 0 l < h k 2. Olkoon J = h l, tällöin f l+j = f l, f l+j+1 = f l+1 (3.111) ja siten rekursion nojalla f n+j = f n n N, (3.112) missä 1 J k 2. Esimerkki 10 J f (10) = 60 < 10 2. (3.113) LUKUTEORIA 68 / 77
Fibonaccin ja Lucasin luvut f n (mod p) Binet n kaavan (3.14) avulla josta 1 2 n 5 (( ) n 0 + 0 f n = 1 (( 2 n 1 + ) n ( 5 1 ) n ) 5 = 5 1 n 2 n 5 i=0 ( ) n 2 5 + 1 2 n 1 f n = ( ) ( n 5 ( i ) ) i 5 = i ( ) n 0 + 2 n 1 2 j=0 ( ) n 2 ) 5 3 +..., (3.114) 3 ( ) n 5 j. (3.115) 2j + 1 LUKUTEORIA 69 / 77
Fibonaccin ja Lucasin luvut f n (mod p) Lause 22 Olkoon p P 7. 1.) Jos, niin 2.) Jos, niin 5 p 1 2 1 (mod p), (3.116) f p 1 0 (mod p) ja MJ f (p) p 1. (3.117) 5 p 1 2 1 (mod p), (3.118) f p+1 0 (mod p) ja MJ f (p) 2p + 2. (3.119) Huomautus 3 Kurssilla Lukuteoria A osoitetaan neliöjäännösteorian avulla, että 1.) (3.116) p = 5m ± 1. 2.) (3.118) p = 5m ± 2. LUKUTEORIA 70 / 77
Fibonaccin ja Lucasin luvut f n (mod p) Todistus. Yhtälöstä (3.115) saadaan 2 p 1 f p = p 1 2 j=0 ( ) p 5 j = 2j + 1 ( ) p + 1 ( ) p 5 +... + 3 ( ) p 5 p 1 2, (3.120) p josta Lauseiden?? ja?? nojalla f p 5 p 1 2 (mod p). (3.121) Edelleen, asettamalla n = p + 1 yhtälöön (3.115) saadaan LUKUTEORIA 71 / 77
Fibonaccin ja Lucasin luvut f n (mod p) p 2 ( ) p + 1 2 p f p+1 = 5 j = 2j + 1 j=0 ( p + 1 1 ) + ( p + 1 3 ) 5 +... ( ) p + 1 + 5 p 1 2. (3.122) p Tässä ( ) p + 1 (p + 1)p(p 1) = 0 (mod p) (3.123) 3 3 2 ja yleisemminkin pätee ( ) p + 1 0 k (mod p) 2 k p 1. (3.124) Siten yhtälön (3.122) nojalla 2f p+1 1 + 5 p 1 2 (mod p). (3.125) LUKUTEORIA 72 / 77
Fibonaccin ja Lucasin luvut f n (mod p) Merkitään a = 5 p 1 2, jolloin a 2 1 (mod p). Nyt Lauseen?? todistuksen nojalla a ±1 (mod p). 1.) Olkoon a 1 (mod p). Tällöin yhtälöiden (3.121) ja (3.125) nojalla Täten, ensin rekursion avulla ja edelleen rekursion nojalla joten J f (p) = p 1. f p 1, f p+1 1 (mod p). (3.126) f p 1 0 (mod p) (3.127) f p 1+l f l (mod p) l N, (3.128) LUKUTEORIA 73 / 77
Fibonaccin ja Lucasin luvut f n (mod p) 2.) Olkoon a 1 (mod p). Tällöin yhtälöiden (3.121) ja (3.125) nojalla f p 1, f p+1 0 = f 0 (mod p). (3.129) Täten ja edelleen sekä joten J f (p) = 2p + 2. f p+2 1 = f 1 (mod p), (3.130) f p+3 1 = f 2 (mod p) (3.131) f 2p+1 f p 1 (mod p) (3.132) f 2p+2 f p+1 0, (mod p) (3.133) LUKUTEORIA 74 / 77
Fibonaccin ja Lucasin luvut f n (mod p) Esimerkki 11 p = 11 1 (mod 5), jolloin Nyt 11 f 10 ja MJ f (11) = 10 = p 1. Esimerkki 12 p = 29 1 (mod 5) ja Nyt 29 f 28 mutta MJ f (29) = 14 = (p 1)/2. 5 p 1 2 = 5 5 1 (mod 11). (3.134) 5 p 1 2 = 5 14 1 (mod 29). (3.135) LUKUTEORIA 75 / 77
Fibonaccin ja Lucasin luvut f n (mod p) Esimerkki 13 p = 7 2 (mod 5) ja Nyt 7 f 8 ja MJ f (7) = 16 = 2p + 2. 5 p 1 2 = 5 3 1 (mod 7). (3.136) LUKUTEORIA 76 / 77
Fibonaccin ja Lucasin luvut f n (mod p) LUKUTEORIA 77 / 77