33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
|
|
- Heikki Melasniemi
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen keskiarvo ovat molemmat kokonaislukuja. a) Onko olemassa merkityksellistä 2019 luvun joukkoa? b) Onko olemassa ääretöntä merkityksellistä joukkoa? Huomautus: Epänegatiivisten lukujen a 1, a 2,..., a n geometrisen keskiarvon määritellään olevan n a 1 a 2 a n Ratkaisu: a) Vastaus: Kyllä, tällainen joukko on olemassa. Kutsutaan positiivisten kokonaislukujen joukkoa aritmeettisesti merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen keskiarvo on kokonaisluku. Määritellään vastaavalla tavalla, mitä tarkoittaa geometrisesti merkityksellinen joukko. Joukko on siis merkityksellinen, jos ja vain jos se on sekä aritmeettisesti että geometrisesti merkityksellinen. Kun A Z + ja r Z +, merkitään ra = {ra a A} ja r A = {r a a A}. Merkityksellisen 2019 luvun joukon olemassaolo perustuu seuraavaksi esitettäviin havaintoihin, jotka puetaan jonoksi väitteitä. Olkoot A Z + äärellinen epätyhjä joukko ja r Z +. Väite 1. Jos A on aritmeettisesti merkityksellinen, niin r A on geometrisesti merkityksellinen. Jos nimittäin S A on äärellinen ja epätyhjä, niin S r s = S r s = r s/ S Z +, sillä A:n aritmeettisesta merkityksellisyydestä seuraa s/ S Z +. Väite 2. Jos A on geometrisesti merkityksellinen, niin myös ra on geometrisesti merkityksellinen. Kun S A on äärellinen ja epätyhjä, niin S rs = r S s Z +, kunhan A on geometrisesti merkityksellinen.
2 Väite 3. Jokaista äärellistä epätyhjää joukkoa A Z + vastaa sellainen vain joukon A koosta riippuva Z +, että A on aritmeettisesti merkityksellinen. Merkitään nimittäin n = A Z + ja valitaan = n! Z +. Kun S A on epätyhjä, niin k = S, joten joukon S aritmeettinen keskiarvo ( s ) / S = s k on välttämättä kokonaisluku. Siis A on aritmeettisesti merkityksellinen. Lähdetään nyt liikkeelle mielivaltaisesta 2019 positiivisen kokonaisluvun joukosta A, esimerkiksi A = {1,..., 2019}. Väitteen 3 mukaan on olemassa sellainen Z+, että A on algebrallisesti merkityksellinen. Väitteen 2 nojalla 2 A Z + on siten geometrisesti merkityksellinen ja selvästi 2019 luvun joukko. Väitteen 1 mukaan 2 A säilyy geometrisesti merkityksellisenä, ja väitteen 3 nojalla se on myös aritmeettisesti merkityksellinen. Siis 2 A on 2019 positiivisen kokonaisluvun merkityksellinen joukko. b) Vastaus: Ei, ääretöntä merkityksellistä joukkoa ei ole olemassa. Oletetaan nimittäin vastoin väitettä, että S on ääretön merkityksellinen joukko. Olkoot a, b S sen kaksi pienintä alkiota. Kiinnitetään mielivaltaisesti n N, jolle n > max{a, b} 2, ja n 1-alkioinen osajoukko C S {a, b}. Koska S on algebrallisesti merkityksellinen, sekä joukon C {a} että joukon C {b} alkioiden algebrallinen keskiarvo on kokonaisluku, ts. u + a n Z ja u + b n Z, missä u = C. Siis u + a 0 u + b (mod n), mistä seuraa a b (mod n). Koska toisaalta 0 < a < n ja 0 < b < n, niin tästä seuraa a = b, mikä on ristiriidassa alkioiden a ja b valinnan kanssa. 2. Olkoot a, b ja suorakulmaisen kolmion sivujen pituudet, missä > a ja > b. Osoita, että 3 < 3 a 3 b 3 ( a)( b) Ratkaisu: Tiedetään, että on suorakulmaisen kolmion hypotenuusan pituus sekä a ja b kateettien pituudet, joten Pythagoraan lauseen nojalla 2 = a + b 2. Koska 3 a 3 b 3 = 3 a 3 b( 2 a 2 ) = ( a)( 2 + a + a 2 ) b( a)( + a) = ( a) ( 2 + a + a 2 b( + a) ) = ( a) ( ( + a) + 2 b 2 b( + a) ) = ( a) ( ( b)( + a) + ( b)( + b) ) = ( a)( b)( + a + + b) = ( a)( b)(2 + a + b), 2
3 niin Siis 3 a 3 b 3 ( a)( b) = 2 + a + b = 2 + a + b. 3 < 3 a 3 b 3 ( a)( b) < 2 + a + b < a + b 2. < a + b 2. Viimeisen rivin kaksoisepäyhtälön vasen puoli on tietenkin kolmioepäyhtälö tiukassa muodossa, joten se on voimassa. Oikean puolen todistamiseksi huomataan, että (a+b) 2 (a+b) 2 +(a b) 2 = a 2 +2ab+b 2 +a 2 2ab+b 2 = 2(a 2 +b 2 ) = 2 2 = ( 2) 2, joten a + b 2, sillä a + b > 0 ja 2 > Nelikulmiolle ABCD pätee ACD = 2 CAB, ACB = 2 CAD ja CB = CD. Osoita, että CAB = CAD. Ratkaisu: [Kuten Olli Järviniemellä.] Merkitään α = CAB ja β = CAD, jolloin oletuksista seuraa ACD = 2α ja ACB = 2β. Olkoon Γ C-keskinen ympyrä, joka kulkee pisteen B kautta. Koska CB = CD, kulkee Γ myös pisteen D kautta. Merkitään E:llä suoran AC ja ympyrän Γ sitä leikkauspistettä, joka on nelikulmion ABCD ulkopuolella. Kehäkulmalauseen nojalla AED = 1 ACD = 1 2α = α ja 2 2 BEA = 1 BCA = β. Siis DAE = β = AEB ja BAE = α = AED, joten 2 AD BE ja AB DE. Siis ABED on suunnikas. D Γ A α β 2α 2β C α β E B 3
4 Kun kolmion BED ympärysympyrä Γ peilataan tämän suunnikkaan keskipisteen suhteen, se kuvautuu kolmion ABD ympärysympyräksi Γ. Huomataan, että suora AC puolittaa molemmat ympyrät. Γ D Γ A P C E B Ympyröiden Γ ja Γ leikkauspisteiden kautta kulkeva suora BD (radikaaliakselin erikoistapaus) on kohtisuorassa näiden ympyröiden keskipisteiden kautta kulkevan suoran AE kanssa. Olkoon P suorien AE ja BD leikkauspiste. Koska BD AE ja suunnikkaan ABED lävistäjät puolittavat toisensa, ovat kolmiot AP D, BP A, EP B ja DP E keskenään yhteneviä. Tämä on mahdollista vain, jos AB = BE = ED = DA. Siis ABED on neljäkäs. Koska neljäkkäässä lävistäjät ovat kulmanpuolittajia, saadaan α = β eli CAB = CAD. 4. Olkoon n kokonaisluku, jolle n 3, ja oletetaan, että säännöllisen 4n + 1-kulmion kärjistä 2n on väritetty. Osoita, että välttämättä on olemassa kolme väritettyä kärkeä, jotka muodostavat tasakylkisen kolmion. Ratkaisu: Olkoot tarkasteltavan säännöllisen monikulmion kärjet P 0,..., P 4n positiiviseen kiertosuuntaan luetellen. Merkitään myös kaikilla i Z symbolilla P i sitä yksikäsitteistä kärkeä P t, jolle t i (mod 4n + 1) ja 0 t < 4n + 1. Siis kaikilla i, j Z pätee P i = P j, jos ja vain jos i j (mod 4n + 1). Huomataan myös, että kaikilla i, u Z, missä u 0 (mod 4n + 1), kolmio P i u P i P i+1 on tasakylkinen (P i u P i+u, sillä i + u (i u) = 2u 0 (mod 4n + 1)). Voidaan olettaa, että P 0 on väritetty. Jos jollakin i Z + sekä P i että P i ovat väritetyt, niin P i P 0 P i on tasakylkinen kolmio, jonka kaikki kolme kärkeä on väritetty. Oletetaan jatkossa, että tällaista väritettyä kolmiota ei ole. Kun muita kärkiä kuin P 0 :aa tarkastellaan pareina {P i, P i }, missä i {0,..., 2n}, havaitaan oletuksen merkitsevän, että kussakin 2n parista korkeintaan toinen on väritetty. Koska väritettyjä kärkiä on yhteensä 2n ja P 0 on väritetty, niin täsmälleen yksi pari {P k, P k }, missä k Z, 0 < k 2n, jää siis kokonaan värittämättä. 4
5 Oletetaan nyt, että jollakin u Z + kärkien joukolle P u = {P 4u, P 2u, P u, P 0, P u, P 2u, P 4u } ( ) pätee, että eli ylärivillä luetellut kärjet ovat kaikki eri kärkiä ja että P u = 7 (1) P k P u. (2) Tässä siis k Z + on värittämättömään pariin viittaava indeksi. Symmetrian vuoksi voidaan olettaa, että P u on väritetty mutta P u ei. Jos P 2u on väritetty, niin P 0 P u P 2u on väritetty tasakylkinen kolmio; oletetaan siis, että P 2u ei ole väritetty mutta P 2u on. Jos nyt P 4u on väritetty, niin P 2u P u P 4u on väritetty tasakylkinen kolmio, jos taas P 4u on väritetty, niin P 4u P 2u P 0 on väritetty tasakylkinen kolmio. P 4u P 4u P 2u P u P 0 P u P 2u Riittää siis osoittaa, että mainitunlainen u on olemassa. Tarkastellaan joukkoja P 1, P 2 ja P 3 sekä osoitetaan, että näille ehto 1 on voimassa. Äärellisen monta poikkeusta lukuun ottamatta tämä seuraa siitä, että kaavassa ( ) indeksit ovat itseisarvoltaan pienimpiä mahdollisia eli 4u < (4n + 1)/2. Koska 4 < 6,5 = ( )/2 (4n + 1) kaikilla n N, n 3, niin P 1 siis toteuttaa aina ehdon 1. Tapauksessa u = 2 voidaan vedota myös siihen, että syt(2, 4n + 1) = 1, joten P 2i = P 2j 2i 2j (mod 4n + 1) i j (mod 4n + 1) P i = P j. Siten P 2 toteuttaa ehdon, koska P 1 toteuttaa sen. Tapauksessa u = 3 ehto 4u < (4n+1)/2 toteutuu, kun n 6, sillä 12 < 25/2. Jäljelle jäävissä kolmessa tapauksessa kongruenssit 12 = 4u 1 (mod 13), 12 5 (mod 17) ja 12 9 (mod 21) osoittavat, että P 12 = P 1 tai P 12 = P 5 tahi P 12 = P 9, joten P 12 P 3 {P 12, P 12 }. Koska muut indeksit ovat itseisarvoltaan pienimpiä mahdollisia, ehto 1 on jälleen voimassa. Ehdon 2 toteuttamiseksi määritetään leikkaus P 1 P 2 P 3. Ensiksi saadaan P 1 P 2 = {P 4, P 2, P 0, P 2, P 4 } 5
6 Sen perusteella, mitä on aiemmin laskettu, huomataan, että P 12 P 1 P 2, ja vastaavasti P 12 P 1 P 2. Siis P 1 P 2 P 3 = {P 4, P 2, P 0, P 2, P 4 } {P 6, P 3, P 0, P 3, P 6 } = {P 0 }. Tästä seuraa tietenkin P k P 1 P 2 P 3, joten P k P 1 tai P k P 2 tai P k P 3. Siis ehdot 1 ja 2 toteutuu jollakin arvoista u = 1, u = 2 tai u = 3, mistä seuraa väite. 6
0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa.
Tekijä MAA3 Geometria 14.8.2016 1 a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa. b) Pirttiniemenkatu ja Tenholankatu eivät ole yhdensuuntaisia. Väite ei siis pidä paikkaansa.
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman
Matematiikan olympiavalmennus 2015 helmikuun helpommat
Matematiikan olympiavalmennus 05 helmikuun helpommat tehtävät Ratkaisuja. Määritä kolmiot, joiden kulmille α, β, γ pätee cos α cos β +sinαsin β sin γ =. Ratkaisu. Koska 0 < sin γ, täytyy olla cos(α β)
Lukion matematiikkakilpailun alkukilpailu 2015
Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
302 Nelikulmion kulmien summa on ( 4 2) 301 a) Ainakin yksi kulma yli 180. , joten nelikulmio on olemassa. a) = 280 < 360
Pyramidi Geometria tetävien ratkaisut sivu 01 a) Ainakin yksi kulma yli 180. 0 Nelikulmion kulmien summa on ( 4 ) 180 = 60. a) 90 + 190 = 80 < 60, joten nelikulmio on olemassa. Hamotellaan kuvaaja, joon
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
+ + + y:llä. Vuoden 2017 lopussa oppilasmäärät ovat siis a =1,05x ja b =1,10y, mistä saadaan vuoden 2017 alun oppilasmäärien suhteeksi.
31. 10. 018 a b c d 1. +. + 3. + + + 4. + + 5. + + + 6. + + P1. Merkitään lukion A oppilasmäärää vuoden 017 alussa x:llä ja lukion B oppilasmäärää y:llä. Vuoden 017 lopussa oppilasmäärät ovat siis a =1,05x
{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +
9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen
102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja
a b c d
1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on
Geometriaa kuvauksin. Siirto eli translaatio
Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
57. kansainväliset matematiikkaolympialaiset Hongkongissa
57. kansainväliset matematiikkaolympialaiset Hongkongissa Esa V. Vesalainen Basque Center for Applied Mathematis 57. kansainväliset matematiikkaolympialaiset järjestettiin Hongkongissa 9 16.7.2016. Suomea
Tekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5
Tekijä Pitkä matematiikka 3 1.10.016 176 a) p = πr r = 4,5 = π 4,5 = 8,7... 8 piiri on 8 cm A = πr r = 4,5 b) = π 4,5 = 63,617... 64 Ala on 64 cm p = πd d = 5,0 = π 5,0 = 15,7... 16 piiri on 16 cm r =
z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)
. Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Matematiikan olympiavalmennus
Matematiikan olympiavalmennus Toukokuun 2012 helpommat valmennustehtävät ratkaisuja 1 Määritä sellaisen kolmion ala, jonka kaksi kulmaa ovat 60 ja 45 ja jonka pisimmän sivun pituus on 1 Ratkaisu Olkoon
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
2 Kuvioita ja kappaleita
Kuvioita ja kappaleita.1 Suorakulmaisen kolmion geometriaa 97. a) Kolmion kateettien pituudet ovat 5 ja 39. Hypotenuusan pituutta on merkitty kirjaimella. Sijoitetaan arvot Pythagoraan lauseeseen. 5 (
MAA03.3 Geometria Annu
1 / 8 2.2.2018 klo 11.49 MAA03.3 Geometria Annu Kokeessa on kolme (3) osaa; Monivalinnat 1 ja 2 ovat pakollisia (6 p /tehtävä, yht. 12 p) B1 osa Valitse kuusi (6) mieleisintä tehtävää tehtävistä 3-10.
3 Ympyrä ja kolmion merkilliset pisteet
3 Ympyrä ja kolmion merkilliset pisteet Ennakkotehtävät. a) Matkapuhelimen etäisyys tukiasemasta A on 5 km. Piirretään ympyrä, jonka keskipiste on tukiasema A ja säde 5 km (5 ruudun sivua). Matkapuhelin
57. kansainväliset matematiikkaolympialaiset Hongkongissa
Solmu 3/2016 1 57. kansainväliset matematiikkaolympialaiset Hongkongissa Esa V. Vesalainen Basque Center for Applied Mathematis 57. kansainväliset matematiikkaolympialaiset järjestettiin Hongkongissa 9
Tehtävä 4 : 2. b a+1 (mod 3)
Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
x+3 = n(y 3) y +n = 3(x n). Kun ylemmästä yhtälöstä ratkaistaan x = n(y 3) 3 ja sijoitetaan alempaan, saadaan
19.1. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ ÐÓÔÔÙ ÐÔ ÐÙÒ Ö Ø ÙØ 2018 1. Eevalla ja Martilla on kokonaislukumäärä euroja. Martti sanoi Eevalle: Jos annat minulle kolme euroa, niin minulla on n-kertainen määrä rahaa sinuun
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Baltian Tie 2005 ratkaisuja
Baltian Tie 2005 ratkaisuja. Osoitetaan, että jonossa on aina kaksi samaa lukua. Olkoon k pienin positiivinen kokonaisluku, jolle on voimassa (k +) 9 2005 < 0 k. (Tällainen luku on olemassa, koska epäyhtälön
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun
Harjoitustehtävät, syyskuu Helpommat
Harjoitustehtävät, syyskuu 2011. Helpommat Ratkaisuja 1. Ratkaise yhtälö a a + x = x. Ratkaisu. Ratkaistaan yhtälö reaalilukujen joukossa. Jos yhtälöllä onratkaisux, niin x 0. Jos a =0,yhtälöllä onratkaisux
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
Pythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Kansainväliset matematiikkaolympialaiset 2012
Kansainväliset matematiikkaolympialaiset 01 Tehtävien ratkaisuja 1. Olkoot kolmion kulmat α, β ja γ ja olkoon ω ympyrä, jonka halkaisija on AJ. Koska kulmat JKA ja JLA ovat suoria, niin K ja L ovat tällä
Pyramidi 3 Geometria tehtävien ratkaisut sivu a)
Pyramidi 3 Geometria tehtävien ratkaisut sivu 8 501 a) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näiden sivujen väliset kulmat ovat yhtä suuret, joten kolmiot ovat yhtenevät yhtenevyyslauseen
Äärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
a ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
Matematiikan olympiavalmennus 2015 syyskuun tehtävät
Matematiikan olympiavalmennus 2015 syyskuun tehtävät Ratkaisuja 1. Kaksi ympyrää sivuaa toisiaan sisäpuolisesti pisteessä T. Ulomman ympyrän sekantti AB on sisemmän ympyrän tangentti pisteessä P. Osoita,
y + z. z + xyz
2. 11. 2010 Kuusi ensimmäistä tehtävää ovat monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Monivalintatehtävien vastauksia varten on erillinen lomakkeensa. Tehtävät 7 ja 8 ovat perinteisiä tehtäviä,
Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
Kenguru Student (lukion 2. ja 3.), ratkaisut sivu 1 / 13
Kenguru Student (lukion ja ), ratkaisut sivu / pistettä Kuvasta huomataan, että + + 5 + 7 = 44 Kuinka paljon tämän mukaan on + + 5 + 7 + 9 + + + 5 + 7? A) 44 B) 99 C) 444 D) 66 E) 49 Ratkaisu: Kuvan havainnollistuksen
Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa
Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi
1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
Matematiikan olympiavalmennus
Matematiikan olympiavalmennus Syyskuun 014 helpommat valmennustehtävät, ratkaisuja 1. Kuinka monen 014-numeroisen positiivisen kokonaisluvun numeroiden summa on parillinen? Ratkaisu. 014-numeroisen luvun
Tehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
Geometrian perusteet. Luvun 1 harjoitustehtävien ratkaisuhahmotelmia
Geometrian perusteet Luvun 1 harjoitustehtävien ratkaisuhahmotelmia 1.1.1. Todista, että tason kahdella eri suoralla on joko yksi yhteinen piste tai ei yhtään yhteistä pistettä. Ratkaisu. Olkoon eri suorilla
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
Kansainväliset matematiikkaolympialaiset 2008
Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella
IMO 2004 tehtävät ja ratkaisut
IMO 2004 tehtävät ja ratkaisut 1. Olkoon ABC teräväkulmainen kolmio ja AB AC. Ympyrä, jonka halkaisija on BC, leikkaa sivun AB pisteessä M ja sivun AC pisteessä N. Olkoon O sivun BC keskipiste. Kulmien
a) Mitkä reaaliluvut x toteuttavat yhtälön x 2 = 7? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön 5 4 x
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 01 Arkkitehtimatematiikan koe, 1..01, Ratkaisut (Sarja A) 1. Anna kohdissa a), b) ja c) vastaukset tarkkoina arvoina. a) Mitkä reaaliluvut x toteuttavat
Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Tasokuvioita. Monikulmio: Umpinainen eli suljettu, itseään leikkaamaton murtoviivan rajaama tason osa on monikulmio. B
Tasokuvioita GOMTRI M3 Murtoviiva: Sanotaan, että kaksi janaa on liitetty toisiinsa, jos niiden toinen päätypiste on sama. Peräkkäin toisiinsa liitettyjen janojen muodostamaa viivaa kutsutaan murtoviivaksi,
Algebra I, Harjoitus 6, , Ratkaisut
Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b
Lukion matematiikkakilpailun avoimen sarjan ensimmäinen kierros 2014
Lukion matematiikkakilpailun avoimen sarjan ensimmäinen kierros 2014 Ratkaisuja Sulkeissa oleva nimi osoittaa, että kyseinen ratkaisu perustuu asianomaisen henkilön kilpailuvastaukseen. 1. Oletetaan, että
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
4.3 Kehäkulma. Keskuskulma
4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet
Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi
3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,
Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
Diofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio
Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
Pituus on positiivinen, joten kateetin pituus on 12.
Tekijä Pitkä matematiikka 3 10.10.2016 94 Pythagoraan lauseella saadaan yhtälö 15 2 = 9 2 + a 2 a 2 = 15 2 9 2 = 225 81 = 144 a = ± 144 a = 12 tai a = 12 Pituus on positiivinen, joten kateetin pituus on
Matematiikan olympiavalmennus
Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?
a b c d
.. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 202 È ÖÙ Ö Ò ÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d. + + 2.. 4. 5. 6. + + + + + + + + + + P. Koska massojen suhteet (alkuperäinen timantti mukaan lukien) ovat : 4 : 7, niin