Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.
|
|
- Antero Hyttinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin. Huomautus. Polynomien suurin yhteinen tekijä saadaan yksikäsitteiseksi kun vaaditaansenolevanpääpolynomi. Jatkosssa oletamme aina, että syt(f(x),g(x)) pääpolynomi. Nyt on helppo nähdä, että syt(f(x),g(x)) on polynomien f(x),g(x) yhteisistä tekijöistä se, joka on asteeltaan suurin ja jonka johtava kerroin = 1. Esimerkki Lasketaan polynomien x 12 + x 10 + x 8 + x 3 +1jax 8 + x 7 + x 5 + x 4 + x 2 +1 F 2 [x] suurin yhteinen tekijä. Eukleideen algoritmi: x 12 + x 10 + x 8 + x 3 +1=(x 8 + x 7 + x 5 + x 4 + x 2 + x +1)(x 4 + x 3 + x) + x 7 + x 5 + x 3 + x 2 + x +1 x 8 + x 7 + x 5 + x 4 + x 2 + x +1=(x 7 + x 5 + x 3 + x 2 + x +1)(x +1)+x 6 + x 2 + x x 7 + x 5 + x 3 + x 2 + x +1=(x 6 + x 2 + x)x + x 5 + x +1 x 6 + x 2 + x =(x 5 + x +1)x joten syt(x 12 + x 10 + x 8 + x 3 +1,x 8 + x 7 + x 5 + x 4 + x 2 +1)=x 5 + x +1. Lemma 2.2 (Eukleideen lemma). Olkoon p(x),f(x),g(x) K[x] ja p(x) jaoton. Jos p(x) f(x)g(x), niin p(x) f(x) tai p(x) g(x). Todistus. Lause 2.7. Lause 2.8. K[x] on UFD. Tarkemmin: jokainen polynomi f(x) K[x] \{0} voidaan esittää muodossa f(x) =up 1 (x)p 2 (x) p n (x), missä kukinpolynomip i (x) on jaoton pääpolynomi ja u K. polynomien p i (x) järjestystä vailleyksikäsitteinen. Tämä esityson Todistus. Olkoon f(x) 0 alinta positiivista astetta oleva polynomi, joka ei hajoa jaottomien alkioiden tuloksi. Nyt f(x) ei ole jaoton joten f(x) =a(x)b(x), missä deg a(x),b(x) n 1 (huomaa, että K on kunta). Koska a(x) jab(x) hajoavat jaottomien alkioiden tuloksi, niin samoin hajoaa f(x) japäädyimme ristiriitaan. Täten
2 ALGEBRA II 19 jokainen positivista astetta oleva polynomi hajoaa jaottomien alkioiden tuloksi. Koska jokainen jaoton polynomi p(x) = uq(x), missä q(x) on jaoton pääpolynomi, niin väitteen hajoitelma on olemassa kaikille positiivista astetta oleville polynomeille ja triviaalisti myös kaikille vakiopolynomeille. Yksikäsitteisyys: oletetaan, että up 1 (x)p 2 (x) p n (x) =f(x) =u q 1 (x)q 2 (x) q t (x), missä t n ja kukin q i (x) on jaoton. Nyt Eukleideen lemman nojalla p 1 q i jollakin i =1,...,t. Voidaan olettaa, että i =1. Täten q 1 = p 1, sillä q 1 on jaoton pääpolynomi ja p 1 on pääpolynomi. Täten up 2 (x) p n (x) =u q 2 (x) q t (x). Toistamalla eo. päättelyä saamme lopulta u = u q n+1 (x) q t (x). Täten n = t ja u = u R[x] on UFD jos R on UFD. Olkoon R mikä tahansa UFD ja K sen osamääräkunta. Näytetään ensin, että Eukleideen lemma pätee renkaassa R. Määritelmä 2.8.Alkiot a, b R ovat liitännäisiä jos a = ub, missä u R.Tällöin merkitään a b. Lemma 2.3. Olkoot a, b, c R ja syt(a, c) 1. Silloin pätee implikaatio: Jos c ab, niin c b. Todistus. Olkoot a = up 1 p i, b = u q 1 q j ja c = u r 1 r k alkioiden a, b, c hajoitelmat jaottomien alkioiden tuloksi. Koska c ab, niin uu p 1 p i q 1 q j = u r 1 r k v jollakin d R. Koska R on UFD, niin r 1 p i tai r 1 q j. Koska syt(a, c) 1, niin r 1 = u 1 q j, u 1 R. Voidaan olettaa, että j = 1. Samoin jatkamalla näemme, että r 2 = u 2 q 2,...,r k = u k q k.täten b = u q 1 q j = u vr 1 r 2 r k q k+1 q j =(u vq k+1 q j )c, missä v = u 1 u k,janäin ollen c b. Seuraus (Eukleideen lemma). Jos p R on jaoton ja p ab, niin p a tai p b.
3 20 ALGEBRA II Määritelmä 2.9.Polynomi f(x) R[x] onprimitivinen, jos jokin sen kertoimien suurin yhteinen tekijä on yksikkö. Lemma 2.4 (Gaussin lemma). Olkoot f(x),g(x) R[x] primitiivisiä. Silloin myös polynomi f(x)g(x) on primitiivinen. Todistus. Olkoot m =degf(x) jan =degg(x), jolloinf(x)g(x) = m+n i=0 b ix i, missä b i = i k=0 f jg j i. Olkoon c = syt(b 0,...,b n+m ) ja oletetaan ettei c ole yksikkö. Olkoon p c jaoton. Nyt p b 0 = f 0 g 0, joten Eukleideen lemman nojalla voidaan olettaa, että p f 0. Koska p b 1 = f 0 g 1 + f 1 g 0, niin p f 1 g 0 (Lause 2.5 (4)). Koska f on primitiivinen, niin nyt Eukleideen lemman nojalla p g 0.Koskap b 2 = f 0 g 2 +f 1 g 1 +f 2 g 0, niin p f 1 g 1 (Lause Lause 2.5 (4)). Nyt Eukleideen lemman nojalla p f 1 tai p g 1. Kummassakin tapauksessa päädymme ristiriitaan polynomien f(x) ja g(x) primitiivisyyden kanssa. Lause 2.9. Olkoot f(x),g(x) R[x] ja h(x) K[x]. Jos f(x) =h(x)g(x) ja g(x) on primitiivinen, niin h(x) R[x]. Todistus. Olkoon b polynomin h(x) kertoimien nimittäjien tulo. Nyt bf(x) =bh(x)g(x), missä bh(x) R[x]. Olkoon bh(x) = ar(x), missä r(x) R[x] on primitiivinen. Nyt f(x) = a b r(x)g(x). Olkoon d = syt(a, b) jaa = vd ja b = wd. Nyt f = v w (q 0 + q 1 x + + q m x m )= vq 0 w + + vg m w xm, missä polynomi g := g 0 +g 1 x+ +g m x m on Gaussin lemman nojalla primitiivinen. Koska f R[x], niin w vg i kaikilla i =0,...,m.Koskasyt(v, w) on yksikkö, niin w g i kaikilla i =0,...,m (Lemma 2.3). Nyt g:n primitiivisyyden nojalla w R ja näin ollen b a. Siispä h(x) R[x]. Seuraus. Olkoon f(x) R[x] \{0} ja oletetaan, että f(x) =p 1 (x)p 2 (x) p t (x), missä kukinp i (x) K[x]. Silloin on olemassa sellaiset alkiot a 1,...,a t K, ja primitiivipolynomit r 1 (x),...,r t (x) R[x], että (1) r i (x) =a i p i (x) kaikilla i =1,...t,
4 ALGEBRA II 21 (2) f(x) =ar 1 (x)r 2 (x) r t (x), jollakina R. Erityisesti, jos f(x) on jaoton renkaassa R[x], niin se on jaoton myös renkaassa K[x]. Todistus. Olkoon c i polynomin p i kertoimien nimittäjien tulo. Merkitään c = c 1 c t. Nyt cf = q 1 q t, missä q i = c i p i R[x]. Olkoon q i = d i r i, missä r i R[x] on primitiivinen. Nyt f = d c r 1 r t, missä d = d 1 d t. Koska Gaussin lemman nojalla r 1 r t on primitiivinen, niin Lauseen 2.9 nojalla d/c = a R. Lause Jos R on UFD, niin R[x] on UFD. Tarkemmin: jokainen polynomi f(x) R[x] \{0} voidaan esittää muodossa f(x) =ua 1 a 2 a s r 1 (x)r 2 (x) r t (x), missä kukina i R on jaoton, ja kukin r i (x) R[x] on jaoton vähintään astetta 1 oleva primitiivipolynomi. Tämä esitys on olennaisesti yksikäsitteinen. Todistus. Olkoon f = p 1 p t polynomin hajoitelma jaottomien alkioiden tuloksi renkaassa K[x]. Nyt Lauseen 2.9 Seurauksen nojalla f = ar 1 r t, missä a R ja kukin r i R[x] on primitiivinen. Koska jokainen r i on jaoton renkaassa K[x], niin näin on myös renkaassa R[x]. Kun nyt hajoitetaan vielä a jaottomien alkioiden tuloksi renkaassa R, a = ua 1 a s, niin saamme väitteen hajoitelman. Yksikäsitteisyys: Oletetaan että, polynomilla f(x) onmyös hajoitelma f(x) =u b 1 b k h 1 (x) h l (x) missä u R,kukinb i R on jaoton, ja kukin h i (x) R[x] on jaoton vähintään astetta 1 oleva primitiivipolynomi. Lauseen 2.9 Seurauksen nojalla kukin polynomi h i (x) jar j (x) on jaoton renkaassa K[x], ja koska K[x] onufd, niin l = t ja
5 22 ALGEBRA II h 1 (x) =u 1 r 1 (x),,h t (x) =u t r t (x), joillakin u i K.Koskar i (x) on primitiivinen kaikilla i = 1,...,t, niin Lauseen 2.9 nojalla u i R kaikilla i = 1,...,t. Nyt polynomien h i (x) primitiivisyyden nojalla u i R kaikilla i =1,...,t,jatäten renkaassa R on voimassa yhtäsuuruus ua 1 a t = u b 1 b k u 1 u t = u b 1 b k. Väite seuraa nyt Eukleideen lemmasta. Seuraus. Jos R on UFD, niin n:n muuttujan polynomirengas R[x 1,x 2,...,x n ] on UFD. Esimerkki Z[x], ja yleisemmin Z[x 1,...,x n ], on UFD. UFD olipa K mikä tahansa kunta. K[x 1,...,x n ]on 2.4. Jakojäännösrengas. Otetaan nyt käyttöön lukuteoriasta tuttu kongruenssimerkintä. Määritelmä Olkoon R kokonaisalue. Olkoon n R \{0}. Olkoota, b R. Polynomit a ja b ovat kongruentit modulo n, josn a b. Tällöin merkitään a b (n). Lause (1) Jos a b (n) ja c d (n), niin a + c b + d (n). (2) Jos a b (n) ja c d (n), niin ac bd (n). Todistus. Harjoitustehtävä. Lause Olkoon f(x) R[x] jonka johtava kerroin on yksikkö. Olkoot a(x),b(x) R[x]. Silloin a(x) b(x) (f(x)) polynomien a(x) ja b(x) jakojäännökset modulo f(x) ovat yhtäsuuret. Todistus. Harjoitustehtävä. Olkoon f(x) R[x] jonka johtava kerroin on yksikkö jamerkitään symbolilla R[x] mod f(x) kaikkien jakojäännösten modulo f(x) joukkoa ts. R[x] modf(x) ={a 0 +a 1 x+ +a n 1 x n 1 n =degf(x),a i R i =0,...,n 1}.
Polynomien suurin yhteinen tekijä ja kongruenssi
Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................
11. Jaollisuudesta. Lemma Oletetaan, että a, b R.
11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä
[E : F ]=[E : K][K : F ].
ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle
R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
1 Algebralliset perusteet
1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset
TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28
TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
a b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0
1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota
Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.
ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,
ja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
Diofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät
11. Jaollisuudesta. vuoksi tarkastellaan tässä yhteydessä vain kokonaisalueita.
11. Jaollisuudesta Kuntalaajennosten yhteydessään käytetään usein apuna jaottomia polynomeja. Tarkastellaan seuraavaksi hieman jaollisuuskäsitettä yleensä ja todistetaan joitain kriteerejä erityisesti
d Z + 17 Viimeksi muutettu
5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)
Toispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
ALGEBRA. Tauno Metsänkylä. K f. id K
ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II
802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 94 KERTOMAT, BINOMIKERTOIMET Kertoma/Factorial Määritellään
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan
4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta
ei ole muita välikuntia.
ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten
800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä
800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,
Lukuteorian kertausta
Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +
Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit
Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen
Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
a ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];
802656S ALGEBRALLISET LUVUT Harjoituksia 2017 1. Näytä, että (a) (b) (c) (d) (e) 2 1/2, 3 1/2, 2 1/3 ; 2 1/2 + 3 1/2 ; 2 1/3 + 3 1/2 ; e iπ/m, m Z \ {0}; sin(π/m), cos(π/m), tan(π/m), m Z \ {0}; ovat algebrallisia
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset
(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.
11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ
802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5 BCH-, RS- ja Goppa-koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 15 5.1 BCH-koodien määrittely Olkoon jälleen F = F q, syt(n,
802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I
802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 802656S ALGEBRALLISET YLIOPISTO LUVUT
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia
Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,
Algebra II. Syksy 2004 Pentti Haukkanen
Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)
ALKULUKUJA JA MELKEIN ALKULUKUJA
ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja
Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
Äärelliset kunnat ja polynomien jako alkutekijöihin
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto
ALGEBRALLISET LUVUT S. Tapani Matala-aho
ALGEBRALLISET LUVUT 802656S Tapani Matala-aho 24. huhtikuuta 2014 Sisältö 1 Johdanto 4 1.1 Algebralliset luvut........................ 5 2 Perusteita 6 3 Renkaat ja kunnat 7 3.1 Kokonaisalue, Integral
LUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
Primitiiviset juuret: teoriaa ja sovelluksia
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,
saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
14. Juurikunnat Määritelmä ja olemassaolo.
14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
802645S LUKUTEORIA A (5op) Tapani Matala-aho
802645S LUKUTEORIA A (5op) Tapani Matala-aho 27. helmikuuta 2013 Sisältö 1 Johdanto 3 2 Merkintöjä 4 3 Valittuja jaollisuuden tuloksia 5 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat 10 7
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO
LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO Matemaatikot eivät ole tyytyväisiä tietäessään asioita neljästä miljoonasta tai neljästä miljardista kokonaisluvusta. He haluavat tietää asioita jokaisesta äärettömän
Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen
Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma
Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut
pdfmark=/pages, Raw=/Rotate 90 1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat 0-10
pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-8 3 Renkaat ja kunnat 0-10 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field..................
Reedin ja Solomonin koodit Katariina Huttunen
Pro Gradu Reedin ja Solomonin koodit Katariina Huttunen Jyväskylän yliopisto Matematiikan laitos Lokakuu 2016 Tiivistelmä Huttunen Katariina, Reedin ja Solomonin koodit, matematiikan pro gradututkielma,
Teemu Ojansivu Polynomien resultanteista
PRO GRADU -TUTKIELMA Teemu Ojansivu Polynomien resultanteista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Helmikuu 2015 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ojansivu,
PERUSASIOITA ALGEBRASTA
PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen
R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on
0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
802645S LUKUTEORIA A (5op) Tapani Matala-aho
802645S LUKUTEORIA A (5op) Tapani Matala-aho 25. lokakuuta 2015 Sisältö 1 Johdanto 3 2 Valittuja kaavoja 4 3 Valittuja jaollisuuden tuloksia 4 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku
802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen
MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.
pdfmark=/pages, Raw=/Rotate 90 3 Valittuja jaollisuuden tuloksia Renkaan yksikköryhmä Eräs kongruenssiryhmä 0-17
pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-3 2 Valittuja kaavoja 0-5 3 Valittuja jaollisuuden tuloksia 0-7 4 Renkaan yksikköryhmä 0-9 5 Eulerin funktio 0-11 6 Euler-Fermat 0-16 7 Eräs kongruenssiryhmä
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
1. Jakokunta. b + c d
ÁÁÁ ÃÙÒØ Ø ÓÖ 1. Jakokunta Kunnan alirenkaat ovat aina kokonaisalueita. Tämä herättää luonnollisen kysymyksen, karakterisoiko tämä ominaisuus kokonaisalueet eli onko jokainen kokonaisalue jonkin kunnan
2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
Tekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
Shorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Sisältö 1 ABSTRACT 4 2 INTRODUCTION/JOHDANTO 4 2.1 Kurssikuvaus.............................
1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain...
Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-9 3 Renkaat ja kunnat 0-11 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field.................. 0-13 4 Jaollisuus
2 ALGEBRA I. Sisällysluettelo
ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin
HN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen
Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä
802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian
1 Johdanto Algebralliset luvut Perusteita 5. 3 Renkaat ja kunnat Kokonaisalue, Integral Domain Kunta, Field...
Sisältö 1 Johdanto 3 1.1 Algebralliset luvut.......................... 4 2 Perusteita 5 3 Renkaat ja kunnat 6 3.1 Kokonaisalue, Integral Domain................... 7 3.2 Kunta, Field.............................
(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
LUKUTEORIA I. Tapani Matala-aho
LUKUTEORIA I Tapani Matala-aho 19. helmikuuta 2009 Sisältö 1 Johdanto 5 2 Merkintöjä 6 2.1 Lukujoukot.............................. 6 2.2 Porrasfunktiot............................. 8 3 Kokonaislukurengas