Johdatus matemaattiseen päättelyyn (5 op)

Koko: px
Aloita esitys sivulta:

Download "Johdatus matemaattiseen päättelyyn (5 op)"

Transkriptio

1 Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014

2 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu Työhuone M237 Kurssin kotisivu Luennot Ti 9:15-12, Ke 9:15-12 ja Ke 9:15-12 salissa L7. Ohjausryhmä ti, ke ja to klo 12:15-14 salissa L7 (Vetäjä: Topi Törmä, huone M239). 2 / 92

3 Kurssin opiskelusta Hox Hox a) Älä opettele asioita ulkoa. 3 / 92

4 Kurssin opiskelusta Hox Hox a) Älä opettele asioita ulkoa. b) Lue määritelmät tarkasti. Yritä liittää esitetty teoria aina johonkin esimerkkiin. 3 / 92

5 Kurssin opiskelusta Hox Hox a) Älä opettele asioita ulkoa. b) Lue määritelmät tarkasti. Yritä liittää esitetty teoria aina johonkin esimerkkiin. c) Kysy tarvittaessa! Kysy kaverilta, kysy luennoitsijalta,... 3 / 92

6 Kurssin opiskelusta Hox Hox a) Älä opettele asioita ulkoa. b) Lue määritelmät tarkasti. Yritä liittää esitetty teoria aina johonkin esimerkkiin. c) Kysy tarvittaessa! Kysy kaverilta, kysy luennoitsijalta,... d) Tee harjoitustehtäviä! 3 / 92

7 Kurssin opiskelusta Hox Hox a) Älä opettele asioita ulkoa. b) Lue määritelmät tarkasti. Yritä liittää esitetty teoria aina johonkin esimerkkiin. c) Kysy tarvittaessa! Kysy kaverilta, kysy luennoitsijalta,... d) Tee harjoitustehtäviä! e) Tee yhteistyötä kurssikavereiden kanssa ja miettikää tehtäviä ja teoriaa yhdessä. 3 / 92

8 Kurssin suoritus Suoritus Kurssin suoritus loppukokeella (arvostelu hyväksytty/hylätty.). Loppukokeessa 4-5 tehtävää (max. 6p/tehtävä). Läpipääsyyn vaaditaan 2/3 maksimipisteistä. 4 / 92

9 Sisältö Kurssin asiakokonaisuuksia: 1 Todistamisesta (Suora todistus, epäsuora todistus, induktiotodistus) 2 Joukko-oppia 3 Funktiot 4 Injektiivisyys, surjektiivisyys 5 Yhdistetty kuvaus 6 Käänteiskuvaus 5 / 92

10 ESITIETOJA 6 / 92

11 Luonnollisten lukujen joukko N on joukko N = {0, 1, 2, 3,...}. Merkintä n N tarkoittaa, että n kuuluu joukkoon N, ts. n on joukon N alkio eli n on luonnollinen luku. Luonnollisten lukujen laskutoimitukset oletetaan tunnetuiksi: kahden luonnollisen luvun tulo ja summa ovat luonnollisia lukuja. 7 / 92

12 Luonnollisten lukujen joukko N on joukko N = {0, 1, 2, 3,...}. Merkintä n N tarkoittaa, että n kuuluu joukkoon N, ts. n on joukon N alkio eli n on luonnollinen luku. Luonnollisten lukujen laskutoimitukset oletetaan tunnetuiksi: kahden luonnollisen luvun tulo ja summa ovat luonnollisia lukuja. Määritelmä 1 Luonnollinen luku n on parillinen, jos on olemassa sellainen k N, että n = 2k, ja pariton, jos on olemassa sellainen l N, että n = 2l / 92

13 Luonnollisten lukujen joukko N on joukko N = {0, 1, 2, 3,...}. Merkintä n N tarkoittaa, että n kuuluu joukkoon N, ts. n on joukon N alkio eli n on luonnollinen luku. Luonnollisten lukujen laskutoimitukset oletetaan tunnetuiksi: kahden luonnollisen luvun tulo ja summa ovat luonnollisia lukuja. Määritelmä 1 Luonnollinen luku n on parillinen, jos on olemassa sellainen k N, että n = 2k, ja pariton, jos on olemassa sellainen l N, että n = 2l + 1. Huomautus 1 Jokainen luonnollinen luku on joko parillinen tai pariton, ts. ei ole olemassa luonnollista lukua, joka on parillinen ja pariton. 7 / 92

14 Määritelmä 2 (i) Olkoot n, m N. Luku m on jaollinen luvulla n, jos on olemassa sellainen k N, että m = kn. 8 / 92

15 Määritelmä 2 (i) Olkoot n, m N. Luku m on jaollinen luvulla n, jos on olemassa sellainen k N, että m = kn. (ii) Luonnollinen luku m on alkuluku, jos m 2 ja jos m on jaollinen ainoastaan luvuilla 1 ja m. 8 / 92

16 Määritelmä 2 (i) Olkoot n, m N. Luku m on jaollinen luvulla n, jos on olemassa sellainen k N, että m = kn. (ii) Luonnollinen luku m on alkuluku, jos m 2 ja jos m on jaollinen ainoastaan luvuilla 1 ja m. Merkitään kokonaislukujen joukkoa symbolilla Z, ts. Z = {..., 2, 1, 0, 1, 2,...}. 8 / 92

17 Määritelmä 2 (i) Olkoot n, m N. Luku m on jaollinen luvulla n, jos on olemassa sellainen k N, että m = kn. (ii) Luonnollinen luku m on alkuluku, jos m 2 ja jos m on jaollinen ainoastaan luvuilla 1 ja m. Merkitään kokonaislukujen joukkoa symbolilla Z, ts. Z = {..., 2, 1, 0, 1, 2,...}. Kokonaisluku n on parillinen, jos on olemassa sellainen k Z, että n = 2k, ja pariton, jos on olemassa sellainen l Z, että n = 2l + 1. (Vertaa määritelmä 1.) 8 / 92

18 Määritelmä 3 Reaaliluku x on rationaaliluku, jos on olemassa sellaiset n, m Z, että n 0 ja x = m n. Reaalilukua, joka ei ole rationaaliluku, sanotaan irrationaaliluvuksi. 9 / 92

19 Määritelmä 3 Reaaliluku x on rationaaliluku, jos on olemassa sellaiset n, m Z, että n 0 ja x = m n. Reaalilukua, joka ei ole rationaaliluku, sanotaan irrationaaliluvuksi. Rationaalilukujen joukkoa merkitään symbolilla Q ja reaalilukujen joukkoa symbolilla R. (Reaalilukuja ei tällä kurssilla määritellä, ne ajatellaan lukusuoran pisteinä.) Rationaalilukujen laskutoimitukset oletetaan tunnetuiksi. 9 / 92

20 Määritelmä 3 Reaaliluku x on rationaaliluku, jos on olemassa sellaiset n, m Z, että n 0 ja x = m n. Reaalilukua, joka ei ole rationaaliluku, sanotaan irrationaaliluvuksi. Rationaalilukujen joukkoa merkitään symbolilla Q ja reaalilukujen joukkoa symbolilla R. (Reaalilukuja ei tällä kurssilla määritellä, ne ajatellaan lukusuoran pisteinä.) Rationaalilukujen laskutoimitukset oletetaan tunnetuiksi. Huomautus 2 Jokainen kokonaisluku on joko parillinen tai pariton, ts. ei ole olemassa kokonaislukua, joka on parillinen ja pariton. 9 / 92

21 TODISTAMISESTA 10 / 92

22 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: Jos P on totta, niin Q on totta. 11 / 92

23 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: Jos P on totta, niin Q on totta. Tässä ehtoa P kutsutaan oletukseksi ja ehtoa Q väitteeksi. Jos yo. väitelause on totta, sanotaan, että ehdosta P seuraa ehto Q tai että ehto P on riittävä ehto ehdolle Q 11 / 92

24 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: Jos P on totta, niin Q on totta. Tässä ehtoa P kutsutaan oletukseksi ja ehtoa Q väitteeksi. Jos yo. väitelause on totta, sanotaan, että ehdosta P seuraa ehto Q tai että ehto P on riittävä ehto ehdolle Q Usein merkitään lyhentäen myös P Q. Nuolta kutsutaan implikaationuoleksi. Merkintä P Q luetaan joko P:stä seuraa Q tai P implikoi Q:n. 11 / 92

25 Todistamisesta Esimerkki 4 1 Jos x 0 (oletus), niin x 0 (väite). 12 / 92

26 Todistamisesta Esimerkki 4 1 Jos x 0 (oletus), niin x 0 (väite). 2 Jos n on parillinen luonnollinen luku (oletus), niin n 2 on parillinen luonnollinen luku (väite). 12 / 92

27 Todistamisesta Esimerkki 4 1 Jos x 0 (oletus), niin x 0 (väite). 2 Jos n on parillinen luonnollinen luku (oletus), niin n 2 on parillinen luonnollinen luku (väite). 3 Olkoot n ja m parittomia luonnollisia lukuja (oletus). Tällöin mn on pariton luonnollinen luku (väite). 12 / 92

28 Todistamisesta Esimerkki 4 1 Jos x 0 (oletus), niin x 0 (väite). 2 Jos n on parillinen luonnollinen luku (oletus), niin n 2 on parillinen luonnollinen luku (väite). 3 Olkoot n ja m parittomia luonnollisia lukuja (oletus). Tällöin mn on pariton luonnollinen luku (väite). 4 Kahden parillisen luonnollisen luvun tulo on parillinen. 12 / 92

29 Todistamisesta Esimerkki 4 1 Jos x 0 (oletus), niin x 0 (väite). 2 Jos n on parillinen luonnollinen luku (oletus), niin n 2 on parillinen luonnollinen luku (väite). 3 Olkoot n ja m parittomia luonnollisia lukuja (oletus). Tällöin mn on pariton luonnollinen luku (väite). 4 Kahden parillisen luonnollisen luvun tulo on parillinen. Oletus: n ja m ovat parillisia luonnollisia lukuja. Väite: nm on parillinen. 12 / 92

30 Todistamisesta Kysymys Mikä on todistus? 13 / 92

31 Todistamisesta Kysymys Mikä on todistus? Väitelauseen todistus kertoo, miksi ja miten väite seuraa oletuksista. Tarkastellaan seuraavaksi, miten väitelauseita todistetaan. 13 / 92

32 Suora todistus Suora todistus Suorassa todistuksessa lähdetään liikkeelle oletuksesta ja edetään vaiheittain väitteeseen. Päättelyn jokainen välivaihe on pystyttävä perustelemaan ja käytettävät käsitteet on määriteltävä tarkasti. Perusteluissa käytetään oletusta, aiemmin todistettuja lauseita tai muita tunnettuja tosiasioita. 14 / 92

33 Suora todistus Esimerkki 5 Todista väite: jos n ja k ovat parittomia luonnollisia lukuja, niin n + k on parillinen. Todistus. 15 / 92

34 Suora todistus Esimerkki 5 Todista väite: jos n ja k ovat parittomia luonnollisia lukuja, niin n + k on parillinen. Oletus: n ja k ovat parittomia luonnollisia lukuja, ts. on olemassa sellaiset m N ja l N, että n = 2m + 1 ja k = 2l + 1. Väite: n + k on parillinen, ts. on olemassa sellainen p N, että n + k = 2p. Todistus. 15 / 92

35 Suora todistus Esimerkki 5 Todista väite: jos n ja k ovat parittomia luonnollisia lukuja, niin n + k on parillinen. Oletus: n ja k ovat parittomia luonnollisia lukuja, ts. on olemassa sellaiset m N ja l N, että n = 2m + 1 ja k = 2l + 1. Väite: n + k on parillinen, ts. on olemassa sellainen p N, että n + k = 2p. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen p N, että n + k = 2p. 15 / 92

36 Suora todistus Esimerkki 5 Todista väite: jos n ja k ovat parittomia luonnollisia lukuja, niin n + k on parillinen. Oletus: n ja k ovat parittomia luonnollisia lukuja, ts. on olemassa sellaiset m N ja l N, että n = 2m + 1 ja k = 2l + 1. Väite: n + k on parillinen, ts. on olemassa sellainen p N, että n + k = 2p. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen p N, että n + k = 2p. Oletuksen perusteella joten n + k = (2m + 1) + (2l + 1) = 2(m + l + 1), 15 / 92

37 Suora todistus Esimerkki 5 Todista väite: jos n ja k ovat parittomia luonnollisia lukuja, niin n + k on parillinen. Oletus: n ja k ovat parittomia luonnollisia lukuja, ts. on olemassa sellaiset m N ja l N, että n = 2m + 1 ja k = 2l + 1. Väite: n + k on parillinen, ts. on olemassa sellainen p N, että n + k = 2p. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen p N, että n + k = 2p. Oletuksen perusteella n + k = (2m + 1) + (2l + 1) = 2(m + l + 1), joten n + k = 2p, kun valitaan p = m + l + 1 N. Siis n + k on parillinen. 15 / 92

38 Suora todistus Esimerkki 6 Todista väite: parillisen luonnollisen luvun n neliö n 2 on parillinen. Todistus. 16 / 92

39 Suora todistus Esimerkki 6 Todista väite: parillisen luonnollisen luvun n neliö n 2 on parillinen. Oletus: n on parillinen, ts. on olemassa sellainen k N, että n = 2k. Todistus. 16 / 92

40 Suora todistus Esimerkki 6 Todista väite: parillisen luonnollisen luvun n neliö n 2 on parillinen. Oletus: n on parillinen, ts. on olemassa sellainen k N, että n = 2k. Väite: n 2 on parillinen, ts. on olemassa sellainen l N, että n 2 = 2l. Todistus. 16 / 92

41 Suora todistus Esimerkki 6 Todista väite: parillisen luonnollisen luvun n neliö n 2 on parillinen. Oletus: n on parillinen, ts. on olemassa sellainen k N, että n = 2k. Väite: n 2 on parillinen, ts. on olemassa sellainen l N, että n 2 = 2l. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen l N, että n 2 = 2l. 16 / 92

42 Suora todistus Esimerkki 6 Todista väite: parillisen luonnollisen luvun n neliö n 2 on parillinen. Oletus: n on parillinen, ts. on olemassa sellainen k N, että n = 2k. Väite: n 2 on parillinen, ts. on olemassa sellainen l N, että n 2 = 2l. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen l N, että n 2 = 2l. Oletuksesta saadaan joten n 2 = (2k) 2 = 4k 2 = 2(2k 2 ), 16 / 92

43 Suora todistus Esimerkki 6 Todista väite: parillisen luonnollisen luvun n neliö n 2 on parillinen. Oletus: n on parillinen, ts. on olemassa sellainen k N, että n = 2k. Väite: n 2 on parillinen, ts. on olemassa sellainen l N, että n 2 = 2l. Todistus. Tavoitteena on löytää oletusta käyttäen sellainen l N, että n 2 = 2l. Oletuksesta saadaan n 2 = (2k) 2 = 4k 2 = 2(2k 2 ), joten valitsemalla l = 2k 2 = (2k)k N nähdään, että n 2 on parillinen. 16 / 92

44 Suora todistus Huomautus 3 Seuraava taulukko ei kelpaa todistukseksi, sillä kaikkia parillisia lukuja ja niiden neliöitä ei ole mahdollista taulukoida: n n / 92

45 Suora todistus Huomautus 3 Seuraava taulukko ei kelpaa todistukseksi, sillä kaikkia parillisia lukuja ja niiden neliöitä ei ole mahdollista taulukoida: n n Huomautus 4 Suorassa todistuksessa lähdetään liikkeelle oletuksesta ja päädytään väitteeseen. Päättelyssä voidaan käyttää oletusta ja tunnettuja tuloksia, väitettä ei saa käyttää. 17 / 92

46 Epäsuora todistus Epäsuorassa todistuksessa muodostetaan aluksi antiteesi, ts. oletetaan, että väite ei pidä paikkaansa, ja päädytään ristiriitaan joko oletusten tai tunnettujen tosiasioiden kanssa. Näin ollen väitteen on oltava totta. 18 / 92

47 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. 19 / 92

48 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. 19 / 92

49 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. 19 / 92

50 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. 19 / 92

51 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. Antiteesi: 19 / 92

52 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. Antiteesi: n ei ole parillinen, ts. n on pariton. 19 / 92

53 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. Antiteesi: n ei ole parillinen, ts. n on pariton. Antiteesin perusteella löydetään sellainen k N, että n = 2k / 92

54 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. Antiteesi: n ei ole parillinen, ts. n on pariton. Antiteesin perusteella löydetään sellainen k N, että n = 2k + 1. Nyt n 2 = (2k + 1) 2 = 4k 2 + 4k + 1 = 2(2k } 2 {{ + 2k } ) + 1, merk.m missä m = 2k 2 + 2k N. 19 / 92

55 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. Antiteesi: n ei ole parillinen, ts. n on pariton. Antiteesin perusteella löydetään sellainen k N, että n = 2k + 1. Nyt n 2 = (2k + 1) 2 = 4k 2 + 4k + 1 = 2(2k } 2 {{ + 2k } ) + 1, merk.m missä m = 2k 2 + 2k N. Siis n 2 on pariton. 19 / 92

56 Epäsuora todistus Esimerkki 7 Osoita, että jos n 2 on parillinen, niin n on parillinen. Oletus: n 2 on parillinen. Väite: n on parillinen. Todistus. Antiteesi: n ei ole parillinen, ts. n on pariton. Antiteesin perusteella löydetään sellainen k N, että n = 2k + 1. Nyt n 2 = (2k + 1) 2 = 4k 2 + 4k + 1 = 2(2k } 2 {{ + 2k } ) + 1, merk.m missä m = 2k 2 + 2k N. Siis n 2 on pariton. Tämä on ristiriita, sillä oletuksen mukaan n 2 on parillinen. Näin ollen antiteesi on epätosi ja väite on totta. 19 / 92

57 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. 20 / 92

58 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. 20 / 92

59 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. Väite: sekä n että m ovat parittomia. 20 / 92

60 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. Väite: sekä n että m ovat parittomia. Todistus. Antiteesi: 20 / 92

61 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. Väite: sekä n että m ovat parittomia. Todistus. Antiteesi: Toinen luvuista on parillinen. 20 / 92

62 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. Väite: sekä n että m ovat parittomia. Todistus. Antiteesi: Toinen luvuista on parillinen. Olkoon tämä parillinen luku n, ts. n = 2k jollakin k N. 20 / 92

63 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. Väite: sekä n että m ovat parittomia. Todistus. Antiteesi: Toinen luvuista on parillinen. Olkoon tämä parillinen luku n, ts. n = 2k jollakin k N. Nyt nm = 2km on parillinen, mikä on ristiriita, sillä oletuksen perusteella nm on pariton. 20 / 92

64 Epäsuora todistus Esimerkki 8 Olkoot m ja n luonnollisia lukuja, joiden tulo on pariton. Osoita, että tällöin sekä n että m ovat parittomia. Oletus: m ja n ovat luonnollisia lukuja ja nm on pariton. Väite: sekä n että m ovat parittomia. Todistus. Antiteesi: Toinen luvuista on parillinen. Olkoon tämä parillinen luku n, ts. n = 2k jollakin k N. Nyt nm = 2km on parillinen, mikä on ristiriita, sillä oletuksen perusteella nm on pariton. Siis antiteesi on epätosi ja väite on totta. 20 / 92

65 Epäsuora todistus Huomautus 5 1 Epäsuorassa päättelyssä antiteesin muodostaminen on tärkeää: on mietittävä huolellisesti, mitä tarkoittaa se, että väite ei olisikaan totta. Antiteesin muodostamiseen palataan myöhemmin. 21 / 92

66 Epäsuora todistus Huomautus 5 1 Epäsuorassa päättelyssä antiteesin muodostaminen on tärkeää: on mietittävä huolellisesti, mitä tarkoittaa se, että väite ei olisikaan totta. Antiteesin muodostamiseen palataan myöhemmin. 2 Epäsuorassa todistuksessa ei ole selvää, mistä ja miten ristiriita löydetään. 21 / 92

67 Epäsuora todistus Huomautus 5 1 Epäsuorassa päättelyssä antiteesin muodostaminen on tärkeää: on mietittävä huolellisesti, mitä tarkoittaa se, että väite ei olisikaan totta. Antiteesin muodostamiseen palataan myöhemmin. 2 Epäsuorassa todistuksessa ei ole selvää, mistä ja miten ristiriita löydetään. 3 Aikaisemmassa esimerkissä (Esim. 6) osoitettiin, että SIIS... n on parillinen (oletus) n 2 on parillinen (väite). Lisäksi osoitettiin, että n 2 on parillinen (oletus) n on parillinen (väite). 21 / 92

68 Siis... Nämä kaksi väitelausetta voidaan yhdistää ja kirjoittaa muodossa n on parillinen n 2 on parillinen. Nuolta kutsutaan ekvivalenssinuoleksi, ja merkintä luetaan joko n on pariton, jos ja vain jos n 2 on pariton tai n on pariton, täsmälleen silloin, kun n 2 on pariton. Merkintä P Q tarkoittaa siis (P Q) ja (Q P). 22 / 92

69 Esimerkki 9 Osoita, että luonnollinen luku n on parillinen, jos ja vain jos luonnollinen luku n + 1 on pariton. Todistus. (Luennolla) 23 / 92

70 Esimerkki 9 Osoita, että luonnollinen luku n on parillinen, jos ja vain jos luonnollinen luku n + 1 on pariton. Todistus. (Luennolla) Esimerkki 10 1 Osoita, että luonnollinen luku n on jaollinen luvulla 6, jos ja vain jos se on jaollinen sekä luvuilla 2 että 3. Todistus. (Luennolla) 2 Osoita, että 2 on irrationaaliluku. (Pythagoras n. 550 eaa.) Todistus. (Luennolla) 3 Olkoon n Z pariton. Osoitetaan sekä suoraa että epäsuoraa todistusta käyttäen, että 5n 3 on parillinen kokonaisluku. Todistus. (Luennolla) 23 / 92

71 Antiteesin muodostaminen Antiteesi Antiteesi eli vastaväite on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. 24 / 92

72 Antiteesin muodostaminen Antiteesi Antiteesi eli vastaväite on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Huomio Väite ja antiteesi yhdessä sisältävät kaikki mahdolliset tilanteet. Epäsuorassa todistuksessa antiteesi on lisäoletus, jota hyödynnetään ristiriitaan pyrittäessä. Väite on totta täsmälleen silloin, kun antiteesi ei ole totta, ts. väite on tosi antiteesi on epätosi. 24 / 92

73 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. 25 / 92

74 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. 25 / 92

75 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. 25 / 92

76 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. 25 / 92

77 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. 25 / 92

78 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. (3) Väite: sataa tai tuulee. 25 / 92

79 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. (3) Väite: sataa tai tuulee. Antiteesi: ei sada ja ei tuule. 25 / 92

80 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. (3) Väite: sataa tai tuulee. Antiteesi: ei sada ja ei tuule. (4) Väite: kaikki syyspäivät ovat aurinkoisia ja tuulisia. 25 / 92

81 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. (3) Väite: sataa tai tuulee. Antiteesi: ei sada ja ei tuule. (4) Väite: kaikki syyspäivät ovat aurinkoisia ja tuulisia. Antiteesi: on olemassa syyspäivä, joka ei ole aurinkoinen tai ei ole tuulinen. 25 / 92

82 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. (3) Väite: sataa tai tuulee. Antiteesi: ei sada ja ei tuule. (4) Väite: kaikki syyspäivät ovat aurinkoisia ja tuulisia. Antiteesi: on olemassa syyspäivä, joka ei ole aurinkoinen tai ei ole tuulinen. (5) Väite: on olemassa syyspäivä, jolloin tuulee tai sataa. 25 / 92

83 Esimerkki 11 Muodostetaan antiteesit seuraaville väitteille. Huomaa, miten sanat ja, tai, kaikki ja on olemassa muuttuvat antiteesiä muodostettaessa. (1) Väite: tänään on pilvistä. Antiteesi: tänään ei ole pilvistä. (2) Väite: aurinko paistaa ja tuulee. Antiteesi: aurinko ei paista tai ei tuule. (3) Väite: sataa tai tuulee. Antiteesi: ei sada ja ei tuule. (4) Väite: kaikki syyspäivät ovat aurinkoisia ja tuulisia. Antiteesi: on olemassa syyspäivä, joka ei ole aurinkoinen tai ei ole tuulinen. (5) Väite: on olemassa syyspäivä, jolloin tuulee tai sataa. Antiteesi: kaikki syyspäivät ovat tuulettomia ja sateettomia. 25 / 92

84 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. 26 / 92

85 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > / 92

86 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x / 92

87 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > / 92

88 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > 1. (3) Väite: on olemassa sellainen k N, että x = 2k / 92

89 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > 1. (3) Väite: on olemassa sellainen k N, että x = 2k + 1. Antiteesi: ei ole olemassa sellaista lukua k N, että x = 2k + 1, ts. kaikille luvuille k N pätee x 2k / 92

90 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > 1. (3) Väite: on olemassa sellainen k N, että x = 2k + 1. Antiteesi: ei ole olemassa sellaista lukua k N, että x = 2k + 1, ts. kaikille luvuille k N pätee x 2k + 1. (4) Väite: kaikille n N on olemassa sellainen m N, että nm + 1 N. 26 / 92

91 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > 1. (3) Väite: on olemassa sellainen k N, että x = 2k + 1. Antiteesi: ei ole olemassa sellaista lukua k N, että x = 2k + 1, ts. kaikille luvuille k N pätee x 2k + 1. (4) Väite: kaikille n N on olemassa sellainen m N, että nm + 1 N. Antiteesi: on olemassa sellainen n N, että kaikille m N pätee nm + 1 / N. 26 / 92

92 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > 1. (3) Väite: on olemassa sellainen k N, että x = 2k + 1. Antiteesi: ei ole olemassa sellaista lukua k N, että x = 2k + 1, ts. kaikille luvuille k N pätee x 2k + 1. (4) Väite: kaikille n N on olemassa sellainen m N, että nm + 1 N. Antiteesi: on olemassa sellainen n N, että kaikille m N pätee nm + 1 / N. (5) Väite: on olemassa sellainen n N, että kaikille m N pätee m n ja mn N. 26 / 92

93 Esimerkki 12 Olkoon x R. Muodostetaan antiteesit seuraaville väitteillle. (1) Väite: x 1. Antiteesi: x > 1. (2) Väite: 0 < x 1, ts. x > 0 ja x 1. Antiteesi: x 0 tai x > 1. (3) Väite: on olemassa sellainen k N, että x = 2k + 1. Antiteesi: ei ole olemassa sellaista lukua k N, että x = 2k + 1, ts. kaikille luvuille k N pätee x 2k + 1. (4) Väite: kaikille n N on olemassa sellainen m N, että nm + 1 N. Antiteesi: on olemassa sellainen n N, että kaikille m N pätee nm + 1 / N. (5) Väite: on olemassa sellainen n N, että kaikille m N pätee m n ja mn N. Antiteesi: kaikilla n N on olemassa sellainen m N, että n = m tai nm / N. 26 / 92

94 Esimerkki 13 Todista suoraa ja epäsuoraa päättelyä käyttäen väitelause: jos x R ja x 2 3x + 2 < 0, niin x > / 92

95 Huomautus 6 1 Matemaattista tekstiä voidaan tiivistää nk. kvanttoreiden avulla: kaikki (All) on olemassa (Exist). 28 / 92

96 Huomautus 6 1 Matemaattista tekstiä voidaan tiivistää nk. kvanttoreiden avulla: kaikki (All) on olemassa (Exist). 2 Antiteesiä muodostettaessa sanat ja, tai sekä kvanttorit ja vaihtuvat. 28 / 92

97 Huomautus 6 1 Matemaattista tekstiä voidaan tiivistää nk. kvanttoreiden avulla: kaikki (All) on olemassa (Exist). 2 Antiteesiä muodostettaessa sanat ja, tai sekä kvanttorit ja vaihtuvat. 3 Matematiikassa tai ei ole joko-tai. Siis P on tosi tai Q on tosi tarkoittaa (i) P tosi, Q epätosi, (ii) P epätosi, Q tosi tai (iii) P tosi, Q tosi. 28 / 92

98 Huomautus 6 1 Matemaattista tekstiä voidaan tiivistää nk. kvanttoreiden avulla: kaikki (All) on olemassa (Exist). 2 Antiteesiä muodostettaessa sanat ja, tai sekä kvanttorit ja vaihtuvat. 3 Matematiikassa tai ei ole joko-tai. Siis P on tosi tai Q on tosi tarkoittaa (i) P tosi, Q epätosi, (ii) P epätosi, Q tosi tai (iii) P tosi, Q tosi. 4 Monesti kvanttoreita ei kuitenkaan käytetä matemaattista tekstiä kirjoitettaessa (esim. esitelmät, kirjat, yms.). 28 / 92

99 KUINKA OSOITETAAN, ETTÄ VÄITE EI OLE TOTTA? 29 / 92

100 Kuinka osoitetaan, että väite ei ole totta? Väitelause P Q osoitetaan vääräksi keksimällä esimerkki, jossa oletus P pätee, mutta väite Q ei. 30 / 92

101 Kuinka osoitetaan, että väite ei ole totta? Väitelause P Q osoitetaan vääräksi keksimällä esimerkki, jossa oletus P pätee, mutta väite Q ei. Esimerkki 14 Osoita, että ao. väitelauseet eivät ole tosia. 1 Jos m ja n ovat negatiivisia kokonaislukuja, niin m n on negatiivinen kokonaisluku. 30 / 92

102 Kuinka osoitetaan, että väite ei ole totta? Väitelause P Q osoitetaan vääräksi keksimällä esimerkki, jossa oletus P pätee, mutta väite Q ei. Esimerkki 14 Osoita, että ao. väitelauseet eivät ole tosia. 1 Jos m ja n ovat negatiivisia kokonaislukuja, niin m n on negatiivinen kokonaisluku. Ratkaisu. Väite ei ole totta, sillä 1 ja 2 ovat negatiivisia kokonaislukuja, mutta 1 ( 2) = 1 on positiivinen kokonaisluku. 30 / 92

103 Kuinka osoitetaan, että väite ei ole totta? Väitelause P Q osoitetaan vääräksi keksimällä esimerkki, jossa oletus P pätee, mutta väite Q ei. Esimerkki 14 Osoita, että ao. väitelauseet eivät ole tosia. 1 Jos m ja n ovat negatiivisia kokonaislukuja, niin m n on negatiivinen kokonaisluku. Ratkaisu. Väite ei ole totta, sillä 1 ja 2 ovat negatiivisia kokonaislukuja, mutta 1 ( 2) = 1 on positiivinen kokonaisluku. 2 Jos x on irrationaaliluku, niin x x on irrationaaliluku. 30 / 92

104 Kuinka osoitetaan, että väite ei ole totta? Väitelause P Q osoitetaan vääräksi keksimällä esimerkki, jossa oletus P pätee, mutta väite Q ei. Esimerkki 14 Osoita, että ao. väitelauseet eivät ole tosia. 1 Jos m ja n ovat negatiivisia kokonaislukuja, niin m n on negatiivinen kokonaisluku. Ratkaisu. Väite ei ole totta, sillä 1 ja 2 ovat negatiivisia kokonaislukuja, mutta 1 ( 2) = 1 on positiivinen kokonaisluku. 2 Jos x on irrationaaliluku, niin x x on irrationaaliluku. Ratkaisu. Väite ei ole totta, sillä 2 on irrationaaliluku, mutta x x = 2 2 = 2 ei ole irrationaaliluku. 30 / 92

105 Kuinka osoitetaan, että väite ei ole totta? Esimerkki 15 1 Olkoot n, m N. Jos n + m on parillinen, niin joko n ja m ovat molemmat parillisia tai n ja m ovat molemmat parittomia. 2 Lukua 512 ei voida esittää yhden parittoman ja kahden parillisen luonnollisen luvun summana. 3 Olkoot n, m ja k luonnollisia lukuja. Onko väite totta? jos m + k on jaollinen n:llä, niin m on jaollinen n:llä tai k on jaollinen n:llä 4 Olkoot n, m ja k luonnollisia lukuja. Onko väite totta? jos m on jaollinen n:llä ja k on jaollinen n:llä, niin m + k on jaollinen n:llä 5 Osoita, että on olemassa sellaiset irrationaaliluvut x ja y, että x y on rationaaliluku. 31 / 92

106 INDUKTIOTODISTUS 32 / 92

107 Induktiotodistus Induktiota käyttäen voidaan todistaa mm. luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0, 1, 2,.... Tässä väite P(n) riippuu n:n arvosta. 33 / 92

108 Induktiotodistus Induktiota käyttäen voidaan todistaa mm. luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0, 1, 2,.... Tässä väite P(n) riippuu n:n arvosta. Induktioperiaate Todistuksessa on kaksi vaihetta: (i) Osoitetaan, että väite on totta, kun n = 0. (ii) Oletetaan, että väite on totta, kun n = k (tätä kutsutaan induktio-oletukseksi), ja osoitetaan, että se on totta, kun n = k + 1 (tätä kutsutaan induktioväitteeksi). 33 / 92

109 Induktiotodistus Induktiota käyttäen voidaan todistaa mm. luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0, 1, 2,.... Tässä väite P(n) riippuu n:n arvosta. Induktioperiaate Todistuksessa on kaksi vaihetta: (i) Osoitetaan, että väite on totta, kun n = 0. (ii) Oletetaan, että väite on totta, kun n = k (tätä kutsutaan induktio-oletukseksi), ja osoitetaan, että se on totta, kun n = k + 1 (tätä kutsutaan induktioväitteeksi). Kohdista (i) ja (ii) seuraa, että väite on totta kaikilla n = 0, 1, 2,..., sillä kohdan (i) perusteella väite on totta, kun n = 0, joten kohdan (ii) perusteella väite on totta, kun n = 1. Edelleen kohdan (ii) perusteella väite totta, kun n = 2 jne. 33 / 92

110 Induktiotodistus Huomautus 7 Induktion ei tarvitse välttämättä alkaa luvusta n = 0: induktion avulla voidaan todistaa myös muotoa väite P(n) on totta kaikille n = n 0, n 0 + 1, n 0 + 2,... oleva väite, kun n 0 N. 34 / 92

111 Induktiotodistus Esimerkki 16 Osoita, että (2n 1) = n 2 kaikilla n = 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. 35 / 92

112 Induktiotodistus Esimerkki 16 Osoita, että (2n 1) = n 2 kaikilla n = 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. (i) Tarkistetaan, että yhtäsuuruuus on voimassa, kun n = 1: 35 / 92

113 Induktiotodistus Esimerkki 16 Osoita, että (2n 1) = n 2 kaikilla n = 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. (i) Tarkistetaan, että yhtäsuuruuus on voimassa, kun n = 1: Vasen puoli: 1 35 / 92

114 Induktiotodistus Esimerkki 16 Osoita, että (2n 1) = n 2 kaikilla n = 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. (i) Tarkistetaan, että yhtäsuuruuus on voimassa, kun n = 1: Vasen puoli: 1 Oikea puoli: 1 2 = / 92

115 Induktiotodistus Esimerkki 16 Osoita, että (2n 1) = n 2 kaikilla n = 1, 2,.... Todistus. Todistetaan väite induktiota käyttäen. (i) Tarkistetaan, että yhtäsuuruuus on voimassa, kun n = 1: Vasen puoli: 1 Oikea puoli: 1 2 = 1. Siis väite pätee kun n = / 92

116 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k / 92

117 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k / 92

118 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k + 1) 1) = (k + 1) / 92

119 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k + 1) 1) = (k + 1) 2. Induktioväitteen todistus. 36 / 92

120 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k + 1) 1) = (k + 1) 2. Induktioväitteen todistus. Lähdetään liikkeelle induktioväitteen vasemmalta puolelta. Induktio-oletusta käyttäen saadaan 36 / 92

121 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k + 1) 1) = (k + 1) 2. Induktioväitteen todistus. Lähdetään liikkeelle induktioväitteen vasemmalta puolelta. Induktio-oletusta käyttäen saadaan =k 2 (induktio-oletus) {}}{ (2k 1) +(2(k + 1) 1) = k 2 + 2(k + 1) 1 = k 2 + 2k = k 2 + 2k + 1 = (k + 1) / 92

122 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k + 1) 1) = (k + 1) 2. Induktioväitteen todistus. Lähdetään liikkeelle induktioväitteen vasemmalta puolelta. Induktio-oletusta käyttäen saadaan =k 2 (induktio-oletus) {}}{ (2k 1) +(2(k + 1) 1) = k 2 + 2(k + 1) 1 = k 2 + 2k = k 2 + 2k + 1 = (k + 1) 2. Näin päädyttiin induktioväitteen oikealle puolelle. 36 / 92

123 Induktiotodistus (ii) Oletetaan, että väite pätee, kun n = k, ja osoitetaan, että väite pätee, kun n = k + 1. Induktio-oletus: (2k 1) = k 2. Induktioväite: (2k 1) + (2(k + 1) 1) = (k + 1) 2. Induktioväitteen todistus. Lähdetään liikkeelle induktioväitteen vasemmalta puolelta. Induktio-oletusta käyttäen saadaan =k 2 (induktio-oletus) {}}{ (2k 1) +(2(k + 1) 1) = k 2 + 2(k + 1) 1 = k 2 + 2k = k 2 + 2k + 1 = (k + 1) 2. Näin päädyttiin induktioväitteen oikealle puolelle. Siis induktioväite on tosi. Induktioperiaatteen perusteella väite on tosi kaikille n = 1, 2, / 92

124 Summamerkintä Merkintä Olkoot a 1, a 2,..., a n R. Merkitään n a j = a 1 + a a n. j=1 37 / 92

125 Summamerkintä Merkintä Olkoot a 1, a 2,..., a n R. Merkitään n a j = a 1 + a a n. j=1 Esimerkki 17 (1) 3 2 i = i=1 37 / 92

126 Summamerkintä Merkintä Olkoot a 1, a 2,..., a n R. Merkitään n a j = a 1 + a a n. j=1 Esimerkki 17 (1) (2) 3 2 i = i=1 l a k = a + a a l j=1 37 / 92

127 Summamerkintä (4) m m a2 k = a 2 k = a( m ) k=1 k=1 Huomaa, että a ei riipu summausindeksistä k, joten sen saa viedä -merkin eteen. 38 / 92

128 Summamerkintä (4) (5) m m a2 k = a 2 k = a( m ) k=1 k=1 Huomaa, että a ei riipu summausindeksistä k, joten sen saa viedä -merkin eteen. p (αx j + βjy j+1 ) = α j=1 p x j + β j=1 p j=1 jy j+1 = α(x + x x p ) + β(y 2 + 2y py p+1 ). 38 / 92

129 Summamerkintä (4) (5) m m a2 k = a 2 k = a( m ) k=1 k=1 Huomaa, että a ei riipu summausindeksistä k, joten sen saa viedä -merkin eteen. p (αx j + βjy j+1 ) = α j=1 p x j + β j=1 p j=1 jy j+1 = α(x + x x p ) + β(y 2 + 2y py p+1 ). (6) n (2j 1) = (2n 1) j=1 38 / 92

130 Induktiotodistus (7) Tarkastellaan geometrisen sarjan osasummia: Olkoon b sellainen reaaliluku, että b 0 ja b 1. Merkitään S n = n b j. j=0 Osoita, että kaikilla n = 0, 1, 2,.... Todistus. (Luennolla) S n = bn+1 1 b 1 39 / 92

131 Induktiotodistus (8) Osoita, että 3 n > 2n kaikilla n = 1, 2,.... Todistus. (Luennolla) (9) Osoita, että äärellisen monen rationaaliluvun q 1, q 2,..., q n summa q 1 + q q n on rationaaliluku. Todistus. (Luennolla) 40 / 92

132 JOUKKO-OPPIA 41 / 92

133 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin keskeisimpiä käsitteitä ja harjoitellaan matemaattista päättelyä niitä käyttäen. Joukko koostuu alkioista ja jokaisesta alkiosta on pystyttävä sanomaan, kuuluuko se tiettyyn joukkoon. 42 / 92

134 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin keskeisimpiä käsitteitä ja harjoitellaan matemaattista päättelyä niitä käyttäen. Joukko koostuu alkioista ja jokaisesta alkiosta on pystyttävä sanomaan, kuuluuko se tiettyyn joukkoon. Merkintä Mitä tarkoittaa? x A x on joukon A alkio, ts. x kuuluu joukkoon A y / A y ei ole joukon A alkio, ts. y ei kuulu joukkoon A {x P(x)} niiden alkioiden joukko, joilla on ominaisuus P(x) tyhjä joukko eli joukko, joka ei sisällä yhtään alkiota 42 / 92

135 Joukko-oppia Esimerkki 18 (1) 1 {1, 2}, 2 {1, 2}, 0 / {1, 2} 43 / 92

136 Joukko-oppia Esimerkki 18 (1) 1 {1, 2}, 2 {1, 2}, 0 / {1, 2} (2) {n N 0 < n < 5} = {1, 2, 3, 4} 43 / 92

137 Joukko-oppia Esimerkki 18 (1) 1 {1, 2}, 2 {1, 2}, 0 / {1, 2} (2) {n N 0 < n < 5} = {1, 2, 3, 4} (3) {0, 1} = {0, 0, 1} = {1, 0} 43 / 92

138 Joukko-oppia Esimerkki 18 (1) 1 {1, 2}, 2 {1, 2}, 0 / {1, 2} (2) {n N 0 < n < 5} = {1, 2, 3, 4} (3) {0, 1} = {0, 0, 1} = {1, 0} (4) {1}, sillä 1 {1}. 43 / 92

139 Joukko-oppia Esimerkki 18 (1) 1 {1, 2}, 2 {1, 2}, 0 / {1, 2} (2) {n N 0 < n < 5} = {1, 2, 3, 4} (3) {0, 1} = {0, 0, 1} = {1, 0} (4) {1}, sillä 1 {1}. (5) { }, sillä on joukon { } alkio. 43 / 92

140 Joukko-oppia Määritelmä 19 Joukko A on joukon B osajoukko, jos jokainen joukon A alkio on myös joukon B alkio, ts. jos x A, niin x B. Tällöin merkitään A B (tai A B). Lisäksi jos halutaan korostaa, että joukko A on joukon B on aito osajoukko (ts. joukossa B on alkioita, mitkä eivät kuulu joukkoon A), niin merkitään A B. 44 / 92

141 Joukko-oppia Määritelmä 19 Joukko A on joukon B osajoukko, jos jokainen joukon A alkio on myös joukon B alkio, ts. jos x A, niin x B. Tällöin merkitään A B (tai A B). Lisäksi jos halutaan korostaa, että joukko A on joukon B on aito osajoukko (ts. joukossa B on alkioita, mitkä eivät kuulu joukkoon A), niin merkitään A B. Huomautus 8 1) Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. (Huom. Miten siis osoitat joukot samoiksi?) 44 / 92

142 Joukko-oppia Määritelmä 19 Joukko A on joukon B osajoukko, jos jokainen joukon A alkio on myös joukon B alkio, ts. jos x A, niin x B. Tällöin merkitään A B (tai A B). Lisäksi jos halutaan korostaa, että joukko A on joukon B on aito osajoukko (ts. joukossa B on alkioita, mitkä eivät kuulu joukkoon A), niin merkitään A B. Huomautus 8 1) Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. (Huom. Miten siis osoitat joukot samoiksi?) 2) Joukko A ei ole joukon B osajoukko, jos joukossa A on sellainen alkio, joka ei kuulu joukkoon B, ts. jos on olemassa sellainen a A, että a / B. Tällöin merkitään A B. 44 / 92

143 Joukko-oppia Esimerkki 20 (1) {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} 45 / 92

144 Joukko-oppia Esimerkki 20 (1) {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} (2) {3, 7, 11, 15} {n N n pariton} N 45 / 92

145 Joukko-oppia Esimerkki 20 (1) {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} (2) {3, 7, 11, 15} {n N n pariton} N (3) {2, 3, 4} {2, 4, 6}, sillä 3 {2, 3, 4}, mutta 3 / {2, 4, 6}. 45 / 92

146 Joukko-oppia Esimerkki 20 (1) {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} (2) {3, 7, 11, 15} {n N n pariton} N (3) {2, 3, 4} {2, 4, 6}, sillä 3 {2, 3, 4}, mutta 3 / {2, 4, 6}. (4) {n N n < 3} = {0, 1, 2, 3, 4, 5, 6, 7, 8} 45 / 92

147 Joukko-oppia Esimerkki 20 (1) {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} (2) {3, 7, 11, 15} {n N n pariton} N (3) {2, 3, 4} {2, 4, 6}, sillä 3 {2, 3, 4}, mutta 3 / {2, 4, 6}. (4) {n N n < 3} = {0, 1, 2, 3, 4, 5, 6, 7, 8} (5) Parittomien luonnollisten lukujen määritelmän perusteella {n N n on pariton} = {2k + 1 k N}, ja aikaisempien esimerkkien/harjoitustehtävän perusteella (n pariton joss. n 2 pariton). {n N n on pariton} = {n N n 2 pariton}. 45 / 92

148 Joukko-oppia (8) N Z Q R (9) Koska N Z (esimerkiksi 1 Z, mutta 1 / N), niin N on joukon Z aito osajoukko. Vastaavasti Z on joukon Q aito osajoukko ( 1 2 Q, mutta 1 2 / Z) ja Q on joukon R aito osajoukko ( 2 R, mutta 2 / Q). 46 / 92

149 Joukko-oppia (8) N Z Q R (9) Koska N Z (esimerkiksi 1 Z, mutta 1 / N), niin N on joukon Z aito osajoukko. Vastaavasti Z on joukon Q aito osajoukko ( 1 2 Q, mutta 1 2 / Z) ja Q on joukon R aito osajoukko ( 2 R, mutta 2 / Q). (10) Osoita, että {0, 1} = {x R x 2 = x}. Todistus. (Luennolla) 46 / 92

150 Joukko-oppia (8) N Z Q R (9) Koska N Z (esimerkiksi 1 Z, mutta 1 / N), niin N on joukon Z aito osajoukko. Vastaavasti Z on joukon Q aito osajoukko ( 1 2 Q, mutta 1 2 / Z) ja Q on joukon R aito osajoukko ( 2 R, mutta 2 / Q). (10) Osoita, että {0, 1} = {x R x 2 = x}. Todistus. (Luennolla) (11) Onko väite tosi? jos a A ja A B, niin a / B 46 / 92

151 Joukko-oppia (8) N Z Q R (9) Koska N Z (esimerkiksi 1 Z, mutta 1 / N), niin N on joukon Z aito osajoukko. Vastaavasti Z on joukon Q aito osajoukko ( 1 2 Q, mutta 1 2 / Z) ja Q on joukon R aito osajoukko ( 2 R, mutta 2 / Q). (10) Osoita, että {0, 1} = {x R x 2 = x}. Todistus. (Luennolla) (11) Onko väite jos a A ja A B, niin a / B tosi? Ratkaisu. Väite ei ole totta, mikä nähdään, kun valitaan A = {0, 1}, B = {1, 2} ja a = 1. Tällöin a A ja A B, sillä 0 A, mutta 0 / B. Lisäksi a B. 46 / 92

152 Joukko-oppia Määritelmä 21 Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) 47 / 92

153 Joukko-oppia Määritelmä 21 Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) Määritellään joukkojen A ja B yhdiste A B = {x X x A tai x B}, 47 / 92

154 Joukko-oppia Määritelmä 21 Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) Määritellään joukkojen A ja B yhdiste leikkaus A B = {x X x A tai x B}, A B = {x X x A ja x B}, 47 / 92

155 Joukko-oppia Määritelmä 21 Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) Määritellään joukkojen A ja B yhdiste leikkaus erotus A B = {x X x A tai x B}, A B = {x X x A ja x B}, A\B = {x X x A ja x / B} 47 / 92

156 Joukko-oppia Määritelmä 21 Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) Määritellään joukkojen A ja B yhdiste leikkaus erotus ja komplementti A B = {x X x A tai x B}, A B = {x X x A ja x B}, A\B = {x X x A ja x / B} A C = {x X x / A}. 47 / 92

157 Joukko-oppia Esimerkki 22 Olkoot A = {0, 2, 4, 6} ja B = {0, 1, 2, 3}. Tällöin A B = {0, 1, 2, 3, 4, 6}, A B = {0, 2}, A \ B = {4, 6} ja (A B) (A \ B) = {0, 2} {4, 6} = {0, 2, 4, 6} = A. 48 / 92

158 Joukko-oppia Esimerkki 23 Olkoot A = {0, 1, a, b}, B = {1, 2, a} ja C = {2, 3, c}. Tällöin A B = {0, 1, 2, a, b}, A B = {1, a}, A\B = {0, b}, B\A = {2}, A C =, B C = {2} A (B C) = A {2} = ja (A B) (A C) = {0, 1, 2, a, b} {0, 1, 2, 3, a, b, c} = {0, 1, 2, a, b}. 49 / 92

159 Avoimet, suljetut ja puoliavoimet välit Määritelmä 24 Olkoot a, b R sellaisia, että a < b. Määritellään ]a, b[ = {x R a < x < b} [a, b] = {x R a x b} ]a, b] = {x R a < x b} [a, b[ = {x R a x < b} (avoin väli) (suljettu väli) (puoliavoin väli) (puoliavoin väli). Lisäksi ]a, [ = {x R x > a} [a, [ = {x R x a} ], a[ = {x R x < a} ], a] = {x R x a}. ( Tässä on äärettömän symboli.) 50 / 92

160 Joukko-oppia Esimerkki 25 Olkoot A = [0, 1], B = [1, 2] ja C = ] 1 2, 3 2[. Nyt A B = {x R 0 x 1 tai 1 x 2} = [0, 2], A B = {x R 0 x 1 ja 1 x 2} = {1}, A C = {x R 0 x 1 tai 1 2 < x < 3 2 } = [ 0, 3 2[, A C = {x R 0 x 1 ja 1 2 < x < 3 2 } = ] 1 2, 1], B C = {x R 1 x 2 tai 1 2 < x < 3 2 } = ] 1 2, 2] B C = {x R 1 x 2 ja 1 2 < x < 3 2 } = [ 1, 3 2[, A\B = {x R 0 x 1 ja (x < 1 tai x > 2)} = [0, 1[, A\C = {x R 0 x 1 ja (x 1 2 tai x 3 2 )} = [ 0, 1 2] ja B\C = {x R 1 x 2 ja (x 1 2 tai x 3 2 )} = [ 3 3, 2]. 51 / 92

161 Joukko-oppia Esimerkki 26 Olkoot A = [ 2, 2[ ja B = [1, [. Tällöin A B = {x R 2 x 2 tai x 1} = [ 2, [ A B = {x R 2 x 2 ja x 1} = [1, 2[, R \ A = {x R x < 2 tai x 2} =], 2[ [2, [, R \ B = {x R x < 1} =], 1[, A \ B = { 2 x < 2 x < 1} = [ 2, 1[ ja B \ A = {x 1 x < 2 tai x 2} = [2, [. 52 / 92

162 Joukko-oppia Määritellään seuraavaksi joukkojen äärelliset ja numeroituvat yhdisteet ja leikkaukset. Määritelmä 27 Joukkojen A 1, A 2,..., A k äärellinen yhdiste on k A i = A 1 A 2... A k = {x x A 1 tai x A 2 tai... tai x A k } i=1 = {x x A i jollakin i = 1,..., k} ja äärellinen leikkaus on k A i = A 1 A 2... A k = {x x A 1 ja x A 2 ja... ja x A k } i=1 = {x x A i kaikilla i = 1,..., k}. 53 / 92

163 Joukko-oppia Määritelmä 28 Joukkojen A 1, A 2,... numeroituva yhdiste on A i = {x x A i jollakin i = 1, 2,...} i=1 ja numeroituva leikkaus on A i = {x x A i kaikilla i = 1, 2,...}. i=1 54 / 92

164 Joukko-oppia Esimerkki 29 Ratkaise seuraavat tehtävät (luennolla): (1) Tarkastellaan joukkoja A = ] 1, 0[, B = ]0, 1], C = [ 1 2, 2] ja D = {0, 3}. Mitä ovat A B, A B D, B C D, A B C D ja B C D? 55 / 92

165 Joukko-oppia Esimerkki 29 Ratkaise seuraavat tehtävät (luennolla): (1) Tarkastellaan joukkoja A = ] 1, 0[, B = ]0, 1], C = [ 1 2, 2] ja D = {0, 3}. Mitä ovat A B, A B D, B C D, A B C D ja B C D? (2) Kaikilla k N määritellään A k = [k, k + 1[. Mitä ovat 5 A k, 10 A k, 10 A k ja A k? k=1 k=1 k=5 k=1 55 / 92

166 Joukko-oppia Esimerkki 29 Ratkaise seuraavat tehtävät (luennolla): (1) Tarkastellaan joukkoja A = ] 1, 0[, B = ]0, 1], C = [ 1 2, 2] ja D = {0, 3}. Mitä ovat A B, A B D, B C D, A B C D ja B C D? (2) Kaikilla k N määritellään A k = [k, k + 1[. Mitä ovat 5 A k, 10 A k, 10 A k ja A k? k=1 k=1 k=5 k=1 (3) Kaikilla k = 1, 2,... määritellään A k = [0, 1 k [. Mitä ovat 5 A k, 10 A k, 10 A k ja A k? k=1 k=1 k=5 k=1 55 / 92

167 Karteesinen tulo Määritelmä 30 Joukkojen A ja B tulojoukko eli karteesinen tulo on A B = {(a, b) a A, b B}. 56 / 92

168 Karteesinen tulo Määritelmä 30 Joukkojen A ja B tulojoukko eli karteesinen tulo on A B = {(a, b) a A, b B}. Karteesisen tulon alkioita (a, b) sanotaan järjestetyiksi pareiksi. Järjestettyjen parien olennainen ominaisuus on seuraava: jos (x, y) ja (a, b) ovat järjestettyjä pareja, niin (x, y) = (a, b) jos ja vain jos x = a ja y = b. 56 / 92

169 Karteesinen tulo Esimerkki 31 (1) Jos A = {a, b, c} ja B = {0, a}, niin A B = {(a, 0), (a, a), (b, 0), (b, a), (c, 0), (c, a)}. (2) Olkoot A = {1}, B = {2, 3}, C = {1, 2} ja D = {3}. Mitä ovat A (B C), (A B) (A C), A (B \ C), (A B) \ (A C), (A B) (C D) ja (A C) (B D)? 57 / 92

170 Karteesinen tulo Esimerkki 32 Euklidinen avaruus R n : R 2 = R R = {(x, y) x R ja y R} (xy-taso) R 3 = R R R = {(x, y, z) x R, y R ja z R} R n = R R... R }{{} n-kpl (n-ulotteinen euklidinen avaruus). 58 / 92

171 Karteesinen tulo Esimerkki 33 Olkoon A = [ 1, 1[, B = ]0, 1[ ja C = [1, [. Määrää joukot A B, A C sekä C A. 59 / 92

172 Miten joukot osoitetaan samoiksi? Muistutus Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts. jos x A, niin x B, (ii) osoitetaan, että B A, ts. jos x B, niin x A. 60 / 92

173 Miten joukot osoitetaan samoiksi? Esimerkki 34 (1) Olkoot A = {x R x 2 5x + 6 = 0} ja B = {n N 3 < n 2 < 10}. Osoita, että A = B. (2) Osoita, että A (B C) = (A B) (A C). (3) Osoita, että (A B) C = A C B C. (3) Osoita, että A (B C) = (A B) (A C). 61 / 92

174 FUNKTIOISTA 62 / 92

175 Funktioista Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Tässä luvussa tarkastellaan fuktioita ja todistetaan niiden ominaisuuksia. Funktiokäsitteen omaksumiseen kannattaa käyttää aikaa ja vaivaa runsaasti. Funktio on eräs modernin matematiikan peruspilareista. 63 / 92

176 Funktioista Määritelmä 35 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden joukon B alkion f (a) B, jota kutsutaan funktion f arvoksi pisteessä a tai a:n kuvaksi tai kuvapisteeksi kuvauksessa f. 64 / 92

177 Funktioista Määritelmä 35 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden joukon B alkion f (a) B, jota kutsutaan funktion f arvoksi pisteessä a tai a:n kuvaksi tai kuvapisteeksi kuvauksessa f. Joukkoa A kutsutaan funktion f määrittely- tai lähtöjoukoksi ja joukkoa B maalijoukoksi. 64 / 92

178 Funktioista Huomautus 9 Kuvaus muodostuu kolmikosta (f, A, B). Kaksi kuvausta f : A B ja g : C D ovat samat, jos A = C, B = D ja f (x) = g(x) kaikilla x A = C. Tehtävä Anna esimerkki funktiosta ja anna esimerkki tapauksesta mikä ei ole funktio (miksi?). 65 / 92

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Vastaoletuksen muodostaminen

Vastaoletuksen muodostaminen Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,... Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2014 Tero Vedenjuoksu Sisältö 1 Johdanto 3 2 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Marko Leinonen Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2018 1 Merkintöjä ja määritelmiä Luonnollisten lukujen joukko N on joukko ja kokonaislukujen

Lisätiedot

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta: MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Johdatus yliopistomatematiikkaan. JYM, Syksy /197 Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. 3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 15. syyskuuta 2015 Alkulause Much more important than specific mathematical results are the habits of mind used by the people who create those results. Cuoco, Goldenberg

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 14.8.2003 Sisältö 1 Todistamisen ja matemaattisen päättelyn alkeita 3 1.1 Maalaisjärjellä päätteleminen.................. 3 1.2 Todistamisen alkeita.......................

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 7. toukokuuta 04 Sisältö Joukko-oppia 4. Joukko-opin peruskäsitteitä ja merkintöjä........... 4 Todistamisen ja matemaattisen päättelyn alkeita 3. Alkupala..............................

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

1 Perusasioita joukoista

1 Perusasioita joukoista 1 Perusasioita joukoista 1.1 Merkintöjä Joukko voidaan määritellä luettelemalla siihen kuuluvat alkiot. Esimerkiksi voidaan merkitä = { 2, 1, 0, 1, 2}. Tästä merkinnästä nähdään, mitkä luvut ovat joukon

Lisätiedot

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1 Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Funktioista. Esimerkki 1

Funktioista. Esimerkki 1 Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka

Lisätiedot

JOHDATUS MATEMATIIKKAAN

JOHDATUS MATEMATIIKKAAN JOHDATUS MATEMATIIKKAAN Toitteko minulle ihmisen, joka ei osaa laskea sormiaan? Kuolleiden kirja JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Alkusanat Tämä tiivistelmä on allekirjoittaneen

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA11 Koe.4.014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta). Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:

Lisätiedot

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause

Lisätiedot

Predikaattilogiikkaa

Predikaattilogiikkaa Predikaattilogiikkaa UKUTEORIA JA TO- DISTAMINEN, MAA11 Kertausta ogiikan tehtävä: ogiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R): Diskreetti matematiikka, sks 2010 Harjoitus 2, ratkaisuista 1. Seuraavassa on kuvattu kolme virtapiiriä, joissa on paristo, sopiva lamppu L ja katkaisimia P, Q, R, joiden läpi virta kulkee (1) tai ei kulje

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

LOGIIKKA johdantoa

LOGIIKKA johdantoa LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt

Lisätiedot

Logiikka 1/5 Sisältö ESITIEDOT:

Logiikka 1/5 Sisältö ESITIEDOT: Logiikka 1/5 Sisältö Formaali logiikka Luonnollinen logiikka muodostaa perustan arkielämän päättelyille. Sen käyttö on intuitiivista ja usein tiedostamatonta. Mikäli logiikka halutaan täsmällistää esimerkiksi

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot