1 Algebralliset perusteet

Koko: px
Aloita esitys sivulta:

Download "1 Algebralliset perusteet"

Transkriptio

1 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset ideaalit. He osaavat todistaa tuloksia näissä struktuureissa ja erottaa rakenteet toisistaan. Määritelmä 1.1. Rengas R on Abelin ryhmä operaation + suhteen, ja lisäksi R:ssä on assosiatiivinen binäärioperaatio, jolle pätee a(b + c) = ab + ac ja (a + b)c = ac + bc. Määritelmä 1.2. Renkaan R osajoukko on alirengas, jos se on suljettu operaatioiden + ja suhteen, siihen kuuluu additiivinen nolla-alkio. Algebrallisia rakenteita tutkittaessa on hyödyllistä yrittää identifioida alijoukkoja, joilla itseasiassa on sama rakenne kuin itse isolla joukolla. Esimerkiksi ryhmällä on aliryhmä, ja jos jaamme ryhmän normaalilla aliryhmällä, saamme jakoryhmän. Renkaitten kohdalla normaalin aliryhmän paikan ottavat ideaalit. Määritelmä 1.3. Renkaan R osajoukko I on ideaali, jos se on renkaan R additiivinen aliryhmä, ja kaikille a I ja r R pätee, että ar I ja ra I. Jos vain toinen näistä pätee, kutsutaan ideaalia oikeaksi tai vasemmaksi ideaaliksi. Ideaali on aito, jos I R. Ideaali I on maksimaalinen, jos ja vain jos I J R ja J on ideaali, tästä seuraa, että J = I ja J = R. Määritelmä 1.4. Rengas R 1. on vaihdannainen, jos xy = yx kaikille x, y R. 2. sisältää ykkösalkion, jos on olemassa yksikäsitteinen 0 1 R, jolle pätee 1x = x1 =x x. 3. on kokonaisalue, jos se on vaihdannainen, ja siinä on ykkösalkio, sekä ab =0väistämättä tarkoittaa sitä, että a =0tai b =0. 4. on jakorengas, jos siinä on ykkösalkio ja R \{0} on multiplikatiivinen ryhmä. 5. on kunta, jos se on kommutatiivinen jakorengas. 3

2 Esimerkki 1.5. (a) Kokonaisluvut Z on rengas, se on vaihdannainen, sillä kertolasku on vaihdannainen. Sillä on ykkösalkio 1, se on myös kokonaisalue, koska vain kertomalla nollalla saadaan nolla. Kuitenkaan Z \{0} ei ole multiplikatiivinen ryhmä, sillä käänteisalkioita ei ole. Näin ollen, Z ei ole myöskään kunta. (b) Tuttuja esimerkkejä kunnista ovat Q, R ja C. (c) Rengas Z/mZ, eli kokonaisluvut mod m on selvästikin rengas. Se on vaihdannainen, ja siinä on ykkösalkio, mutta kokonaisalue se on vain siinä tapauksessa, että m on alkuluku. Esimerkiksi m =6, silloin mod 6, joten renkaassa on nollajakajia. Jos m on alkuluku, on rakenne myös kunta. (d) n n matriisit muodostavat renkaan, joka ei ole vaihdannainen, mutta sisältää ykkösalkion. Määritelmä 1.6. Olkoot R ja S renkaita. Kuvaus ϕ : R S on rengashomomorfismi, jos ϕ(a + b) = ϕ(a) + ϕ(b) ja ϕ(ab) = ϕ(a)ϕ(b) kaikille a, b R. Lause 1.7. Olkoon R rengas, ja I ideaali, silloin on olemassa rengas R/I, jonka operaatio on (a + I)(b + I) =ab + I ja lisäksi, R/I on vaihdannainen, jos R on vaihdannainen. R/I sisältää ykkösalkion jos I R ja R sisältää ykkösalkion. Todistus. Algebra I. Esimerkki 1.8. Z on rengas, mz on ideaali, ja Z/mZ on tekijärengas. 1.2 Kokonaisalueet ja kunnat Tämän luvun jälkeen opiskelija osaa määritellä kokonaisalueet ja kunnat, antaa esimerkkejä näistä tietäen, mitkä määritelmät sisältyvät toisiinsa sekä antaa esimerkkejä, miksi nämä määritelmät ovat kaikki erilaisia struktuureja. Tästä lähtien rengas tarkoittaa aina vaihdannaista rengasta ja se sisältää ykkösalkion. Määritelmä 1.9. Kokonaisalue on kommutatiivinen rengas, jossa on ykkösalkio, ja jossa pätee ab =0vain jos a =0tai b =0. (no zero divisors) Esimerkki Z, k[x], missä k on mikä tahansa kunta. Lemma Äärellinen kokonaisalue on aina kunta. 4

3 Todistus. Käytiin luennolla. Määritelmä Olkoon R kommutatiivinen rengas, jossa on ykkösalkio. Olkoon I R ideaali. Silloin I on alkuideaali jo ab I a I tai b I. Esimerkki Z, jossa I = pz. Lause Okoon R kommutatiivinen rengas, jossa on ykkösalkio, ja olkoon I R. Silloin I on alkuideaali, jos ja vain jos R/I on kokonaisalue. Todistus. Olkoon I alkuideaali. Tehdään vastaoletus, että renkaassa R/I on olemassa nollajakajia a, b 0. Eli (a + I)(b + I) = 0 + I =0 R/I. Silloin ab + I = 0 + I, mistä seuraa, että ab I. Koska I on alkuideaali, tämä tarkoittaa sitä, että a I tai b I, joten oikeasti a+i = 0+I tai b+i = 0+I, ja nollasta eroavia nollajakajia ei ole. Oletetaan, että R/I on kokonaisalue, ja todistetaan, että I on alkuideaali. Oletetaan, että ab I, jolloin ab + I = 0 + I, mistä seuraa (a + I)(b + I) = 0+I =0 R/I. Koska R/I on kokonaisalue, tästä seuraa, että a + I = 0 + I tai b + I = 0 + I ja näin ollen a I tai b I, ja I on alkuideaali. Lause Okoon R kommutatiivinen rengas, jossa on ykkösalkio, ja olkoon I R. Silloin I on maksimaalinen ideaali, jos ja vain jos R/I on kunta. Todistus. Harjoitustehtävä I/3. Määritelmä Olkoon R kokonaisalue, ja olkoot I, J ideaaleja. Silloin IJ = { k a i b i : a i I, b i J, k 1}. i=1 Huomaa, että IJ koostuu äärellisistä summista, mutta että summan pituus k vaihtelee. 1.3 Yksiköt, alkuluvut, alkuideaalit, irredusoimattomat alkiot Koska kyseessä on lukuteorian kurssi, palautetaan mieleen Aritmetiikan peruslause, sillä pitkälti tässä kurssissa on kyse aritmetiikan peruslauseen laajennuksista erilaisiin renkaisiin. Lause Luonnollisten lukujen joukossa, jos n > 1, silloin n = p n p n k k, missä p 1,..., p k ovat erillisiä alkulukuja, ja n 1,..., n k 1. Jos n Z, ja n > 1 se hajoaa tekijöiksi n = q 1... q m missä q i tai q i on alkuluku N:ssä. (Huomaa, että sama alkuluku voi toistua monta kertaa.) 5

4 Tämän luvun tarkoituksena on laajentaa tämä määritelmä mille tahansa kokonaisalueelle, ensin tarvitsemme sopivan yleistyksen alkuluvuille ja jaottomille alkioille. Määritelmä Olkoon R kokonaisalue. 1. u R on yksikkö/kääntyvä alkio, jos v R, jolle pätee uv = vu =1. 2. a R on jaoton/redusoimaton, jos a 0, a ei ole yksikkö ja a = bc tarkoittaa, että joko b tai c on yksikkö. 3. a R on alkualkio, jos a 0, a ei ole yksikkö, ja a bc johtaa siihen, että a b tai a c. Lemma Kun R on kokonaisalue, alkualkiot ovat jaottomia. Todistus. Olkoon p alkualkio, ja oletetaan, että p = ab. Alkualkion määritelmän nojalla p a tai p b. Valitaan, p a, joten a = pc, jollekin c. Siispä p = ab = pcb. Tästä seuraa, että p(1 cb) =0, koska p 0, ja kyseessä on kokonaisalue, tästä seuraa, että cb =1, ja b on yksikkö. Näin ollen p on redusoimaton. Huomaa, että jaottomat alkiot eivät välttämättä ole alkualkioita. Tämä on totta kun R on pääideaalialue. Palaamme tähän myöhemmin. Esimerkki Renkaassa Z yksiköt ovat alkiot ±1. Sen jaottomat alkiot ovat täsmälleen ±p, jossa p on alkuluku, nämä ovat myös alkualkiot. Renkaassa K[x], mikä tahansa astetta 1 oleva polynomi on jaoton. Yksiköitä ovat nollasta eroavat vakiopolynomit. Määritelmä Kokonaisalueella R on yksikäsitteinen tekijöihinjako, jos jokaiselle a R, joka ei ole nolla tai yksikkö, pätee 1. a = p 1 p 2... p k jossa jokainen p i on alkualkio. 2. Jos p 1 p 2... p k = q 1 q 2... q l, missä p i ja q j ovat alkualkioita, silloin k = l ja on olemassa indeksien {1, 2,..., k} permutaatio σ, ja yksiköt u 1,u 2,..., u k siten, että kaikille i =1, 2,..., k. p i = u i q σ(i) Propositio Olkoon K kunta. Jos f K[x] on vähintään astetta 1 oleva polynomi, silloin on olemassa jaottomat polynomit q 1,..., q k joille pätee f = q 1... q k. (PID, joten yksikäsitteinen tekijöihinjako! mutta sitä emme vielä tiedä). Tässä vain olemassaolo! 6

5 Todistus. Todistetaan väite induktiolla. Jos f:n aste on 1, on se redusoimaton. Oletetaan, että väite on tosi polynomeille, joiden asti on <k. Olkoon f polynomi, jonka aste on täsmälleen k. Jos f on redusoimaton, silloin ei ole mitään todistettavaa. Jos f ei ole redusoimaton, se voidaan kirjoittaa f = gh, ja deg g, deg h < k. Nyt voidaan soveltaa induktio hypoteesia polynomeihin g ja h, ja ne voidaan kirjoittaa redusoimattomien polynomien tulona mistä seuraa, että f = q 1... q s. g =q 1... q s h =q s+1... q r, Jaottomuus riippuu kunnasta! Esimerkiksi x 2 2 on jaoton kunnassa Q, kun taas kunnassa R se hajoaa tuloksi x 2 2=(x 2)(x + 2). Polynomi x 2 +1 on jaoton kunnassa Q tai R, mutta hajoaa kunnassa C kahden tuloksi x = (x i)(x + i). Palaamme tähän asiaan parin luennon päästä, kun puhumme kuntalaajennusten teoriasta. Algebran peruslauseen nojalla tiedämme, että epävakio polynomi f C[x] hajoaa aina äärelliseksi tuloksi lineaarisia tekijöitä. Aina ei kuitenkaan tarvitse mennä kompleksilukujen kuntaan C saakka, jotta saamme polynomin hajoamaan lineaarisiksi tekijöiksi. Esimerkiksi kunta {a + b 2:a, b Q} on kunta, se on reaalilukujen R pienen alikunta, jossa f(x) =x 2 2 voidaan kirjoittaa lineaaristen polynomien tulona. Samalla lailla {a + bi : a, b Q} on pienin kompleksilukujen C alikunta, jossa x 2 +1hajoaa lineaarisiksi tekijöiksi. Kappaleen lopuksi kirjoitamme jäännöslauseen, joka on oiva aasinsilta Eukleideen algoritmiin. Lause Jos f K[x], missä K on kunta. Olkoon a K, silloin (x a) f jos ja vain jos f(a) = 0. Todistus. f(x) =(x a)q(x)+r(x), missä r(x) = 0 tai se on vakiopolynomi. Sijoita x = a ja silloin f(a) =r. 1.4 Eukleideen alue, pääideaalialue, yksikäsitteinen tekijöihinjako Tässä luvussa edelleen R tarkoittaa aina kokonaisaluetta. Tämän vuoksi emme puhu pääideaalirenkaista, emmekä faktorirenkaista. Määritelmä Olkoon R kokonaisalue. Silloin R on Eukleideen alue, jos on olemassa funktio d : R \{0} N, 7

6 joka toteuttaa seuraavat ehdot 1. d(ab) d(a) a, b 0 2. Jos a, b 0, on olemassa q, r R, joille pätee a = bq + r, missä joko r =0tai r 0ja d(r) <d(b). R:ssä voidaan siis soveltaa Eukleideen algoritmia. Tällaisia kokonaisalueita ovat mm Z, ja F [x]. Ensimmäisessä astefunktio on d(n) = n ja toisessa d(p(x))= polynomin p aste. Propositio Gaussin kokonaisluvut Z[i] on Eukleideen alue. Todistus. Määritellään ensin Eukleideen astefunktio d asettamalla d(m + ni) =m 2 + n 2 = m + in 2 Z. Tarkistetaan ensin, että tämä funktio on multiplikatiivinen. Jos a, b Z[i], silloin d(ab) = ab 2 = a 2 b 2 = d(a)d(b) d(a) if b 0, koska nämä ovat aina positiivisia kokonaislukuja. Tarkistetaan vielä Eukleideen algoritmin toimivuus. Olkoot a, b Z[i], a, b 0ja a C. Olkoon q kompleksitason pisteen b a lähin piste Z[i]. Geometrisesti katsoen näemme, että q a 1 b b 2. Nyt r = a bq Z[i], silloin a = bq + r ja d(r) = r 2 = a bq 2 = ( a b q)b 2 = a b q 2 b b 2 = 1 d(b) <d(b). 2 Määritelmä Olkoon R kokonaisalue, ja I R. Silloin I on pääideaali, jos I = ar, jollekin a I. Usein kirjoitetaan myös I =(a). Sanotaan, että R on pääideaalialue, jos jokainen sen ideaaleista on pääideaali. Esimerkki Pääideaalialueitea ovat Z, F [x], jossa F on mikä tahansa kunta. Toisaalta Z[x] ei ole pääideaalialue. Lause Olkoon R Eukleideen alue. Silloin R on myös pääideaalialue. Todistus. Olkoon R Eukleideen alue ja olkoon I R. Tavoitteena on osoittaa, että I = ar, jollekin a R. Jos I = {0}, silloin I = ar on ok. Jos I {0}, valitaan 0 b I, jolle Eukleideen aste d(b) on pienin mahdollinen. Osoitetaan, että I = br. Ensiksi havaintaan, että koska b I myös br I kaikille r, joten br I. Oletetaan, että a I, koska R on Eukleideen alue, on olemassa q, r R, joille pätee a = bq + r, missä r =0tai sitten r 0ja d(r) <d(b). Koska a I ja bq I, myös r = a bq I. Koska b oli valittu minimaaliseksi, väistämättä r =0. 8

7 Määritelmä Olkoon R kokonaisalue, ja a, b R, (a, b 0). Kutsumme alkiota d alkioiden a, b suurimmaksi yhteiseksi tekijäksi, jos i) d a ja d b eli d on kummankin tekijä. ii) jos e a ja e b, silloin e d, eli d on suurin yhteinen tekijä. Alkioita a ja b kutsutaan suhteellisiksi alkuluvuiksi, jos niiden suurin yhteinen tekijä d on yksikkö. Esimerkki Kokonaislukujen joukossa, luvut a, b ovat suhteellisia alkulukuja, jos ja vain jos +1 on a:n ja b:n suurin yhteinen tekijä. Renkaassa K[x], polynomit f, g ovat suhteellisia alkulukuja, jos ja vain jos d f ja d g tarkoittavat yhdessä sitä, että d on vakiopolynomi. Seuraava ominaisuus on kenties tärkein pääideaalialueen ominaisuuksista. Kuten Eukleideen alueella, myös pääideaalialueella on aina mahdollista löytää suurin yhteinen tekijä. Tämä on tärkeä lemma monissa todistuksissa, joten painakaa se mieleenne. Lause Olkoon R pääideaalialue, ja olkoot a, b R. Silloin on olemassa a:n ja b:n suurin yhteinen tekijä d R, ja lisäksi pätee d = ar + bs, joillekin r, s R. Todistus. Olkoon I = {ar + bs : r, s R}. Tämä I sisältää nolla-alkion, on suljettu yhteen- ja kertolaskun suhteen, kuten myös R:n alkioitten kertolaskun suhteen. Näin ollen I R. Koska R on pääideaalialue, I = dr, jollekin d. Koska d I, tästä seuraa, että d = ar + bs, joillekin r, s. Nyt a = a 1+b 0 I, joten d a, ja b = a 0+b 1, joten d b. Näin ollen d on yhteinen tekijä. Ja jos e a ja e b, silloin e ar + bs = d, joten d on suurin yhteinen tekijä. Lemma Jos R on pääideaalialue, silloin redusoimattomat alkiot ovat alkualkioita. Todistus. Olkoon R pääideaalialue, ja olkoon a R redusoimaton. Oletaan, että a bc. Olkoon d = syt(a, b). Edellisen lemman perusteella voidaan kirjoittaa d = ar + bs, joillekin r, s. Nyt d a, joten a = de jollekin e. Koska a on redusoimaton, joko d tai e on yksikkö. Jos d on yksikkö, silloin c = cdd 1 = c(ar + bs)d 1 = acrd 1 + bcsd 1. Näin ollen a c, koska a bc. Jos puolestaan e on yksikkö, silloin a = de ja d = ae 1. Mutta d b joten b = df = ae 1 jollekin f. Näin a b. Lause Olkoon R pääideaalialue, silloin R:ssä on myös yksikäsitteinen tekijöihinjako. Todistus. Todistus ei ole erityisen hankala, mutta se on työläs ja pitkä, joten sitä ei esitetä tässä. Kenties luennoilla tai laskuharjoituksissa. 9

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

11. Jaollisuudesta. Lemma Oletetaan, että a, b R.

11. Jaollisuudesta. Lemma Oletetaan, että a, b R. 11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Rengashomomorfismi ψ :

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Aritmetiikan peruslause algebrallisten kokonaislukujen renkaissa

Aritmetiikan peruslause algebrallisten kokonaislukujen renkaissa Aritmetiikan peruslause algebrallisten kokonaislukujen renkaissa Pro gradu -tutkielma Itä-Suomen yliopisto Yliopistonkatu 2, 80101 Joensuu Fysiikan ja matematiikan laitos Tuomas Manninen, 243034 11. joulukuuta

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita 802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28 TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin. 18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria

Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Sampo

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

1. Jakokunta. b + c d

1. Jakokunta. b + c d ÁÁÁ ÃÙÒØ Ø ÓÖ 1. Jakokunta Kunnan alirenkaat ovat aina kokonaisalueita. Tämä herättää luonnollisen kysymyksen, karakterisoiko tämä ominaisuus kokonaisalueet eli onko jokainen kokonaisalue jonkin kunnan

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Pääideaalialueen yli määriteltyjen äärellisviritteisten modulien rakennelause

Pääideaalialueen yli määriteltyjen äärellisviritteisten modulien rakennelause TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jyri Hiltunen Pääideaalialueen yli määriteltyjen äärellisviritteisten modulien rakennelause Informaatiotieteiden yksikkö Matematiikka Helmikuu 2014 Tampereen yliopisto

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

11. Jaollisuudesta. vuoksi tarkastellaan tässä yhteydessä vain kokonaisalueita.

11. Jaollisuudesta. vuoksi tarkastellaan tässä yhteydessä vain kokonaisalueita. 11. Jaollisuudesta Kuntalaajennosten yhteydessään käytetään usein apuna jaottomia polynomeja. Tarkastellaan seuraavaksi hieman jaollisuuskäsitettä yleensä ja todistetaan joitain kriteerejä erityisesti

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a).

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a). ALGEBRA 2007 15 Todistus. Mieti, miksi kuvaus on hyvin määritelty! Surjektiivisuus on selvää. Lisäksi φ(xkyk) = φ(xyk) = xyh = xhyh = φ(xk)φ(yk), joten kuvaus on homomorfismi. Jos y H, niin φ(yk) = yh

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta: MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20 Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen

Lisätiedot

ei ole muita välikuntia.

ei ole muita välikuntia. ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

Johdatus p-adisiin lukuihin

Johdatus p-adisiin lukuihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anne Keskinen Johdatus p-adisiin lukuihin Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

4 Abelin ryhmät. 4.1 Suorat tulot ja summat

4 Abelin ryhmät. 4.1 Suorat tulot ja summat 4 Abelin ryhmät Ensimmäisellä ryhmäteorian kurssilla käytiin läpi lähinnä syklisiä ryhmiä. Tällä kurssilla keskitymme epäkommutatiivisiin esimerkkeihin. On kuitenkin niin, että äärellisesti viritettyjen

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

ALGEBRA. Tauno Metsänkylä. K f. id K

ALGEBRA. Tauno Metsänkylä. K f. id K ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................

Lisätiedot

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,

Lisätiedot

Avainsanat Nyckelord Keywords algebra, rengas, moduli, Noether, nouseva ketju, äärellisviritteinen

Avainsanat Nyckelord Keywords algebra, rengas, moduli, Noether, nouseva ketju, äärellisviritteinen HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Vesa

Lisätiedot

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016 Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang 2187044 Matematiikan yksikkö Oulun yliopisto 2016 Sisältö Johdanto 2 1 Esitietoja 3 1.1 Ryhmät.............................. 3 1.1.1 Ryhmä ja aliryhmä....................

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Algebran ja lukuteorian harjoitustehtävien ratkaisut Algebran ja lukuteorian harjoitustehtävien ratkaisut Versio 1.0 (27.1.2006 Turun yliopisto Lukuteoria 1. a Tarkistetaan ekvivalenssirelaation ehdot. on refleksiivinen, sillä identiteettikuvaus, id : C

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tommi Kuusisto

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tommi Kuusisto TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tommi Kuusisto Äärellisistä kunnista Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 2008 Tampereen yliopisto Matematiikan, tilastotieteen ja filosofian

Lisätiedot

1 Kertausta algebran kurssilta 1. 4 Kuntalaajennukset Kuntalaajennuksen aste Harppi-viivoitin-konstruktiot Hajoituskunnat 88

1 Kertausta algebran kurssilta 1. 4 Kuntalaajennukset Kuntalaajennuksen aste Harppi-viivoitin-konstruktiot Hajoituskunnat 88 Sisältö 1 Kertausta algebran kurssilta 1 2 Lisää polynomeista 10 3 Kertausta Q:n konstruktiosta; jakokunta 20 4 Kuntalaajennukset 27 5 Kuntalaajennuksen aste 49 6 Harppi-viivoitin-konstruktiot 64 7 Galois

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x]; 802656S ALGEBRALLISET LUVUT Harjoituksia 2017 1. Näytä, että (a) (b) (c) (d) (e) 2 1/2, 3 1/2, 2 1/3 ; 2 1/2 + 3 1/2 ; 2 1/3 + 3 1/2 ; e iπ/m, m Z \ {0}; sin(π/m), cos(π/m), tan(π/m), m Z \ {0}; ovat algebrallisia

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään Monisteen Esimerkki 2.6.8 Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään I c = {px R pc = 0}. Osoitetaan, että I c on renkaan R ihanne. Ratkaisu: Vakiofunktio 0 R I c joten I c.

Lisätiedot

ALGEBRA KEVÄT 2013 JOUNI PARKKONEN

ALGEBRA KEVÄT 2013 JOUNI PARKKONEN ALGEBRA KEVÄT 2013 JOUNI PARKKONEN Algebra käsittelee laskemista. Osin tämä tarkoittaa numeroilla laskemista lukualueissa N, Z, Q, R, C laskutoimituksilla + ja ja niiden käänteisoperaatioilla ja / siinä

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

Primitiiviset juuret: teoriaa ja sovelluksia

Primitiiviset juuret: teoriaa ja sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

Kerrataan ensin tällä kurssilla tarvittavia, suurelta osin Algebra I:stä tuttuja algebrallisten

Kerrataan ensin tällä kurssilla tarvittavia, suurelta osin Algebra I:stä tuttuja algebrallisten ÁÁ Î ÒÒ Ø Ö Ò Ø 1. Peruskäsitteitä Kerrataan ensin tällä kurssilla tarvittavia, suurelta osin Algebra I:stä tuttuja algebrallisten rakenteiden määritelmiä. Käydään ensin läpi yhden laskutoimituksen rakenteen

Lisätiedot

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Noetherin sekä Artinin renkaat ja modulit

Noetherin sekä Artinin renkaat ja modulit TAMPEREEN YLIOPISTO Pro gradu -tutkielma Maarit Harsu Noetherin sekä Artinin renkaat ja modulit Informaatiotieteiden yksikkö Matematiikka Syyskuu 2012 ii Tampereen yliopisto Informaatiotieteiden yksikkö

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K,

2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K, 1 Ryhmät Olkoot S on joukko ja X S. Jos kuvaus : S S S, (x, y) x y toteuttaa ehdon x y X kaikilla x, y X, niin sanotaan, että binäärinen operaatio on suljettu joukon X suhteen. Määritelmä 1. Olkoot G joukko

Lisätiedot