ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina. Lähetetään reaaliarvoisella signaalilla 2 informaatiobittiä per symboli ideaalisella koodauksella täysin luotettavasti. Tällöin tarvittava SNR on C Re = 1 2 log 2(1 + γ I ) = 2 log 2 (1 + γ I ) = 4 1 + γ I = 2 4 = 16 γ I = 15 Koska kompleksiarvoisen kohinannäytteen energia on, reaaliarvoista signaalia häiritsevän kohinan energia on /2. Reaaliarvoisella signaalilla koko signaalin energia on reaalisella komponentilla. Täten reaaliarvoisen signaalin signaalikohinasuhde on γi Re = Es. Huomaa, että jos signaalin koko energia laitetaan reaaliosalle, reaaliosan SNR on 2 Es /2. Tämä johtuu puhtaasti siitä, että on kompleksiarvoisen kohinanäytteen energia (joka puhtaassa AWGN:ssä seuraa suoraan termodynamiikasta ja aineen lämpotilasta), ja vain puolet siitä häiritsee I-haaraa. Reaaliarvoisessa tiedonsiirrossa tarvittava symbolienergia on siis E Re S = 1 2 γ I = 15 2. (1) Shannonin kapasiteettilauseen mukaan tämä on siis pienin SNR, jolla päästään virheettömään tiedonsiirtoon tällä tiedonsiirtonopeudella, jos käytetään äärettömän monimutkaista FEC:iä. Vastaavasti kompleksiarvoisella modulaatiolla kapasiteetti on reaaliarvoisen ja imaginaariarvoisen signaalien kapasiteettien summa, C Im = 1 2 log 2(1 + γ I ) + 1 2 log 2(1 + γ Q ). Koska kompleksiarvoisen kohinannäytteen energia on, I- ja Q-haaraa häiritsevän kohinan energia on /2. Kummallakin haaralla käytetään puolet signaalin kokonaisenergiasta. I-haaran ja Q-haaran signaalien SNR:t ovat siis γ I = γ Q = E S /2 /2 SNR. = E S = γ. Kummallakin haaralla SNR on siis sama kuin koko signaalin Lähetetään 2 bittiä per symboli täysin luotettavasti. Tarvittava SNR on C Im = log 2 (1 + γ) = 2 1 + γ = 2 2 = 4 γ = 3 1
Tarvittava symbolienergia on siis E Im s = γ = 3. (2) Kun verrataan yhtälön (1) antamaa reaalisen signaalin minimienergiaa yhtälön (2) antamaan kompleksiarvoisen signaalin minimienergiaan, todetaan, että kompleksiarvoisella signaalilla tarvitaan E Re s E Im s = 15/2 3 = 5 2 = 4dB (3) vähemmän signaalienergiaa kuin reaaliarvoinen signaali, että päästäisin tiedonsiirron nopeuteen 2 bittiä/symboli. Verrataan luennon 7 bittivirhekäyriin. QPSK:ssa lähetetään 2 bittiä/symboli kompleksiarvoisesti, 4-PAM:issa reaaliarvoisesti. Huomataan, että 4-PAM tarvitsee samaan bittivirhesuhteeseen noin 4 db paremman SNR:n kuin QPSK. Vaikka Shannonin laki käsittelee täysin virheettöntä lähetystä ideaalisella koodauksella, ja luennolla 7 katsottin vain bittivirhesuhdetta annetulla modulaatiolla, huomataan, että modulaation ja bittivirhesuhteeenkin tasolla Shannonin lause antaa intuitiota siitä, miten eri modulaatiot käyättäytyvät, ja siitä, minkä verran enemmän tehoa maksaa tiedonsiirtonopeuden kaksinkertaistaminen käyttämälä yhtä ulottuvuutta, verrattuna siihen, että kaksinkertaistetaan ulottuvuuksien määrä. 2. a) Tiedonsiirron tehokkuutta kuvaava siirtomäärä-funktio eri modulaatiomenetelmille saadaan muodostamalla ensin kyseisen modulaatiomenetelmän lohkovirhetodennäköisyyden funktio ja sijoittamalla se annettuun siirtomäärä-funktion kaavaan. QPSK:n tapauksessa lohkovirheen todennäköisyys on: P B (γ, n) = 1 (1 2Q( γ)) n ja vastaava siirtomääräfunktio on: T QP SK = log 2 (M) r (1 P B ) = log 2 (4) 1 (1 (1 (1 2Q( γ)) 512 )) = 2(1 (1 (1 2Q( γ)) 512 )) = 2(1 2Q( γ)) 512 Vastaavasti 16-QAM-modulaation tapauksessa lohkovirheen todennäköisyys on: ja siirtomääräfunktio on: P B (γ, n) = 1 (1 3Q( γ/5)) n T 16QAM = log 2 (M) r (1 P B ) 2
= log 2 (16) 1 (1 (1 (1 3Q( γ/5)) 512 )) = 4(1 3Q( γ/5)) 512 Turbo-koodatun QPSK:n lohkovirhetodennäköisyyttä arvioidaan kaavalla: jolloin siirtomääräfunktio on: P B (γ) = 1 (1 + 3γ 24 ) 10, T T URBO = log 2 (M) r (1 P B ) = log 2 (4) 1 2 (1 (1 (1 + 3γ 24 ) 10 )) = 1 (1 ((1 + 3γ 24 ) 10 )) b) Lasketaan turbo-koodatun QPSK:n ja koodaamattoman QPSK:n vaihtopiste. Kehitetään edellisessä kohdassa laskettu koodaamattoman QPSK:n siirtomääräfunktio Taylorin sarjaksi x:ssä kohdan x = 0 ympärillä ensimmäiseen kertalukuun. Taylorin polynomi on P n (x) = Σ n k=0a k (x x 0 ) k Lasketaan sarjan ensimmäisen kertaluvun kertoimet, merkitsemällä x = Q( γ) ja x 0 = 0: k(x) = 2(1 2x) 512 k(0) = a 0 = 2 k (x) = 2048(1 2x) 511 k (0) = a 1 = 2048 Jolloin Taylorin polynomi on: P n (x) = 2 2048x Vaihtopisteessä T T URBO = 1, jolloin saadaan ratkaistua x = 1 2048. Käänteisen Q-funktion taulukosta saadaan γ = 3.30 josta edelleen γ = 10.89. Tämä vastaa 10.4 db signaali-kohinasuhdetta. 16-QAM:n ja QPSK:n vaihtopisteen laskemiseksi oletetaan T QP SK merkitään x = Q( γ/5): k(x) = 4(1 3x) 512 k(0) = a 0 = 4 k (x) = 6144(1 3x) 511 k (0) = a 1 = 6144 Jolloin Taylorin polynomi on: P n (x) = 4 6144x = 2 ja Vaihtopisteessä T QP SK = 2, jolloin saadaan ratkaistua x = 1. Käänteisen 3072 Q-funktion taulukosta saadaan γ/5 = 3.41 josta edelleen γ = 58.14. Tämä vastaa 17.6 db signaali-kohinasuhdetta. 3
3. Kohokosinin neliöjuuren (RRC) taajuusvaste on määritelmän mukaan kohokosinin (RC) taajusvasteen neliöjuuri. Meillä on siis H RRC (f) = H RC (f), eli H RRC (f) 2 = H RC (f) (4) Fourier-analyysin perusperiaate on, että konvoluution Fourier muunnos on Fouriermuunnosten tulo. Siis F[h g](f) = F[h](f) F[g](f). (5) Tässä F[h] on aika-tason funktion h(t) Fourier-muunnos, ja F[h](f) on tämän funktion arvo taajuudella f. Kahden aikatason funktion konvoluutio on aikatason funktio Yhtälöstä (5) sadaan suoraan [h g](t) = t h(t )g(t t )dt. F[g g](f) = (F[g](f)) 2. Tästä ja (4) seruraa suoraan, että RRC-pulssin itseiskonvoluttion f RRC f RRC Fouriermuunnos on RC-pulssiin taajuusvaste H RC. Koska Fourier-muunnos on 1 1 kuvaus, on oltava [f RRC f RRC ](t) = f RC (t). RRC taajuustasossa on siis RC:n neliöjuuri, ja aikatasossa RC:n konvolutiivinen neliöjuuri. Koska sinc-pulssi on sekä RRC että RC-pulssin raja, kun α 0, huomataan, että sinc-pulssi on taajuustasossa itsensä neliöjuuri (kanttipulssi on todellakin oman itsensä neliöjuuri, jos se normalisoidaan sopivasti). Huomataan myös, että sincpulssi on oman itsensä konvolutiivinen neliöjuuri. Toisin sanoen kahden sincpulssin konvoluutio on sinc-pulssi. 4. Tarkastellaan kahden peräkkäisen symbolin lähetteitä RC- ja RRC-pulsseilla. a) Lähetetään RC-pulssilla ajanhetkellä t = 0 signaaliavaruuden symboli s 0 = 1, ja ajanhetkellä t = 1 signaaliavaruuden symboli s 1 = 1. Roll-off on α = 0.5 ja symbolijakso T = 1. Erilliset lähetteet ja summalähete näkyvät kuvassa 1. Symbolit vastaanotetaan ottamalla vastaanotetusta signaalista näyteet ajanhetkillä t = 0 ja t = 1. Näissä näytteissä ei ole inter-symbo-interferenssiä, sillä toinen lähete häviää näytteenotthetkellä. Tämä näkyy siitä, että summafunktio leikkaa yksittäisen symbolin pulssin näytteenottohetkillä. 4
1.2 1.0 0.8 0.6 0.4 0.2 4 2 2 4 Figure 1: Kahden RC-pulssin lähete. 1.2 1.0 0.8 0.6 0.4 0.2 4 2 2 4 0.2 Figure 2: Kahden RRC-pulssin lähete. b) Tehdään sama lähete RRC-pulsseille. Tulos näkyy kuvassa 2. Jos vastaanottimessa otetaan näytteet suoraan ajanhetekillä t = 0 ja t = 1, saadaan tässä kohinattomassa tapauksessa oikeat päätökset, mutta inter-symbol interferenssiä (ISI) kuitenkin on toinen pulssi ei häviä näytteenottohetkellä. Optimivastaanotin RRC-pulsseille kuitenkin on sovitettu suodatin. Käytetään RRC-sovitettua suodatinta vastaanottimessa. Koska f RRC f RRC = f RC, sovitetun suodattimen ulostulo vastaa RC-pulssilla suodattamatta vastaanotettua signaalia, joka näkyy kuvassa 1. Kun tästä suodatetusta signaalista otetaan näytteitä, huomataan kuvan 1 mukaisesti, että ISI:ä ei ole. 5