ABHELSINKI UNIVERSITY OF TECHNOLOGY

Samankaltaiset tiedostot
Sovellettu todennäköisyyslaskenta B

Harjoitus 2: Matlab - Statistical Toolbox

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyyslaskun kertaus. Heliövaara 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

D ( ) Var( ) ( ) E( ) [E( )]

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

3. laskuharjoituskierros, vko 6, ratkaisut

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

031021P Tilastomatematiikka (5 op) viikko 2

Jatkuvat satunnaismuuttujat

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Teema 7: Todennäköisyyksien laskentaa

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

5. laskuharjoituskierros, vko 8, ratkaisut

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

Moniulotteisia todennäköisyysjakaumia

Mat Sovellettu todennäköisyyslasku A

Tilastomatematiikka Kevät 2008

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Satunnaislukujen generointi

Normaalijakaumasta johdettuja jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

4. laskuharjoituskierros, vko 7, ratkaisut

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Harjoitus 8: Monte-Carlo simulointi (Matlab)

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Sovellettu todennäköisyyslaskenta B

Harjoitus 8: Monte Carlo -simulointi (Matlab)

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

D ( ) E( ) E( ) 2.917

Harjoitus 8: Monte-Carlo simulointi (Matlab)

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä

Mat Sovellettu todennäköisyyslasku A

30A02000 Tilastotieteen perusteet

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

Sovellettu todennäköisyyslaskenta B

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I

Sovellettu todennäköisyyslaskenta B

4. Todennäköisyyslaskennan kertausta

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

riippumattomia ja noudattavat samaa jakaumaa.

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Sovellettu todennäköisyyslaskenta B

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Tilastollinen aineisto Luottamusväli

Satunnaismuuttujat ja jakaumat

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Tilastolliset jakaumat, niiden esittäminen ja tunnusluvut

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

Tilastomatematiikka Kevät 2008

Satunnaismuuttujien muunnokset ja niiden jakaumat

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Todennäköisyysjakaumia

Generointi yksinkertaisista diskreeteistä jakaumista

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastollisen päättelyn perusteet

tilastotieteen kertaus

Transkriptio:

Satunnaismuuttujat ja todennäköisyysjakaumat

Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä satunnaisilmiön tulosvaihtoehtoihin reaaliarvoinen funktio, jota kutsutaan satunnaismuuttujaksi Satunnaismuuttujan arvoihin liitetään todennäköisyydet määrittelemällä satunnaismuuttujan todennäköisyysjakauma. Satunnaismuuttujien tarkastelu jaetaan kahteen osaan: (i) Diskreetit satunnaismuuttujat. (ii) Jatkuvat satunnaismuuttujat.

Satunnaismuuttujan määritelmä Olkoon ξ funktio otosavaruudesta S reaalilukujen joukkoon R: ξ : S R Tällöin ξ on satunnaismuuttaja. Satunnaismuuttuja on funktiona täysin määrätty, mutta sattuma määrää mikä alkeistapahtumista realisoituu ja sitä kautta myös minkä arvon satunnaismuuttuja saa.

Todennäköisyysjakauma Olkoon kolmikko (S, F, P r) otosavaruudessa S määritelty todennäköisyyskenttä, jossa on seuraavat elementit: - S otosavaruus - F otosavaruuden S osajoukkojen joukossa määritelty σ-algebra - P r σ-algebran F alkioille määritelty todennäköisyysmitta. Satunnaismuuttujan ξ todennäköisyysjakaumalla tarkoitetaan kuvauksen ξ : S R reaalilukukujen joukkoon indusoimaa todennäköisyysmittaa. Suomeksi: Todennäköisyysjakauma kuvaa otosavaruuden todennäköisyysmassan (= 1) jakautumista otosavaruudessa määritellyn satunnaismuuttujan arvoalueelle. Tilastollinen malli on satunnaismuuttujan ja sen jakauman yhdistelmä.

Satunnaismuuttujien tyyppejä Tämän kurssin piiriin kuuluvat kahden tyyppiset satunnaismuuttujat: Diskreetit satunnaismuuttujat - Satunnaismuuttuja on diskreetti, jos sen arvoalue on diskreetti joukko eli sen arvoalue muodostuu erillisistä reaaliakselin pisteistä. - Diskreetin muuttujan jakauma määrittelee alkeistapahtumien todennäköisyydet. Jatkuvat satunnaismuuttujat - Satunnaismuuttuja on jatkuva, jos sen arvoalue on jokin reaaliakselin osaväli. - Jatkuvan muuttujan jakauma määrittelee muuttujan arvoalueeseen kuuluvien reaaliakselin välien todennäköisyydet.

Diskreettejä satunnaismuuttujia Kone tekee tuotetta n kpl päivässä. Satunnaisesti valittu tuote on viallinen todennäköisyydellä p. Viallisten tuotteiden lukumäärä päivän aikana tehtyjen tuotteiden joukossa on satunnaismuuttuja, joka noudattaa binomijakaumaa. Pyydystetään järvestä joukko kaloja, merkitään ne ja päästetään takaisin järveen. Pyydystetään myöhemmin uusi joukko kaloja. Merkittyjen kalojen määrä uudessa saaliissa on satunnaismuuttuja, joka noudattaa hypergeometrista jakaumaa. Palvelujonoon tulee keskimäärin k asiakasta aikayksikköä kohden. Jonakin aikavälinä saapuvien asiakkaiden lukumäärä on satunnaismuuttuja joka noudattaa Poisson-jakaumaa.

Pistetodennäköisyysfunktio Merkitään ξ:n arvojen joukkoa kirjaimella T : T = {x 1,x 2,...,x n }, jos S on äärellinen T = {x 1,x 2,...}, jos S on numeroituvasti ääretön Reaaliarvoinen funktio f määrittelee pistetodennäköisyysfunktion ξ:lle, jos 1. f(x i ) = Pr(ξ = x i ) x i T 2. f(x i ) 0 x i T 3. T f(x i) = 1 Todennäköisyyttä Pr(ξ = x i ) = p i sanotaan pistetodennäköisyydeksi. Pistetodennäköisyysfunktion vakioita sanotaan jakauman parametreiksi ja ne määräävät pistetodennäköisyysfunktion muodon ts. jakauman muodon.

Diskreetin jakauman todennäköisyydet Diskreetin jakauman tapauksessa välin [a, b] R todennäköisyys on Pr(a ξ b) = i x i [a,b] p i

Jatkuvia satunnaismuuttujia Vapaasti pyörivän onnenpyörä osoittimen kulman muutos osoitinta pyöräytettäessä on tasajakautunut eli tasaisesti jakautunut jatkuva satunnaismuuttuja. Palvelujonoon tulee keskimäärin k asiakasta aikayksikköä kohden. Seuraavan jonoon tulevan asiakkaan odotusaika on jatkuva satunnaismuuuttuja, joka noudattaa eksponenttijakaumaa. Viisivuotiaden tyttöjen pituus on jatkuva satunnaismuuttuja, jonka voidaan sanoa noudattavan approksimatiivisesti normaalijakaumaa.

Tiheysfunktio Reaaliarvoinen funktio f määrittelee (todennäköisyys-) tiheysfunktion jatkuvalle satunnaismuuttujalle ξ, jos 1. f(x) on x:n jatkuva funktio 2. f(x i ) 0 x 3. + f(x)dx = 1 4. Pr(a ξ b) = b a f(x)dx Tiheysfunktion vakioita sanotaan jakauman parametreiksi ja ne määräävät tiheysfunktion muodon ts. jakauman muodon.

Jatkuvan jakauman todennäköisyydet Edellisten lisäksi on hyvä huomata: b Pr(ξ = b) = lim Pr(a ξ b) = lim a b a b a Tiheysfunktio voidaan määritellä myös paloittain. Esim. olkoon f(x) = x + b, kun 0 x 1 0, muulloin f(x)dx = 0 Tällöin 1 0 f(x)dx = 1

Diskreetti vs. jatkuva Diskreettiä satunnaisfunktiota ξ vastaavan pistetodennäköisyysfunktion f arvo pisteessä x i on todennäköisyys: f(x i ) = Pr(ξ = x i ) Näin ollen 0 f(x i ) 1 Jatkuvaa satunnaismuuttujaa ξ vastaavan tiheysfunktion f arvo pisteessä x ei ole todennäköisyys, joten on mahdollista, että f(x) > 1

Kertymäfunktio Satunnaismuuttujan ξ kertymäfunktio F(x) = Pr(ξ x) kuvaa todennäköisyysmassan kertymistä argumentin x kasvaessa. Kertymäfunktio määrää ko. satunnaisilmiön kaikkien tapahtumien todennäköisyydet. Funktio F : R [0, 1] on kertymäfunktio, jos ja vain jos 1. lim x F(x) = 0 2. lim x + F(x) = 1 3. F on ei-vähenevä: F(x 1 ) F(x 2 ) jos x 1 x 2 4. F on jatkuva oikealta: lim h 0+ F(x + h) = F(x)

Lisää kertymäfunktiosta Edellisten lisäksi pätee: - Pr(ξ > x) = 1 F(x) - Pr(a ξ b) = F(b) F(a) Diskreetissä tapauksessa kertymäfunktio saadaan kaavalla F(x) = Pr(ξ x) = i x i x Jatkuvassa tapauksessa kertymäfunktio saadaan kaavalla p i F(x) = Pr(ξ x) = x f(x)dx