Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Koko: px
Aloita esitys sivulta:

Download "Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa"

Transkriptio

1 Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien tunnusluvut Avainsanat: Desiili, Diskreetti jakauma, Diskreetti satunnaismuuttuja, Huipukkuus, Insidenssikuvaus, Jatkuva jakauma, Jatkuva satunnaismuuttuja, Kertymäfunktio, Keskusmomentti, Kvantiili, Kvartiili, Mediaani, Momentti, Moodi, Odotusarvo, Origomomentti, Painopiste, Piste, Pistetodennäköisyys, Pistetodennäköisyysfunktio, Prosenttipiste, Puu, Puutodennäköisyys, Reitti, Rinnan kytkentä, Sarjaan kytkentä, Satunnaismuuttuja, Standardipoikkeama, Särmä, Tiheysfunktio, Todennäköisyysjakauma, Todennäköisyysmassa, Toimintatodennäköisyys, Toimintaverkko, Tulosääntö, Tunnusluku, Varianssi, Verkko, Vinous, Yhteenlaskusääntö Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa V, A, A V = Insidenssikuvaus kertoo mitkä verkon pisteistä ovat särmien yhdistämiä. Verkkoja tarkastellaan tässä suunnattuina verkkoina, millä tarkoitetaan sitä, että verkon jokaisella särmällä on suunta, joka osoittaa särmän alkupisteestä särmän loppupisteeseen. Kuviossa oikealla V = { v, v, v3, v4, v5, v6, v7, v8, v9, v, v} A= { a, a, a, a, a, a, a, a, a, a } ja esimerkiksi Reitti Särmät ( a ) = ( v, v ) { a a },,, ak muodostavat reitin pisteestä v pisteeseen v k, jos on olemassa pisteet siten, että v, v,, v k Ilkka Mellin (8) /3

2 Mat-.6 Sovellettu todennäköisyyslaskenta B ( a ) = ( v, v ), i =,,, k i i i+ Jos pisteestä v pisteeseen v k on reitti, sanotaan, että reitti vie pisteestä v pisteeseen v k tai, että pisteestä v pääsee pisteeseen v k. Kuviossa yllä särmät a, a 3, a 7, a 8 muodostavat reitin pisteestä v pisteeseen v 6. Puu Verkko on puu, jonka juurena on piste v, jos seuraavat ehdot pätevät: (i) Verkko on yhtenäinen. (ii) Verkossa ei ole silmukoita. (iii) Jos w v on mielivaltainen verkon piste, pisteestä v pisteeseen w pääsee täsmälleen yhtä reittiä pitkin. Yllä olevan kuvion verkko ei ole puu, koska siinä on silmukoita ja se ei ole yhtenäinen. Sen sijaan oikealla olevan kuvion verkko on puu. Puudiagrammin konstruointi satunnaisilmiölle Satunnaisilmiötä voidaan kuvata puudiagrammilla, jos ilmiö osataan esittää seuraavassa muodossa: (i) Ilmiöllä on yksi alkutila ja yksi tai useampia lopputiloja. (ii) Ilmiö koostuu vaihtoehtoisista tapahtumajonoista. (iii) Tapahtumajonoissa edetään vaiheittain tapahtumasta toiseen lähtien ilmiön alkutilasta ja päätyen johonkin ilmiön lopputiloista. (iv) Jokaisessa vaiheessa kohdataan yksi tai useampia tapahtumavaihtoehtoja, joista yksi realisoituu ja johtaa uusin tapahtumavaihtoehtoihin. Satunnaisilmiötä vastaava puudiagrammi konstruoidaan seuraavalla tavalla: (i) Asetetaan puun juuri vastaamaan ilmiön alkutilaa. (ii) Asetetaan puun loppupisteet ( oksien kärjet ) vastaamaan ilmiön lopputiloja. (iii) Asetetaan puun pisteet ( oksien haarautumiskohdat ) vastaamaan ilmiön tapahtumia. (iv) Viedään puun jokaisesta pisteestä särmä ( oksa ) kaikkiin sellaisiin pisteisiin, joita vastaavat tapahtumavaihtoehdot ovat ilmiön siinä vaiheessa mahdollisia. (v) Liitetään jokaiseen pisteestä lähtevään särmään siinä vaiheessa mahdollisten tapahtumavaihtoehtojen todennäköisyydet. Puutodennäköisyydet Puutodennäköisyydellä tarkoitetaan todennäköisyyttä päästä puun alkupisteestä yhden tai useamman muun puun pisteen määräämään yhdistettyyn tapahtumaan. Pisteen todennäköisyys saadaan määräämällä alkupisteestä ko. pisteeseen vievän reitin todennäköisyys. Reitin todennäköisyys saadaan soveltamalla reittiin kuuluvien särmien todennäköisyyksiin tulosääntöä. Usean pisteen määräämän yhdistetyn tapahtuman todennäköisyys saadaan soveltamalla ko. pisteisiin vievien reittien todennäköisyyksiin yhteenlaskusääntöä. Ilkka Mellin (8) /3

3 Mat-.6 Sovellettu todennäköisyyslaskenta B Puutodennäköisyyksien tulosääntö Reitin todennäköisyys saadaan määräämällä reittiin kuuluvien särmien todennäköisyyksien tulo. Puutodennäköisyyksien yhteenlaskusääntö Jos useita (loppu-) tiloja yhdistetään yhdeksi tapahtumaksi, näin saadun yhdistetyn tapahtuman todennäköisyys saadaan määräämällä ko. tiloihin vievien reittien todennäköisyyksien summa. Toimintaverkot Toimintaverkko on systeemi, joka koostuu komponenteista, jotka on kytketty rinnan tai sarjaan. Alla olevat kytkentäkaaviot kuvaavat kahden komponentin K ja K muodostamia sarjaan- ja rinnankytkentöjä. Sarjaan kytkennän toimintatodennäköisyys Oletetaan, että komponentit K ja K on kytketty sarjaan ja oletetaan lisäksi, että komponentin K toiminta (tai toimimattomuus) ei riipu komponentin K toiminnasta (ja kääntäen). Komponenttien K ja K muodostama sarjaan kytkentä toimii, jos komponentti K toimii ja komponentti K toimii. Määritellään tapahtumat A = Komponentti K toimii A = Komponentti K toimii Olkoot tapahtumien A ja A todennäköisyydet p = Pr(A ) p = Pr(A ) Koska tapahtumat A ja A ovat oletuksen mukaan riippumattomia, saadaan komponenttien K ja K muodostama sarjaan kytkennän toimintatodennäköisyydeksi riippumattomien tapahtumien tulosäännön mukaan Pr(Komponentti K toimii ja komponentti K toimii) = Pr(A A ) = Pr(A )Pr(A ) = p p Ilkka Mellin (8) 3/3

4 Mat-.6 Sovellettu todennäköisyyslaskenta B Rinnankytkennän toimintatodennäköisyys = Pr(Komponentti K toimii)pr(komponentti K toimii) Oletetaan, että komponentit K ja K on kytketty rinnan ja oletetaan lisäksi, että komponentin K toiminta (tai toimimattomuus) ei riipu komponentin K toiminnasta (ja kääntäen). Komponenttien K ja K muodostama rinnan kytkentä toimii, jos komponentti K toimii tai komponentti K toimii (tai molemmat toimivat). Määritellään tapahtumat A = Komponentti K toimii A = Komponentti K toimii Olkoot tapahtumien A ja A todennäköisyydet p = Pr(A ) p = Pr(A ) Koska tapahtumat A ja A ovat oletuksen mukaan riippumattomia, saadaan komponenttien K ja K muodostama rinnan kytkennän toimintatodennäköisyydeksi yleisen yhteenlaskusäännön ja riippumattomien tapahtumien tulosäännön mukaan Pr(Komponentti K toimii tai komponentti K toimii) = Pr(A A ) = Pr(A ) + Pr(A ) Pr(A A ) = Pr(A ) + Pr(A ) Pr(A )Pr(A ) = p + p p p = Pr(Komponentti K toimii) + Pr(Komponentti K toimii) Pr(Komponentti K toimii)pr(komponentti K toimii) Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttuja ( S, F,Pr) todennäköisyyskenttä, jossa S = otosavaruus (perusjoukko) F = otosvaruuden S osajoukkojen joukossa määritelty σ-algebra Pr = σ-algebran F alkioille määritelty todennäköisyysmitta Jos ξ on otosavaruuden S reaaliarvoinen (mitallinen) funktio eli ξ :S niin ξ on satunnaismuuttuja. Jos siis s S niin ξ () s Ilkka Mellin (8) 4/3

5 Mat-.6 Sovellettu todennäköisyyslaskenta B Todennäköisyysjakauma Satunnaismuuttujan ξ todennäköisyysjakaumalla tarkoitetaan kuvauksen ξ :S reaalilukujen joukkoon indusoimaa todennäköisyysmittaa. Diskreetti satunnaismuuttuja ξ :S satunnaismuuttuja. Jos otosavaruus S on äärellinen tai numeroituvasti ääretön, jolloin myös funktion ξ arvoalue on äärellinen tai numeroituvasti äärellinen, sanotaan satunnaismuuttujaa ξ diskreetiksi. Diskreetin satunnaismuuttujan pistetodennäköisyysfunktio ξ :S diskreetti satunnaismuuttuja. satunnaismuuttujan ξ arvojen joukko T = {x, x, x 3,, x n } jos arvojen joukko on äärellinen tai T = {x, x, x 3,, x n, } jos arvojen joukko. Reaaliarvoinen funktio f määrittelee diskreetin satunnaismuuttujan ξ pistetodennäköisyysfunktion, jos () f ( xi) = Pr( ξ = xi) kaikille xi T () f( xi) kaikille xi T (3) f( x ) = Todennäköisyys i xi T i Pr( ξ = x ) = f( x ) = p, i=,,3, i i i on satunnaismuuttujan ξ arvoa x i vastaava pistetodennäköisyys. Diskreetti todennäköisyysjakauma Jos f on diskreetin satunnaismuuttujan ξ :S pistetodennäköisyysfunktio, sanomme, että satunnaismuuttuja ξ noudattaa diskreettiä todennäköisyysjakaumaa, jonka pistetodennäköisyysfunktio on f. Ilkka Mellin (8) 5/3

6 Mat-.6 Sovellettu todennäköisyyslaskenta B Pistotodennäköisyysfunktio ja reaaliakselin välien todennäköisyydet ξ :S diskreetti satunnaismuuttuja ja f vastaava pistetodennäköisyysfunktio. Tällöin reaaliakselin välin [a, b] todennäköisyys on Jatkuva satunnaismuuttuja Pr( a ξ b) = f( x ) = Pr( ξ = x ) ξ :S i i xi a b i xi a b [, ] [, ] satunnaismuuttuja. Satunnaismuuttuja ξ on jatkuva, jos seuraavat kaksi ehtoa pätevät: (i) Satunnaismuuttuja ξ saa kaikki reaalilukuarvot joltakin reaaliakselin väliltä. (ii) Todennäköisyys, että satunnaismuuttuja ξ saa minkä tahansa yksittäisen arvon =. Jatkuvan satunnaismuuttujan tiheysfunktio ξ :S jatkuva satunnaismuuttuja. Reaaliarvoinen funktio f määrittelee satunnaismuuttujanξ tiheysfunktion, jos () f( x) on x:n jatkuva funktio () f( x) kaikille x + (3) f( x) dx= b (4) Pr( a ξ b) = f( x) dx Jatkuva todennäköisyysjakauma Jos f on jatkuvan satunnaismuuttujan ξ :S a tiheysfunktio, sanomme, että satunnaismuuttuja ξ noudattaa jatkuvaa todennäköisyysjakaumaa, jonka tiheysfunktio on f. Tiheysfunktio ja reaaliakselin välien todennäköisyydet ξ : S jatkuva satunnaismuuttuja ja f vastaava tiheysfunktio. Tällöin reaaliakselin välin [a, b] todennäköisyys on i Ilkka Mellin (8) 6/3

7 Mat-.6 Sovellettu todennäköisyyslaskenta B Huomaa, että kaikille x. Pr( a ξ b) = f( x) dx Pr(ξ = x) = b a Kertymäfunktio Kertymäfunktio ξ : S satunnaismuuttuja. Satunnaismuuttujan ξ kertymäfunktio on reaaliarvoinen funktio F( x) = Pr( ξ x) Funktio F : [,] on kertymäfunktio, jos ja vain jos Jos funktio () lim x F( x) = () lim x + F( x) = (3) F on ei - vähenevä: F( x ) F( x ), jos x x (4) F on jatkuva oikealta: lim F( x+ h) = F( x) h + F : [,] on kertymäfunktio, niin (5) Pr( ξ > x) = F( x) (6) Pr( a< ξ b) = F( b) F( a) Diskreetin jakauman kertymäfunktio ξ :S diskreetti satunnaismuuttuja ja f vastaava pistetodennäköisyysfunktio. Tällöin satunnaismuuttujan ξ kertymäfunktio on ja kääntäen F( x) = Pr( ξ x) = f( x ) = Pr( ξ = x ) i i xi x i xi x i Ilkka Mellin (8) 7/3

8 Mat-.6 Sovellettu todennäköisyyslaskenta B f ( x ) = Pr( ξ = x ) = F( x ) F( x ) i i i i Diskreetin jakauman kertymäfunktio on porrasfunktio, jolla on hyppäys jokaisessa pisteessä x i, jossa f( x ) = Pr( ξ = x ) > i i Hyppäyskohtien välillä diskreetin jakauman kertymäfunktio saa vakioarvon. Diskreetit jakaumat ja reaaliakselin välien todennäköisyydet ξ : S diskreetti satunnaismuuttuja, f vastaava pistetodennäköisyysfunktio ja F vastaava kertymäfunktio. Tällöin reaaliakselin välin (a, b] todennäköisyys on Pr( a< ξ b) = F( b) F( a) = f( x ) = Pr( ξ = x ) Jatkuvan jakauman kertymäfunktio ξ :S i i xi a b i xi a b (, ] (, ] jatkuva satunnaismuuttuja ja f vastaava tiheysfunktio. Tällöin satunnaismuuttujan ξ kertymäfunktio on ja kääntäen F( x) = Pr( ξ x) = f( t) dt x d f ( x) = F ( x) = F( x) dx Reaaliakselin välien todennäköisyydet ξ :S jatkuva satunnaismuuttuja, f vastaava tiheysfunktio ja F vastaava kertymäfunktio. Tällöin reaaliakselin välin (a, b] todennäköisyys on b Pr( a< ξ b) = F( b) F( a) = f( x) dx Huomaa, että jatkuvalle satunnaismuuttujalle pätee: Pr( a< ξ b) = Pr( a ξ < b) = Pr( a< ξ < b) = Pr( a ξ b) a i Ilkka Mellin (8) 8/3

9 Mat-.6 Sovellettu todennäköisyyslaskenta B Jakaumien tunnusluvut Diskreetin satunnaismuuttujan odotusarvo f( x ) = Pr( X = x ) = p, i =,,3, i i i diskreetin satunnaismuuttujan X pistetodennäköisyysfunktio. Tällöin satunnaismuuttujan X ja sitä vastaavan todennäköisyysjakauman odotusarvo on ei-satunnainen vakio E( X ) = µ = xf( x) = xpr( X= x) = xp Jatkuvan satunnaismuuttujan odotusarvo f ( x ) X i i i i i i i i i jatkuvan satunnaismuuttujan X tiheysfunktio. Tällöin satunnaismuuttujan X ja sitä vastaavan todennäköisyysjakauman odotusarvo on ei-satunnainen vakio + E( X ) = µ X = xf ( x) dx Odotusarvon ominaisuuksia Satunnaismuuttujan X odotusarvo on satunnaismuuttujan X todennäköisyysjakauman todennäköisyysmassan painopiste. a vakio. Tällöin E( a) = a Olkoot X i, i =,,, n satunnaismuuttujia ja a i, i =,,, n vakioita. Tällöin n n E ax i i = ai E( Xi) i= i= Diskreetin satunnaismuuttujan funktion odotusarvo f( x ) = Pr( X = x ) = p, i =,,3, i i i diskreetin satunnaismuuttujan X pistetodennäköisyysfunktio. g reaaliarvoinen funktio. Tällöin satunnaismuuttujan g(x) odotusarvo on ei-satunnainen vakio E( gx ( )) = µ = gx ( ) f( x) = gx ( )Pr( X= x) = gx ( ) p Jatkuvan satunnaismuuttujan funktion odotusarvo f ( x ) g ( X) i i i i i i i i i jatkuvan satunnaismuuttujan X tiheysfunktio. g reaaliarvoinen funktio. Tällöin satunnaismuuttujan g(x) odotusarvo on ei-satunnainen vakio Ilkka Mellin (8) 9/3

10 Mat-.6 Sovellettu todennäköisyyslaskenta B + = µ g( X) = E( g( X)) g( x) f( x) dx Varianssi satunnaismuuttujan X odotusarvo E( X ) = µ X Tällöin satunnaismuuttujan X varianssi on ei-satunnainen vakio D( X) = Var( X) = σ X = E[( X µ X)] Varianssi voidaan laskea myös kaavalla jossa D( X) = Var( X) = σ = E( X ) µ X X E( X ) = satunnaismuuttujan X.momentti Diskreetin satunnaismuuttujan varianssi f( x ) = Pr( X = x ) = p, i =,,3, i i i diskreetin satunnaismuuttujan X pistetodennäköisyysfunktio. Tällöin satunnaismuuttujan X varianssi on D( X ) = Var( X) = σ = E[( X µ )] = ( x µ ) p X X i X i i Jatkuvan satunnaismuuttujan varianssi f ( x ) jatkuvan satunnaismuuttujan X tiheysfunktio. Tällöin satunnaismuuttujan X varianssi on + D( ) = Var( ) = σ X = E[( µ X)] = ( µ X) () X X X x f x dx Standardipoikkeama Satunnaismuuttujan X standardipoikkeama on ei-satunnainen vakio D( X) = σ X = E[( X µ X) ] Varianssin ominaisuuksia Satunnaismuuttujan X varianssi ja standardipoikkeama kuvaavat satunnaismuuttujan X todennäköisyysjakauman todennäköisyysmassan hajaantuneisuutta todennäköisyysmassan painopisteen E( X ) = µ X ympärillä. Ilkka Mellin (8) /3

11 Mat-.6 Sovellettu todennäköisyyslaskenta B a vakio. Tällöin D() a = Var() a = Olkoot X i, i =,,, n riippumattomia satunnaismuuttujia ja a i, i =,,, n vakioita. Tällöin Markovin epäyhtälö = n n D ax i i ai D ( Xi) i= i= g(x) satunnaismuuttujan X positiivinen reaaliarvoinen funktio, jonka odotusarvo on E(g(X)) Tällöin jokaiselle reaaliselle, ei-satunnaiselle vakiolle a > pätee Markovin epäyhtälö: E( g( X)) Pr( g( X) a) a Tshebyshevin epäyhtälö X satunnaismuuttuja, jonka odotusarvo on E(X) = µ ja varianssi on Var(X) = σ Tällöin pätee Tshebyshevin epäyhtälö: Pr( X µ kσ) k Komplementtitapahtuman todennäköisyyden kaavasta seuraa, että Pr( X µ < kσ ) = Pr( X µ kσ) k Momentit X satunnaismuuttuja. Tällöin satunnaismuuttujan X k odotusarvo k E( X ) = α, k =,,, k on satunnaismuuttujan X k. momentti eli k. momentti origon suhteen. Erityisesti: α = α = E( X ) = µ Siten satunnaismuuttujan X. momentti origon suhteen on satunnaismuuttujan X odotusarvo. X satunnaismuuttuja, jonka odotusarvo on E( X ) = µ Ilkka Mellin (8) /3

12 Mat-.6 Sovellettu todennäköisyyslaskenta B Tällöin satunnaismuuttujan ( X µ ) k odotusarvo k E ( X µ ) = µ k, k =,,, on satunnaismuuttujan X k. keskusmomentti eli k. momentti painopisteen µ suhteen. Erityisesti: µ = µ = E ( X µ ) = σ = Var( X) = D ( X) Siten satunnaismuuttujan X. keskusmomentti häviää ja. keskusmomentti on satunnaismuuttujan X varianssi. Momenttien olemassaolo Satunnaismuuttujan X k. origomomentti on olemassa, jos k E( X ) < Satunnaismuuttujan X k. keskusmomentti on olemassa, jos vastaava origomomentti on olemassa. Voidaan osoittaa, että jos jollekin n, niin n E( X ) < k E( X ) < kaikille k < n. Jos siis satunnaismuuttujalla on n. origomomentti, niin sillä on myös kaikki alempien kertalukujen momentit. Vinous Tunnuslukua γ = µ 3 3/ µ käytetään todennäköisyysjakaumien vinouden mittana. Jos todennäköisyysjakauman pistetodennäköisyys- tai tiheysfunktio on yksihuippuinen, pätee seuraava: γ < : Jakauma on negatiivisesti vino eli vino vasemmalle, jolloin jakauman vasen häntä on pitempi kuin oikea häntä. γ = : Jakauma on symmetrinen. γ > : Jakauma on positiivisesti vino eli vino oikealle, jolloin jakauman oikea häntä on pitempi kuin vasen häntä. Huomautus: Normaalijakaumalle γ =. Huipukkuus Tunnuslukua µ γ = 3 4 µ Ilkka Mellin (8) /3

13 Mat-.6 Sovellettu todennäköisyyslaskenta B käytetään todennäköisyysjakaumien huipukkuuden mittana. Jos todennäköisyysjakauman pistetodennäköisyys- tai tiheysfunktio on yksihuippuinen, pätee seuraava: γ > : Jakauma on huipukas (normaalijakaumaan verrattuna). γ = : Jakauma on yhtä huipukas kuin normaalijakauma. γ < : Jakauma on laakea (normaalijakaumaan verrattuna). Huomautus: Normaalijakaumalle γ =. Kvantiilit X satunnaismuuttuja. lisäksi < p < Jos luku x p toteuttaa ehdot Pr(X x p ) p Pr(X x p ) p sanomme, että x p on satunnaismuuttujan X ja sen jakauman kvantiili kertalukua p. Siten kvantiili x p toteuttaa epäyhtälöt Pr(X < x p ) p Pr(X x p ) Kvantiilit voidaan määrätä myös sellaisille satunnaismuuttujille, joilla ei ole momentteja. Kvantiilit eivät välttämättä ole yksikäsitteisiä: (i) Diskreettien satunnaismuuttujien kvantiilit ovat usein monikäsitteisiä. (ii) Jatkuvien satunnaismuuttujien kvantiilit ovat yksikäsitteisiä. F(x) = Pr(X x) jatkuvan satunnaismuuttujan X kertymäfunktio. Tällöin satunnaismuuttujan X kvantiili x p toteuttaa yhtälön F(x p ) = p Kvantiili x p jakaa satunnaismuuttujan X jakauman todennäköisyysmassan kahteen osaan niin, että massasta p % on kvantiilista x p vasemmalla ja ( p) % on kvantiilista x p oikealla. Tilastolliset taulukot ja kvantiilit Useimmissa todennäköisyyslaskennan ja tilastotieteen oppikirjoissa on taulukoituna keskeisten tilastollisessa päättelyssä käytettävien jatkuvien jakaumien (standardoidun normaalijakauman t- jakauman, χ -jakauman ja F-jakauman) kvantiileja x p ja niitä vastaavia todennäköisyyksiä p ja useimmissa tilastollisissa tietokoneohjelmissa on aliohjelmia, jotka laskevat em. jakaumien kvantiileja x p ja niitä vastaavia todennäköisyyksiä p. Ilkka Mellin (8) 3/3

14 Mat-.6 Sovellettu todennäköisyyslaskenta B Prosenttipisteet Jos p on muotoa p = q/, q =,,, 99 kvantiilia x p kutsutaan q. prosenttipisteeksi. Jatkuvan satunnaismuuttujan tapauksessa q. prosentti-piste jakaa jakauman todennäköisyysmassan kahteen osaan niin, että massasta q % on q. prosenttipisteestä vasemmalla ja ( q) % on q. prosenttipisteestä oikealla. Desiilit Jos p on muotoa p = q/, q =,,, 9 kvantiilia x p kutsutaan q. desiiliksi. Jatkuvan satunnaismuuttujan tapauksessa q. desiili jakaa jakauman todennäköisyysmassan kahteen osaan niin, että massasta q % on q. desiilistä vasemmalla ja ( q) % on q. desiilistä oikealla. Kvartilit Jos p on muotoa p = 5 q/, q =,, 3 kvantiilia x p kutsutaan q. kvartiiliksi. Jatkuvan satunnaismuuttujan tapauksessa q. kvartiili jakaa jakauman todennäköisyysmassan kahteen osaan niin, että massasta 5 q % on q. kvartiilista vasemmalla ja ( 5 q) % on q. kvartiilista oikealla. Kvartiileja merkitään tavallisesti symboleilla Q, Q, Q 3 ja sanotaan, että Q = alakvartiili Q = keskikvartiili Q 3 = yläkvartiili Ilkka Mellin (8) 4/3

15 Mat-.6 Sovellettu todennäköisyyslaskenta B Jatkuvan satunnaismuuttujan tapauksessa kvartiilit jakavat jakauman todennäköisyysmassan neljään yhtä suureen osaan: 5 % massasta on kvartiilista Q vasemmalle 5 % massasta on kvartiilien Q ja Q välissä 5 % massasta on kvartiilien Q ja Q 3 välissä 5 % massasta on kvartiilista Q 3 oikealle Mediaani Jos p =.5 kvantiilia x p kutsutaan mediaaniksi. Mediaania merkitään tavallisesti symbolilla Me. Jatkuvan satunnaismuuttujan tapauksessa mediaani Me jakaa jakauman todennäköisyysmassan kahteen yhtä suureen osaan niin, että massasta 5 % on mediaanista vasemmalla ja 5 % on mediaanista oikealla. Jakauman mediaani ei välttämättä ole yksikäsitteinen. Jakauman mediaani yhtyy jakauman 5. prosenttipisteeseen, 5. desiiliin ja keskikvartiiliin Q. Mediaani voidaan määrätä myös sellaisille satunnaismuuttujille, joilla ei ole odotusarvoa. Jos satunnaismuuttujan X jakauma on symmetrinen suoran x = a suhteen, niin jakauman mediaani yhtyy pisteeseen a: Me = a Jos symmetrisellä jakaumalla on odotusarvo E(X) = µ, niin jakauman mediaani yhtyy pisteeseen µ: Me = µ Moodi X diskreetti satunnaismuuttuja, jonka pistetodennäköisyysfunktio on f(x) = Pr(X = x) Piste Mo on diskreetin satunnaismuuttujan X ja sen jakauman moodi, jos pistetodennäköisyysfunktio f(x) saavuttaa maksiminsa pisteessä x = Mo: f ( Mo) = max f ( x) x X jatkuva satunnaismuuttuja, jonka tiheysfunktio on f(x) Piste Mo on jatkuvan satunnaismuuttujan X ja sen jakauman moodi, jos tiheysfunktio f(x) saavuttaa maksiminsa pisteessä x = Mo: f ( Mo) = max f ( x) x Ilkka Mellin (8) 5/3

16 Mat-.6 Sovellettu todennäköisyyslaskenta B Jakauman moodi ei välttämättä ole yksikäsitteinen. Moodi voidaan määrätä myös sellaisille satunnaismuuttujille, joilla ei ole odotusarvoa. Ilkka Mellin (8) 6/3

17 Mat-.6 Sovellettu todennäköisyyslaskenta B Tehtävä 3.. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa kuulaa. Poimitaan kummastakin uurnasta satunnaisesti yksi kuula sekä asetetaan uurnasta A poimittu kuula uurnaan B ja uurnasta B poimittu kuula uurnaan A. Poimitaan tämän jälkeen uurnasta B satunnaisesti kuula. Mikä on todennäköisyys, että poimittu kuula on valkoinen? Ohje: Konstruoi tehtävän ratkaisemista varten tarkoitukseen sopiva puumainen verkko. Tehtävä 3.. Mitä opimme? Tehtävässä tarkastellaan todennäköisyyslaskennan tehtävien ratkaisemista puumaisten verkkojen avulla. Tehtävä 3.. Ratkaisu: Tehtävän satunnaisilmiön tulosvaihtoehdoista voidaan rakentaa seuraava puuverkko: 4/ 6/ Vaihe 6/ 4/ 6/ 4/ Vaihe 6/ 4/ 7/ 3/ 5/ 5/ 6/ 4/ Vaihe 3 Puun konstruktio perustuu siihen, että voidaan ajatella, että kuulat poimitaan kolmessa vaiheessa: Vaihe : Poimitaan kuula uurnasta A. Vaihe : Poimitaan kuula uurnasta B. Vaihe 3: Poimitaan kuula uurnasta B sen jälkeen, kun vaiheessa uurnasta A poimittu kuula on pantu uurnaan B ja vaiheessa uurnasta B poimittu kuula on pantu uurnaan A. Tarkastellaan puun konstruktiosta esimerkkinä reittiä, joka päättyy nuolella merkittyyn valkoiseen kuulaan: Vaihe : Uurnasta A poimitaan musta kuula; todennäköisyys = 6/ Vaihe : Uurnasta B poimitaan valkoinen kuula; todennäköisyys = 6/ Uurnasta A poimittu musta kuula pannaan uurnaan B ja uurnasta B poimittu valkoinen kuula pannaan uurnaan B. Tämän jälkeen uurnassa A on 5 valkoista ja 5 mustaa kuulaa ja myös uurnassa B on 5 valkoista kuulaa ja 5 mustaa kuulaa. Vaihe 3: Uurnasta A poimitaan valkoinen kuula; todennäköisyys = 5/ Ilkka Mellin (8) 7/3

18 Mat-.6 Sovellettu todennäköisyyslaskenta B Yo. puu koostuu 8 reitistä ja niistä 4 päättyy valkoiseen kuulaan. Todennäköisyys nostaa valkoinen kuula vaiheessa 3 voidaan laskea puutodennäköisyyksien tulo- ja yhteenlaskusääntöjen avulla: (i) Puutodennäköisyyksien tulosäännön mukaan jokaisen valkoiseen kuulaan päättyvän reitin todennäköisyys saadaan laskemalla ko. reitin särmien todennäköisyyksien tulo. Puutodennäköisyyksien tulosääntö on yleisen tulosäännön sovellus. (ii) Puutodennäköisyyksien yhteenlaskusäännön mukaan valkoisiin kuuliin päättyvistä reiteistä koostuvan tapahtuman todennäköisyys on ko. reittien todennäköisyyksien summa. Puutodennäköisyyksien yhteenlaskusääntö on toisensa poissulkevien tapahtumien yhteenlaskusäännön sovellus. Valkoiseen kuulaan vaiheessa 3 johtavat reitit yo. puudiagrammissa: VVV, VMV, MVV, MMV jossa V = valkoinen kuula M = musta kuula Siten todennäköisyydeksi nostaa valkoinen kuula vaiheessa 3 saadaan = =.58 Tehtävä 3.. Mies aikoo pelata uhkapeliä, jonka jokaisella kierroksella joko voittaa tai häviää euron. Kun mies aloittaa pelin, hänellä on yksi euro. Mies päättää pelata kunnes hänellä on kasassa 4 euroa tai kunnes hänen rahansa loppuvat, mutta kuitenkin korkeintaan 5 pelikierrosta. Millä todennäköisyydellä miehellä on lopettaessaan pelin kasassa täsmälleen euroa, kun voiton todennäköisyys on kullakin pelikierroksella /4? Ohje: Konstruoi tehtävän ratkaisemista varten tarkoitukseen sopiva puumainen verkko. Tehtävä 3.. Mitä opimme? Tehtävässä tarkastellaan todennäköisyyslaskennan tehtävien ratkaisemista puumaisten verkkojen avulla. Ks. myös tehtävää 3.. Ilkka Mellin (8) 8/3

19 Mat-.6 Sovellettu todennäköisyyslaskenta B Tehtävä 3.. Ratkaisu: Konstruoidaan miestä pelissä kohtaavista vaihtoehdoista ensin puuverkko: / 3/ / 3/ 3 / 3/ / 3/ 4 / 3/ / 3/ 3 3 / 3/ / 3/ / 3/ / 3/ 4 4 Luvut puuverkon pisteisiin asetetuissa neliöissä ilmaisevat miehen pääoman pelin eri vaiheissa ja luvut puuverkon särmien vieressä ilmaisevat eri vaihtoehtojen todennäköisyydet kussakin pelin vaiheessa. Tiedämme, että Pr(Mies voittaa euron) = /4 Pr(Mies häviää euron) = /4 = 3/4 Näemme, että mahdollisia lopputiloja, joissa miehellä on täsmälleen euroa, on 4 kappaletta. Todennäköisyys, että miehellä on lopettaessaan pelin täsmälleen euroa, voidaan laskea puutodennäköisyyksien tulo- ja yhteenlaskusääntöjen avulla: (i) Puutodennäköisyyksien tulosäännön mukaan jokaisen valkoiseen kuulaan päättyvän reitin todennäköisyys saadaan laskemalla ko. reitin särmien todennäköisyyksien tulo. Puutodennäköisyyksien tulosääntö on yleisen tulosäännön sovellus. (ii) Puutodennäköisyyksien yhteenlaskusäännön mukaan valkoisiin kuuliin päättyvistä reiteistä koostuvan tapahtuman todennäköisyys on ko. reittien todennäköisyyksien summa. Puutodennäköisyyksien yhteenlaskusääntö on toisensa poissulkevien tapahtumien yhteenlaskusäännön sovellus. Ilkka Mellin (8) 9/3

20 Mat-.6 Sovellettu todennäköisyyslaskenta B Saamme: Pr(Miehellä on lopettaessaan pelin täsmälleen euroa) = = = = Tehtävä 3.3. Seuraava kuva esittää sähköistä verkkoa, jossa on 5 komponenttia, joista jokaisen toimintatodennäköisyys on p. Oletetaan, että komponenttien vikaantumiset ovat tapahtumina toisistaan riippumattomia. Mikä on todennäköisyys, että verkko toimii, ts. virta kulkee verkon läpi? Tehtävä 3.3. Mitä opimme? Tehtävässä tarkastellaan toimintaverkon toimintatodennäköisyyden määräämistä. Tehtävä 3.3. Ratkaisu: Kaavion toimintaverkko koostuu seuraavista sarjaan kytketyistä osista: Osa : Komponenttien, ja 3 muodostama rinnankytkentä, joka voidaan purkaa komponenttien ja muodostamaksi rinnankytkennäksi, joka on kytketty rinnan komponentin 3 kanssa. Osa : Komponentti 4 Osa 3: Komponentti 5 Olemme olettaneet, että toimintaverkossa yhdenkään komponentin toiminta tai toimimattomuus ei riipu muiden komponenttien toiminnasta. Tällöin toimintaverkon toimintatodennäköisyys saadaan soveltamalla seuraavia sääntöjä: (i) Jos komponentit A ja B on kytketty rinnan, kytkennän toimintatodennäköisyys on yleisen yhteenlaskusäännön ja riippumattomien tapahtumien tulosäännön mukaan: Pr(A toimii tai B toimii) = Pr(A toimii) + Pr(B toimii) Pr(A toimii ja B toimii) = Pr(A toimii) + Pr(B toimii) Pr(A toimii)pr(b toimii) Ilkka Mellin (8) /3

21 Mat-.6 Sovellettu todennäköisyyslaskenta B (ii) Jos komponentit A ja B on kytketty sarjaan, kytkennän toimintatodennäköisyys on riippumattomien tapahtumien tulosäännön mukaan: Pr(A toimii ja B toimii) = Pr(A toimii)pr(b toimii) Komponenttien ja muodostama rinnankytkentä toimii todennäköisyydellä p + p p p = p p Komponenttien, ja 3 muodostama rinnankytkentä toimii todennäköisyydellä p p + p ( p p ) p = 3p 3p + p 3 Koska tehtävän kaavion kuvaama toimintaverkko koostuu komponenttien, ja 3 rinnan kytkennän kytkennästä sarjaan komponenttien 4 ja 5 kanssa, verkon toimintatodennäköisyydeksi saadaan: (3p 3 p + p ) p p = 3p 3p + p Tehtävä 3.4. asetelmana sama kuin tehtävässä 3.., mutta mies päättää pelata peliä korkeintaan 3 kierrosta. satunnaismuuttuja X = Miehen pääoma hänen lopettaessaan pelin (a) Määrää todennäköisyydet tapahtumille X =,,, 3, 4 puuverkkoa käyttäen ja määrittele niiden avulla satunnaismuuttujan X pistetodennäköisyysfunktio. Hahmottele funktion kuvaaja paperille. (b) Määrää satunnaismuuttujan X kertymäfunktio. Hahmottele funktion kuvaaja paperille. (c) Mikä on tapahtuman X =.5 todennäköisyys? (d) Määrää tapahtuman X > todennäköisyys pistetodennäköisyysfunktion avulla. (e) Määrää tapahtuman X > todennäköisyys kertymäfunktion avulla. (f) Määrää satunnaismuuttujan X odotusarvo. (g) Määrää satunnaismuuttujan X varianssi. Tehtävä 3.4. Mitä opimme? Tehtävässä tarkastellaan diskreetin satunnaismuuttujan määrittelemistä yksinkertaisen esimerkin tapauksessa sekä ko. satunnaismuuttujan pistetodennäköisyysfunktion ja kertymäfunktion konstruoimista sekä odotusarvon ja varianssin määräämistä ko. satunnaismuuttujalle. Tehtävä 3.4. Ratkaisu: (a) Jos olet onnistunut konstruoimaan tehtävän 3.. puuverkon oikein, voit lukea verkosta seuraavien tapahtumien todennäköisyydet Pr(Miehelle jää euroa) = + = Pr(Miehelle jää euro) = Ilkka Mellin (8) /3

22 Mat-.6 Sovellettu todennäköisyyslaskenta B Pr(Miehelle jää euroa) = + = Pr(Miehelle jää 3 euroa) = Pr(Miehelle jää 4 euroa) = = Siten diskreetin satunnaismuuttujan X = Miehen pääoma lopettaessaan pelin pistetodennäköisyysfunktio voidaan esittää seuraavana taulukkona: x f(x) = Pr(X = x) 57/64 6/ /64 Pistetodennäköisyysfunktion kuvaaja: Pistetodennäköisyysfunktio f(x)..8 f(x) x (b) Diskreetin satunnaismuuttujan kertymäfunktio voidaan määritellä kaavalla F( x) = Pr( X = x ) ixi x i Ilkka Mellin (8) /3

23 Mat-.6 Sovellettu todennäköisyyslaskenta B Summassa lasketaan yhteen kaikki pistetodennäköisyydet Pr( X = x i ) joille pätee x i x Siten diskreetin satunnaismuuttujan X = Miehen pääoma lopettaessaan pelin kertymäfunktio voidaan esittää seuraavana taulukkona: x F(x) < x < 57/64 x < 4 63/64 4 x Kertymäfunktion kuvaaja välillä [, 5]: Kertymäfunktio F(x)..8 F(x) x (c) Koska tapahtuma X =.5 on mahdoton, Pr(X =.5) = (d) Tapahtuman X > Ilkka Mellin (8) 3/3

24 Mat-.6 Sovellettu todennäköisyyslaskenta B todennäköisyys saadaan satunnaismuuttujan X pistetodennäköisyysfunktiosta laskemalla niiden tulosvaihtoehtojen pistetodennäköisyydet yhteen, joissa mies voittaa enemmän kuin euron. Siten Pr(X > ) = Pr(X = ) + Pr(X = 3) + Pr(X = 4) = 6/ /64 = 7/64 (e) Tapahtuman X > todennäköisyys saadaan satunnaismuuttujan X kertymäfunktiosta seuraavalla tavalla: Pr(X > ) = Pr(X ) = F() = 57/64 = 7/64 (f) Jos satunnaismuuttujan X pistetodennäköisyysfunktio on f(x), satunnaismuuttujan X odostusarvo E(X) saadaan kaavalla: Siten E( X ) = x Pr( X = x ) E( X ) 4 = ipr( X = i) i= i i i = Pr( X = ) + Pr( X = ) + Pr( X = ) + 3 Pr( X = 3) + 4 Pr( X = 4) 57 6 = = 4 Satunnaismuuttujan X odotusarvo on satunnaismuuttujan X todennäköisyysjakauman todennäköisyysmassan painopiste. (g) Käytetään satunnaismuuttujan X varianssin laskemiseen kaavaa Var( X ) = E( X ) [E( X)] Jos satunnaismuuttujan X pistetodennäköisyysfunktio on f(x), satunnaismuuttujan X. origomomentti E(X ) saadaan kaavalla: Ilkka Mellin (8) 4/3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2004) 1 Verkot ja todennäköisyyslaskenta Puudiagrammit todennäköisyyslaskennassa: Johdatteleva esimerkki Todennäköisyyslaskenta

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit

Lisätiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio KE (2014) 1 Satunnaismuuttujat ja niiden todennäköisyysjakaumat Satunnaismuuttujat

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1 Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta

Liite 2: Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Verkot TKK (c) Ilkka Mellin (2007) 1 Verkko eli graafi: Määritelmä 1/2 Verkko eli graafi muodostuu pisteiden joukosta V, särmien

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Todennäköisyyslaskun kertaus. Heliövaara 1

Todennäköisyyslaskun kertaus. Heliövaara 1 Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I

Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I β versio Todennäköisyyslaskenta Ilkka Mellin Teknillinen korkeakoulu, Matematiikan laboratorio TKK @ Ilkka Mellin (2006) I TKK @ Ilkka Mellin (2006) II Esipuhe Tämä moniste antaa perustiedot todennäköisyyslaskennasta.

Lisätiedot

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Todennäköisyyslaskenta: Liitteet. Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit. Ilkka Mellin (2006) 449

Todennäköisyyslaskenta: Liitteet. Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit. Ilkka Mellin (2006) 449 Liitteet Todennäköisyyslaskenta: Liitteet Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit TKK @ Ilkka Mellin (2006) 449 Liitteet TKK @ Ilkka Mellin (2006) 450 Liitteet Sisällys 1.

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Ilkka Mellin 1. korjattu painos Ilkka Mellin I Ilkka Mellin II Esipuhe Tämä moniste pyrkii antamaan perustiedot todennäköisyyslaskennasta. Monisteen ensisijaisena tavoitteena on

Lisätiedot

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

D ( ) E( ) E( ) 2.917

D ( ) E( ) E( ) 2.917 Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg 1 Todennäköisyys Satunnaismuuttujat Keskeinen raja-arvolause Aalto-yliopisto. tammikuuta 015 Kaksiulotteiset satunnaismuuttujat

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa? 21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Inversio-ongelmien laskennallinen peruskurssi Luento 7 Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot